# Math 54 Section Worksheet 14 Solutions <br> GSI: Jeremy Meza <br> Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286 

Wednesday April 1, 2020

## 1 Warm-Up

True or False?
T (a) For a square matrix $A$, vectors in $\operatorname{Col} A$ are orthogonal to vectors in $\operatorname{Nul} A^{T}$.
F (b) The orthogonal projection $\hat{\mathbf{y}}$ of $\mathbf{y}$ onto a subspace $W$ can sometimes depend on the orthogonal basis for $W$ used to compute $\hat{\mathbf{y}}$.

F (c) A space $W$ has only finitely many orthonormal bases.

## 2 Virtually Together

Let's recall how to compute an orthogonal projection. Let $\mathbf{v} \in \mathbb{R}^{n}$ and $W \subseteq \mathbb{R}^{n}$ be a subspace, say of dimension $d$. The orthogonal projection of $\mathbf{v}$ onto $W$ is given by

$$
\operatorname{proj}_{W}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\cdots+\frac{\mathbf{v} \cdot \mathbf{w}_{n}}{\mathbf{w}_{n} \cdot \mathbf{w}_{n}} \mathbf{w}_{n}
$$

where $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}\right\}$ is an orthogonal basis for $W$.
What happens when we have a subspace $W$ but are not given an orthogonal basis for $W$ ? How do we compute the orthogonal projection then? The answer is... we start with any old basis of $W$ and from it construct a new, orthogonal basis of $W$ using the Gram-Schmidt algorithm.

Let's find an orthogonal basis for the column space of the matrix:

$$
A=\left(\begin{array}{rrr}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right)
$$

## 3 Problems

1. Let $A=\left(\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}3 \\ 3 \\ 3 \\ 3\end{array}\right)$.
(a) Use the Gram-Schmidt process to find an orthogonal basis for $\operatorname{Col} A$.

Label the columns of $A b_{1}, b_{2}, b_{3}$, respectively.

$$
\begin{gathered}
w_{1}=\left(\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right), \quad w_{2}=b_{2}-\frac{b_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=\left(\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right)-\frac{-36}{12}\left(\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right) \\
w_{3}=b_{3}-\frac{b_{3} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}-\frac{b_{3} \cdot w_{2}}{w_{2} \cdot w_{2}} w_{2}=\left(\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right)-\frac{6}{12}\left(\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right)-\frac{30}{12}\left(\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right)
\end{gathered}
$$

(b) Compute the orthogonal projection of $\mathbf{v}$ onto $\operatorname{Col} A$.

$$
\operatorname{proj}_{\operatorname{Col} A} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\frac{\mathbf{v} \cdot \mathbf{w}_{2}}{\mathbf{w}_{2} \cdot \mathbf{w}_{2}} \mathbf{w}_{2}+\frac{\mathbf{v} \cdot \mathbf{w}_{3}}{\mathbf{w}_{3} \cdot \mathbf{w}_{3}} \mathbf{w}_{3}=\frac{12}{12}\left(\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right)+\frac{12}{12}\left(\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right)+0=\left(\begin{array}{l}
2 \\
4 \\
2 \\
0
\end{array}\right)
$$

(c) Compute $A^{T}\left(\mathbf{v}-\operatorname{proj}_{\operatorname{Col} A} \mathbf{v}\right)$. What should you get? 0 .
(d) Solve the linear system $A \mathbf{x}=\operatorname{proj}_{\operatorname{Col} A} \mathbf{v} \cdot \mathbf{x}=\left(\begin{array}{l}4 \\ 1 \\ 0\end{array}\right)$
(e) Solve the linear system $A^{T} A \mathbf{x}=A^{T} \mathbf{v}$. Compare your answer to the part above. For your convenience, $A^{T} A=\frac{1}{6}\left(\begin{array}{ccc}2 & -6 & 6 \\ -6 & 20 & 2 \\ 1 & 2 & 15\end{array}\right)$. You should get the same answer as in part (d).
2. True or False?

T (a) The Gram-Schmidt process produces from a linearly independent set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ an orthogonal set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ with the property that for each $k$, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span the same subspace as that spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.
F (b) If $W$ is a subspace with basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is another basis of $W$ that is also orthogonal, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ was gotten from $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ by Gram-Schmidt.
F (c) If $L$ is a line through 0 and if $\hat{\mathbf{y}}$ is the orthogonal projection of $\mathbf{y}$ onto $L$, then $\|\hat{\mathbf{y}}\|$ gives the distance from $\mathbf{y}$ to $L$.
T (d) For each $\mathbf{y}$ and each subspace $W$, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to $W$.
T (e) If $\mathbf{y}$ is in a subspace $W$, then the orthogonal projection of $\mathbf{y}$ onto $W$ is $\mathbf{y}$ itself.
T (f) If $W$ is a subspace of $\mathbb{R}^{n}$ and if $\mathbf{v}$ is in both $W$ and $W^{\perp}$, then $\mathbf{v}$ must be the zero vector.
$\mathrm{T}(\mathrm{g})$ If $\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}$, where $\mathbf{z}_{1}$ is in a subspace of $W$ and $\mathbf{z}_{2}$ is in $W^{\perp}$, then $\mathbf{z}_{1}$ must be the orthogonal projection of $\mathbf{y}$ onto $W$.
$\mathrm{F}(\mathrm{h})$ The best approximation to $\mathbf{y}$ by elements of a subspace $W$ is given by the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$.
T (i) If $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ with $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ linearly independent and if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal set in $W$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for $W$.

