Math 54 Section Worksheet 12 Solutions
GSI: Jeremy Meza
Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286
Wednesday March 18, 2020

1 Virtually Together

Let's first start with abstract vector spaces...let's find the eigenvalues and corresponding eigenspaces of the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(p(t))=t \frac{\partial}{\partial t} p(t)$.

By definition, an eigenvalue λ and an eigenvector $p(t)$ for T satisfy $T(p(t))=$ $\lambda p(t)$. Unwrapping this, we see that $t \frac{\partial}{\partial t} p(t)=\lambda p(t)$. This is a differential equation, one in which we could solve (since it is separable, a term we will learn about later). However, we will find the eigenvalues and eigenvectors using a little more linear algebra...

Let's first write a matrix associated to T. In the basis $\left\{1, t, t^{2}\right\}, T$ is represented as $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. Right away, we see an eigenbasis for T, since this matrix is already diagonal! The eigenvalues are $0,1,2$ with eigenspaces $\operatorname{Span}\left(e_{1}\right), \operatorname{Span}\left(e_{2}\right), \operatorname{Span}\left(e_{3}\right)$, respectively, in the basis $\left\{1, t, t^{2}\right\}$. Converting these back to polynomials, we have $\operatorname{Span}(1), \operatorname{Span}(t), \operatorname{Span}\left(t^{2}\right)$ as the eigenspaces.

Now let's get to the complex stuff. . . let's find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right)$.

The eigenvalues are the roots of

$$
(5-\lambda)(3-\lambda)+2=\lambda^{2}-8 \lambda+17
$$

and so $\lambda=\frac{8 \pm \sqrt{64-4 \cdot 17}}{2}=4 \pm i$. The eigenspace for $\lambda=4+i$ is found by finding the nullspace of $\left(\begin{array}{cc}1-i & -2 \\ 1 & -1-i\end{array}\right)$. We could row-reduce, but actually these rows are just (complex) multiples of each other. Indeed, if I multiply the second row by $1-i$, I get the first row (since $(1-i)(-1-i)=-2)$. Thus, looking at the second row, I see that the eigenspace is Span $\left\{\binom{1+i}{1}\right\}$. When you row-reduce, you might find that the eigenspace is something like $\operatorname{Span}\left\{\binom{2}{1-i}\right\}$, for example. But fear not, these are the same space! Finally, the eigenspace for $\lambda=4-i$ is found by taking the span of the complex conjugate of an eigenvector for $\lambda=4+i$.

2 Problems

1. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
(a) Find the eigenvalues and eigenvectors of A. Is A diagonalizable?
(b) Find the eigenvalues and eigenvectors of B. Is B diagonalizable?
(c) (Tricky) Find a matrix P such that $A=P B P^{-1}$.

The eigenvalues of both A and B are $\lambda=2$. The eigenspace for A is Span $\left\{\binom{1}{-1}\right\}$ and the eigenspace for B is $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
You can find the matrix P by looking at the equation $A P=P B$, putting some indeterminants in for the entries of P, and solving. You will find $P=\left(\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right)$.
2. Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Find the eigenvalues of A and for each eigenvalue, find a basis for the corresponding eigenspace. Is A diagonalizable?
The eigenvalues are $\lambda= \pm i$. The eigenspace for $\lambda=i$ is found by solving for x in $\left(\begin{array}{cc}-i & 1 \\ -1 & -i\end{array}\right) x=0$, from which we see that the eigenspace is $\operatorname{Span}\left\{\binom{1}{i}\right\}$. The eigenspace for $\lambda=-i$ is the complex conjugate of the eigenspace above, $\operatorname{Span}\left\{\binom{1}{-i}\right\}$.
3. Let $A=\left(\begin{array}{ccc}1 & 1 & -5 \\ 0 & 2 & 0 \\ 1 & 2 & 3\end{array}\right)$. Find the eigenvalues of A. For each eigenvalue, find a basis for the corresponding eigenspace. Is A diagonalizable?
The eigenvalues are $\lambda=2,2 \pm 2 i$. There are 3 distinct eigenvalues, so A is diagonalizable. The eigenspaces are $\operatorname{Span}\left\{\left(\begin{array}{c}-11 \\ 4 \\ 3\end{array}\right)\right\}, \operatorname{Span}\left\{\left(\begin{array}{c}-1+2 i \\ 0 \\ 1\end{array}\right)\right\}$, and $\operatorname{Span}\left\{\left(\begin{array}{c}-1-2 i \\ 0 \\ 1\end{array}\right)\right\}$, respectively.
4. All matrices below are $n \times n$. True or False?

T (a) If A is similar to B, and both are invertible, then A^{-1} is similar to B^{-1}.

F (b) If A and B have the same eigenvalues, then A is similar to B.
F (c) If A and B have the same characteristic polynomial, then A is similar to B.

F (d) If A and B are both diagonalizable, then A is similar to B.
F (e) If A and B are both diagonalizable and have the same eigenvalues, then A is similar to B.
T (f) If A and B are both diagonalizable and have the same characteristic polynomial, then A is similar to B.
F (g) If all the eigenvalues of A are 0 , then A is the 0 matrix.
$\mathrm{T}(\mathrm{h})$ If A is a real matrix with eigenvalue $a+b i$, then $a-b i$ is also an eigenvalue of A.

T (i) If A is a real matrix with eigenvector $\mathbf{u}+i \mathbf{v}$, then $\mathbf{u}-i \mathbf{v}$ is also an eigenvector of A.
T (j) The matrix A always has n complex eigenvalues, counting multiplicity.
$\mathrm{T}(\mathrm{k})$ If A is diagonalizable, then A^{2} is diagonalizable.
F (l) If A^{2} is diagonalizable, then A is diagonalizable.

3 Extra (possibly difficult) Problems

5. Prove that any matrix of the form $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ where $a, b \in \mathbb{R}$ with $b \neq 0$, is not diagonalizable.
6. Let V be the vector space $\operatorname{Span}\{\cos t, \sin t\}$. Let $D: V \rightarrow V$ be the function $D(f)=\frac{\partial}{\partial t} f$.
(a) Write down a matrix that represents D.
(b) Can you find an alternate basis \mathcal{E} so that when written in this basis, D is a diagonal matrix?

Hint: You might find the following identities useful:

$$
e^{i t}=\cos t+i \sin t \quad e^{-i t}=\cos t-i \sin t
$$

7. Diagonalize $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
