Math 54 Section Worksheet 12

GSI: Jeremy Meza
Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286
Wednesday March 18, 2020

1 Virtually Together

Let's first start with abstract vector spaces... let's find the eigenvalues and corresponding eigenspaces of the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(p(t))=t \frac{\partial}{\partial t} p(t)$.

Now let's get to the complex stuff. . . let's find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right)$.

2 Problems

1. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
(a) Find the eigenvalues and eigenvectors of A. Is A diagonalizable?
(b) Find the eigenvalues and eigenvectors of B. Is B diagonalizable?
(c) (Tricky) Find a matrix P such that $A=P B P^{-1}$.
2. Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Find the eigenvalues of A and for each eigenvalue, find a basis for the corresponding eigenspace. Is A diagonalizable?
3. Let $A=\left(\begin{array}{ccc}1 & 1 & -5 \\ 0 & 2 & 0 \\ 1 & 2 & 3\end{array}\right)$. Find the eigenvalues of A. For each eigenvalue, find a basis for the corresponding eigenspace. Is A diagonalizable?
4. All matrices below are $n \times n$. True or False?
(a) If A is similar to B, and both are invertible, then A^{-1} is similar to B^{-1}.
(b) If A and B have the same eigenvalues, then A is similar to B.
(c) If A and B have the same characteristic polynomial, then A is similar to B.
(d) If A and B are both diagonalizable, then A is similar to B.
(e) If A and B are both diagonalizable and have the same eigenvalues, then A is similar to B.
(f) If A and B are both diagonalizable and have the same characteristic polynomial, then A is similar to B.
(g) If all the eigenvalues of A are 0 , then A is the 0 matrix.
(h) If A is a real matrix with eigenvalue $a+b i$, then $a-b i$ is also an eigenvalue of A.
(i) If A is a real matrix with eigenvector $\mathbf{u}+i \mathbf{v}$, then $\mathbf{u}-i \mathbf{v}$ is also an eigenvector of A.
(j) The matrix A always has n complex eigenvalues, counting multiplicity.
(k) If A is diagonalizable, then A^{2} is diagonalizable.
(l) If A^{2} is diagonalizable, then A is diagonalizable.

3 Extra (possibly difficult) Problems

5. Prove that any matrix of the form $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ where $a, b \in \mathbb{R}$ with $b \neq 0$, is not diagonalizable.
6. Let V be the vector space $\operatorname{Span}\{\cos t, \sin t\}$. Let $D: V \rightarrow V$ be the function $D(f)=\frac{\partial}{\partial t} f$.
(a) Write down a matrix that represents D.
(b) Can you find an alternate basis \mathcal{E} so that when written in this basis, D is a diagonal matrix?

Hint: You might find the following identities useful:

$$
e^{i t}=\cos t+i \sin t \quad e^{-i t}=\cos t-i \sin t
$$

7. Diagonalize $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
