Math 54 Section Worksheet 11
 GSI: Jeremy Meza

Office Hours: Mon 3:30-5:30pm, Zoom ID: 7621822286
Monday, March 16, 2020

1 Together

Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(e_{1}\right)=(2,-2)^{T}$ and $T\left(e_{2}\right)=(-1,3)^{T}$. In the standard basis, T is given by the matrix

$$
A=(\quad)
$$

Let's find the eigenvalues and eigenvectors of A. We want to find all scalars λ such that the linear system $A x=\lambda x$ has a nontrivial solution. Equivalently, we are looking for all scalars λ such that...
(Circle ONE)
(a) The matrix $(A-\lambda I)$ is invertible.
(b) The matrix $(A-\lambda I)$ is not invertible.
(c) The matrix A is invertible.
(d) The matrix A is not invertible.

An equivalent condition to a matrix B being invertible is....
(Circle ONE) (a) B has no zero rows \quad (b) $\operatorname{Col} B=\{0\} \quad$ (c) $\operatorname{det} B \neq 0 \quad$ (d) 0 is a solution to $B x=0$.
After some work, we find that the eigenvalues of A are $\lambda=1,4$. Plugging these numbers back into our linear system $A x=\lambda x$, we can solve for our eigenvectors...

After some more work, we find that the eigenvectors of A are $(1,1)^{T}$ and $(-1,2)^{T}$ for the eigenvalues 1 , 4, respectively.

To the right is the Cartesian grid, drawn not with the usual x, y axes, but instead with our eigenvectors as the axes. How strange! A vector v is drawn on the grid in our basis of eigenvectors as the point $(2,1)$. Let's plot the point $T(v)$.

We see that in the basis of eigenvectors, T is given by the matrix:

$$
D=(\quad)
$$

In the standard basis, v is represented as the vector $(1,4)^{T}$. Let's check that our answer for $T(v)$ is correct by calculating in the standard basis:

$$
T(v)=(\quad)\binom{1}{4}=(\quad)
$$

Calculating $T(v)$ in the standard basis was so much more work than calculating $T(v)$ in our new basis of eigenvectors. Just imagine how much harder it would be in the standard basis if we had $n \times n$ matrices, as opposed to doing the calculation with an $n \times n$ diagonal matrix!

This is what eigenvalues and eigenvectors do for
 us. They give us a natural coordinate system to perform all our calculations in, and they make calculations as easy as possible by only having to multiply vectors by a diagonal matrix.

2 Problems

1. Define the matrix $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$. A has eigenvalues $\lambda=2,8$. Diagonalize A or explain why A is not diagonalizable.
2. Suppose all matrices below are $n \times n$ matrices, unless otherwise specified. True or False?
(a) A is diagonalizable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
(b) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
(d) If A is diagonalizable, then A is invertible.
(e) If A is invertible, then A is diagonalizable.
(f) A is diagonalizable if A has n eigenvectors.
(g) If A is diagonalizable, then A has n distinct eigenvalues.
(h) If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
(i) If A is 6×6 and has eigenvalues with algebraic multiplicities 3,2 , and 1 , then A is diagonalizable.
(j) If A is 6×6 and has eigenvalues with geometric multiplicities 3,2 and 1 , then A is diagonalizable.
(k) If A has n eigenvalues all with algebraic multiplicity 1 , then A is diagonalizable.
(l) If there exists an eigenvalue λ of A whose geometric multiplicity is less than its algebraic multiplicity, then A is not diagonalizable.
3. What is the characteristic polynomial of the identity transformation? What is the characteristic polynomial of the 0 transformation?

3 Extra (possibly difficult) Problems

4. Let V be the vector space of all continuous functions from \mathbb{R} to \mathbb{R}. Let $T: V \rightarrow V$ be defined by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

Show that T has no eigenvalues.
5. Let A be an $n \times n$ real matrix. Prove that if n is odd, then A must have at least one (real) eigenvalue. (Hint: look at the characteristic polynomial and use some property of continuous functions)
6. Recall the Fibonacci sequence F_{n}, defined recursively as $F_{n}=F_{n-1}+F_{n-2}$ with initial conditions $F_{0}=0, F_{1}=1$. We can write this as

$$
\binom{F_{n}}{F_{n-1}}=A\binom{F_{n-1}}{F_{n-2}} \quad \text { with } \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Reason to yourself that $\binom{F_{n}}{F_{n-1}}=A^{n-1}\binom{F_{1}}{F_{0}}$.
(a) Find the eigenvalues and corresponding eigenvectors for A.
(b) Diagonalize A, i.e. write $A=P D P^{-1}$ for some diagonal matrix D.
(c) Calculate A^{n-1}.
(d) Derive Binet's formula for F_{n} :

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

