Math 54 Section Worksheet 10 GSI: Jeremy Meza Office Hours: Mon 3:30-5:30pm, Evans 1047 Friday, March 13, 2020

1 Warm-up

- Turn to a virtual person next to you and define what an *eigenvalue* of a matrix A is. Have them define what an *eigenvector* is.
- What are the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$?

2 Virtually Together

Let's find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$.

An eigenvalue λ with eigenvector \mathbf{v} satisfies the equation $A\mathbf{v} = \lambda \mathbf{v}$. Rewriting, it satisfies $(A - \lambda I)\mathbf{v} = 0$, which is to say that $\mathbf{v} \in \text{Nul}(A - \lambda I)$.

We first find the eigenvalues. We want all values λ for which $A - \lambda I$ has a nonzero nullspace. An equivalent condition to a matrix having a non-zero null space is that the matrix is not invertible, which in turn is equivalent to $\det(A - \lambda I) = 0$. We call this the **characteristic polynomial**:

The characteristic polynomial of $A = \det(A - \lambda I)$

Let's find the characteristic polynomial for A above:

$$\det(A-\lambda I) = \det\begin{pmatrix} 3-\lambda & 2\\ 1 & 2-\lambda \end{pmatrix} = (3-\lambda)(2-\lambda)-2 = 6-5\lambda+\lambda^2-2 = \lambda^2-5\lambda+4 = (\lambda-4)(\lambda-1)$$

We conclude that the eigenvalues of A are $\lambda = 4$ and $\lambda = 1$, because these are the values of λ that make the characteristic polynomial equal to 0. Now we find the eigenvectors, which we do separately:

 $\underline{\lambda} = 4$: We search for **v** such that $A\mathbf{v} = 4\mathbf{v}$, so we solve the linear system $(A - 4I)\mathbf{v} = 0$.

$$(A-4I)\mathbf{v} = \begin{pmatrix} 3-4 & 2\\ 1 & 2-4 \end{pmatrix} \mathbf{v} = \begin{pmatrix} -1 & 2\\ 1 & -2 \end{pmatrix} \mathbf{v} = 0$$

We find that the **eigenspace for** $\lambda = 4$ is Span $\left\{ \begin{pmatrix} 2\\1 \end{pmatrix} \right\}$. The eigenspace of an eigenvalue λ is defined as the set of all eigenvectors for λ , along with the 0 vector.

 $\underline{\lambda = 1}$: Similarly, if **v** is an eigenvector for $\lambda = 1$, then we have that

$$(A-1I)\mathbf{v} = \begin{pmatrix} 3-1 & 2\\ 1 & 2-1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 2 & 2\\ 1 & 1 \end{pmatrix} \mathbf{v} = 0$$

and so the eigenspace for $\lambda = 1$ is $\operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

3 Problems

- 1. Is $v = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ an eigenvector of the matrix $\begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$? If so, what is the eigenvalue?
- 2. Find the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$. Describe the corresponding eigenspaces by giving vectors that span them.
- 3. Suppose all matrices A below are $n \times n$. True or False?
 - (a) If $Ax = \lambda x$ for some nonzero vector x, then λ is an eigenvalue of A.
 - (b) If $Ax = \lambda x$ for some scalar λ , then x is an eigenvector of A.
 - (c) A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - (d) A number c is an eigenvalue of A if and only if the equation (A-cI)x = 0 has a nontrivial solution.
 - (e) A matrix A can have infinitely many eigenvalues.
 - (f) If A has an eigenvalue, then it has infinitely many eigenvectors.
 - (g) 0 can be an eigenvalue of A.
 - (h) 0 can be an eigenvector of A.
 - (i) Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
 - (j) To find the eigenvalues of A, reduce A to echelon form.
 - (k) If v_1 and v_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - (l) The eigenvalues of a matrix are on its main diagonal.
 - (m) An eigenspace of A is a null space of a certain matrix.
 - (n) The determinant of A is the product of the diagonal entries in A.
 - (o) An elementary row operation on A does not change the determinant.
 - (p) $(\det A)(\det B) = \det AB$.
 - (q) $\det(A+B) = \det A + \det B$.
 - (r) If $\lambda + 5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
 - (s) The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
 - (t) A row replacement operation on A does not change the eigenvalues.