Math 54 Section Worksheet 1
GSI: Jeremy Meza
Office Hours: TBD, Evans 1047
Monday, January 27, 2020

1 Warm-Up

Try to recall the following concepts without looking at your notes.
augmented matrix elementary row operations row echelon form
reduced row echelon form pivot consistent linear system

2 Problems

1. Mark each statement True or False.
(a) Every elementary row operation is reversible.
(b) A 5×6 matrix has six rows.
(c) A solution set of a linear system involving variables x_{1}, \ldots, x_{n} is a list of numbers $\left(s_{1}, \ldots, s_{n}\right)$ that makes each equation in the system a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively.
(d) Two fundamental questions about a linear system involve existence and uniqueness.
2. Mark each statement True or False.
(a) Two matrices are row equivalent if they have the same number of rows
(b) Elementary row operations on an augmented matrix never change the solution set of the associated linear system.
(c) Two equivalent linear systems can have different solution sets.
(d) A consistent system of linear equations has one or more solutions.
3. Mark each statement True or False.
(a) In some cases, a matrix may be row reduced to more than one matrix in reduced echelon form, using different sequences of row operations.
(b) If one row in an echelon form of an augmented matrix is $\left[\begin{array}{lllll}0 & 0 & 0 & 5 & 0\end{array}\right]$, then the associated linear system is inconsistent.
(c) The row echelon form of a matrix is unique.
(d) The pivot positions in a matrix depend on whether row interchanges are used in the row reduction process.
(e) Whenever a system has free variables, the solution set contains many solutions.
4. Row reduce the following matrix to reduced row echelon form:

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 5 & 4 \\
4 & 5 & 4 & 2
\end{array}\right)
$$

5. Do the three planes $2 x_{1}+4 x_{2}+4 x_{3}=4, x_{2}-2 x_{3}=-2$, and $2 x_{1}+3 x_{2}=0$ have at least one common point of intersection?
6. Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?
7. Suppose a system of linear equations has a 3×5 augmented matrix whose fifth column is a pivot column. Is the system consistent? Why or why not?
