\qquad
GSI: Jeremy Meza
March 4, 2020

1. True or False? You must justify your answer. (2 points each).
(a) Let V be the set of matrices of the form $\left(\begin{array}{ll}a & 1 \\ 0 & d\end{array}\right)$ where $a, d \in \mathbb{R}$. Then, V is a vector space.
(b) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. If $\operatorname{Ker} T=\mathbb{R}^{n}$, then T is one-to-one.
2. Let H be a subspace. Define what a basis of H is. (1 point).
3. For the following problem, we will let \mathbb{P}_{n} denote the set of polynomials with real coefficients with degree less than or equal to \mathbf{n}. Define a linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(p(t))=\binom{p(0)}{p^{\prime}(0)}$.
(a) Compute the image of $p(t)=1-3 t+t^{2}$. (1 point).
(b) Find a matrix that represents T. (2 points).
(c) Determine whether T is one-to-one, onto, both, or neither. (2 points).
