\qquad
GSI: Jeremy Meza
February 5, 2020

1. True or False? You must justify your answer. (2 points each).
(a) If A is a 3×4 matrix whose columns span \mathbb{R}^{3}, then $A x=0$ has only the trivial solution.
(b) If A is a 4×3 matrix, then A has linearly independent columns.
(c) If $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are vectors in \mathbb{R}^{3} and $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\mathbb{R}^{3}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
(d) If A is a 2×3 matrix with 2 pivot positions, then there exists a solution to $A x=b$ for every $b \in \mathbb{R}^{2}$.
2. Let $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -3\end{array}\right), v_{2}=\left(\begin{array}{c}3 \\ 4 \\ -7\end{array}\right), v_{3}=\left(\begin{array}{c}-5 \\ -8 \\ 9\end{array}\right)$, and $b=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$. Determine if b is in the span of v_{1}, v_{2}, v_{3}. If so, describe in parametric form all the vectors $\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$ such that $c_{1} v_{1}+c_{2} v_{2}+$ $c_{3} v_{3}=b$. (2 points.)
