Math 54 Section Worksheet 9
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047
 October 1, 2018

1 Together

Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $e_{1} \mapsto(2,-2)^{T}$ and $e_{2} \mapsto(-1,3)^{T}$. In the standard basis, T is given by the matrix

$$
A=(\quad)
$$

Let's find the eigenvalues and eigenvectors of A. We want to find all scalars λ such that the linear system $A x=\lambda x$ has a nontrivial solution. Equivalently, we are looking for all scalars λ such that...
(Circle ONE) (a) The matrix $(A-\lambda I)$ is invertible.
(b) The matrix $(A-\lambda I)$ is not invertible.
(c) The matrix A is invertible.
(d) The matrix A is not invertible.

An equivalent condition to a matrix B being invertible is....
(Circle ONE) (a) B has no zero rows \quad (b) $\operatorname{Col} B=\{0\} \quad$ (c) $\operatorname{det} B \neq 0 \quad$ (d) 0 is a solution to $B x=0$.
After some work, we find that the eigenvalues of A are $\lambda=1,4$. Plugging these numbers back into our linear system $A x=\lambda x$, we can solve for our eigenvectors...

After some more work, we find that the eigenvectors of A are $(1,1)^{T}$ and $(-1,2)^{T}$ for the eigenvalues 1 , 4, respectively.

To the right is the Cartesian grid, drawn not with the usual x, y axes, but instead with our eigenvectors as the axes. How strange! A vector v is drawn on the grid in our basis of eigenvectors as the point $(2,1)$. Let's plot the point $T(v)$.

We see that in the basis of eigenvectors, T is given by the matrix:

$$
D=(\quad)
$$

In the standard basis, v is represented as the vector $(1,4)^{T}$. Let's check that our answer for $T(v)$ is correct by calculating in the standard basis:

$$
T(v)=(\quad)\binom{1}{4}=(\quad)
$$

Calculating $T(v)$ in the standard basis was so much more work than calculating $T(v)$ in our new basis of eigenvectors. Just imagine how much harder it would be in the standard basis if we had $n \times n$ matrices, as opposed to doing the calculation with an $n \times n$ diagonal matrix!

This is what eigenvalues and eigenvectors do for
 us. They give us a natural coordinate system to perform all our calculations in, and they make calculations as easy as possible by only having to multiply vectors by a diagonal matrix.

2 Green Problems

1. (5.1 \#21) A is an $n \times n$ matrix. True or False.
(a) If $A x=\lambda x$ for some vector x, then λ is an eigenvalue of A.
(b) A matrix A is not invertible if and only if 0 is an eigenvalue of A.
(c) A number c is an eigenvalue of A if and only if the equation $(A-c I) x=0$ has a nontrivial solution.
(d) Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is easy.
(e) To find the eigenvalues of A, reduce A to echelon form.
2. (5.1 $\# 22) A$ is an $n \times n$ matrix. True or False.
(a) If $A x=\lambda x$ for some scalar λ, then x is an eigenvector of A.
(b) If v_{1} and v_{2} are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
(c) A steady-state vector for a stochastic matrix is actually an eigenvector.
(d) The eigenvalues of a matrix are on its main diagonal.
(e) An eigenspace of A is a null space of a certain matrix.
3. (5.2 \#21) A, B are $n \times n$ matrices. True or False.
(a) The determinant of A is the product of the diagonal entries in A.
(b) An elementary row operation on A does not change the determinant.
(c) $(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det} A B$.
(d) If $\lambda+5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
4. (5.2 \#22) A, B are $n \times n$ matrices. True or False.
(a) If A is 3×3, with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$, then $\operatorname{det} A$ equals the volume of the parallelepiped determined by $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
(b) $\operatorname{det} A^{T}=(-1) \operatorname{det} A$.
(c) The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A.
(d) A row replacement operation on A does not change the eigenvalues.

3 Extra (possibly difficult) Problems

5. What is the characteristic polynomial of the identity transformation? What is the characteristic polynomial of the 0 transformation?
6. Let V be the vector space of all continuous functions from \mathbb{R} to \mathbb{R}. Let $T: V \rightarrow V$ be defined by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

Show that T has no eigenvalues.
7. Let A be an $n \times n$ real matrix. Prove that if n is odd, then A must have at least one (real) eigenvector. (Hint: look at the characteristic polynomial and use some property of continuous functions)
8. A square matrix A is anti-symmetric if $A^{T}=-A$ and tridiagonal if there are zeroes everywhere except on the main diagonal and the diagonals just above and below the main diagonal.
Let A be a real anti-symmetric tridiagonal matrix with elements $a_{i, i+1}=c_{i}$ for $1 \leq i \leq n$. Give a formula for $\operatorname{det} A$ when n is even.

