Math 54 Section Worksheet 7
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047
 September 20, 2018

1 Green Problems

1. (4.6 \# 10). If the null space of a 7×6 matrix A is 5 -dimensional, what is the dimension of the column space of A ?
2. (4.6 \# 11). If the null space of an 8×5 matrix A is 2 -dimensional, what is the dimension of the row space of A ?
3. (4.6 \# 12). If the null space of a $5 \times 6 A$ is 4 -dimensional, what is the dimension of the row space of A ?
4. (4.6 \# 13). If A is a 7×5 matrix, what is the largest possible rank of A ? If A is a 5×7 matrix, what is the largest possible rank of A ? Explain.
5. (4.6 \# 14). If A is a 4×3 matrix, what is the largest possible dimension of the row space of A ? If A is a 3×4 matrix, what is the largest possible dimension of the row space of A ? Explain.
6. (4.6 \# 15). If A is 6×8 matrix, what is the smallest possible dimension of Nul A ?
7. (3.2\#27). True or False.
(a) A row replacement operation does not affect the determinant of a matrix.
(b) The determinant of A is the product of the pivots in any echelon form U of A, multiplies by $(-1)^{r}$, where r is the number of row interchanges made during row reduction from A to U.
(c) If the columns of A are linearly dependent, then $\operatorname{det} A=0$.
(d) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
8. (3.2 \#28). True or False.
(a) If three row interchanges are made in succession, then the new determinant equals the old determinant.
(b) The determinant of A is the product of the diagonal entries in A.
(c) If $\operatorname{det} A$ is zero, then two rows or two columns are the same, or a row or column is zero.
(d) $\operatorname{det} A^{-1}=-\operatorname{det} A$.

2 Extra Problems

9. Let $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$. Find the change of coordinate matrix from \mathcal{B} to \mathcal{C}.

$$
b_{1}=\binom{7}{5} \quad b_{2}=\binom{-3}{-1} \quad c_{1}=\binom{1}{-5} \quad c_{2}=\binom{-2}{2}
$$

10. Let A be a $p \times q$ matrix. Which of the subspaces $\operatorname{Row} A, \operatorname{Col} A, \operatorname{Nul} A, \operatorname{Row} A^{T}, \operatorname{Col} A^{T}$ and $\operatorname{Nul} A^{T}$ are in \mathbb{R}^{p} and which are in \mathbb{R}^{q} ? How many distinct subspaces are in this list?

3 Challenge

11. Show that the space $C(\mathbb{R})$ of all continuous functions defined on the real line is an infinite dimensional space.
