Math 54 Section Worksheet 5
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047
 September 11, 2018

1 Green Problems

1. (2.1 \# 23). Suppose $C A=I_{n}$ (the $n \times n$ identity matrix). Show that the equation $A x=0$ has only the trivial solution. Explain why A cannot have more columns than rows.
2. (2.1 \# 24). Suppose $A D=I_{m}$ (the $m \times m$ identity matrix). Show that for any b in \mathbb{R}^{m}, the equation $A x=b$ has a solution. Explain why A cannot have more rows than columns.
3. (2.3 \# 11). All matrices below are $n \times n$. Mark each implication as True or False.
(a) If the equation $A x=0$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
(b) If the columns of A span \mathbb{R}^{n}, then the columns are linearly independent.
(c) If A is an $n \times n$ matrix, then the equation $A x=b$ has at least one solution for each b in \mathbb{R}^{n}.
(d) If the equation $A x=0$ has a nontrivial solution, then A has fewer than n pivot positions.
(e) If A^{T} is not invertible, then A is not invertible.
4. (2.2 \# 9). Mark each statement as True or False.
(a) In order for a matrix B to be the inverse of A, both equations $A B=I$ and $B A=I$ must be true.
(b) If A and B are $n \times n$ and invertible, then $A^{-1} B^{-1}$ is the inverse of $A B$.
(c) If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $a b-c d \neq 0$, then A is invertible.
(d) If A is an invertible $n \times n$ matrix, then the equation $A x=b$ is consistent for each b in \mathbb{R}^{n}.
(e) Each elementary matrix is invertible.
5. (2.3\# 15). Can a square matrix with two identical columns be invertible? Why or why not?

2 Extra Problems

6. If the equation $H x=c$ is inconsistent for some c in \mathbb{R}^{n}, what can you say about the equation $H x=0$?
7. Explain why the columns of A^{2} span \mathbb{R}^{n} whenever the columns of A are linearly independent.
8. Suppose $A B=\left(\begin{array}{cc}5 & 4 \\ -2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right)$. Find A.

3 Challenge

9. (a) Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Show that $A^{3}=0$. Compute $(I-A)\left(I+A+A^{2}\right)$.
(b) Suppose $A^{n}=0$ for some $n>1$. Find an inverse for $I-A$.
10. Prove that there exists 2×2 matrices A, B such that $C=A B-B A$ if and only if $c_{11}+c_{22}=0$.
11. If A is a 2×1 matrix and B is a 1×2 matrix, prove that $C=A B$ is not invertible.
