Math 54 Section Worksheet 5 GSI: Jeremy Meza Office Hours: Tues 10am-12pm, Evans 1047 September 11, 2018

1 Green Problems

- 1. (2.1 # 23). Suppose $CA = I_n$ (the $n \times n$ identity matrix). Show that the equation Ax = 0 has only the trivial solution. Explain why A cannot have more columns than rows.
- 2. (2.1 # 24). Suppose $AD = I_m$ (the $m \times m$ identity matrix). Show that for any b in \mathbb{R}^m , the equation Ax = b has a solution. Explain why A cannot have more rows than columns.
- 3. (2.3 # 11). All matrices below are $n \times n$. Mark each implication as True or False.
 - (a) If the equation Ax = 0 has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
 - (b) If the columns of A span $\mathbb{R}^n,$ then the columns are linearly independent.
 - (c) If A is an $n \times n$ matrix, then the equation Ax = b has at least one solution for each b in \mathbb{R}^n .
 - (d) If the equation Ax = 0 has a nontrivial solution, then A has fewer than n pivot positions.
 - (e) If A^T is not invertible, then A is not invertible.
- 4. (2.2 # 9). Mark each statement as True or False.
 - (a) In order for a matrix B to be the inverse of A, both equations AB = Iand BA = I must be true.
 - (b) If A and B are $n \times n$ and invertible, then $A^{-1}B^{-1}$ is the inverse of AB.
 - (c) If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $ab cd \neq 0$, then A is invertible.
 - (d) If A is an invertible $n \times n$ matrix, then the equation Ax = b is consistent for each b in \mathbb{R}^n .
 - (e) Each elementary matrix is invertible.
- 5. (2.3 # 15). Can a square matrix with two identical columns be invertible? Why or why not?

2 Extra Problems

- 6. If the equation Hx = c is inconsistent for some c in \mathbb{R}^n , what can you say about the equation Hx = 0?
- 7. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.
- 8. Suppose $AB = \begin{pmatrix} 5 & 4 \\ -2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix}$. Find A.

3 Challenge

- 9. (a) Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Show that $A^3 = 0$. Compute $(I A)(I + A + A^2)$.
 - (b) Suppose $A^n = 0$ for some n > 1. Find an inverse for I A.
- 10. Prove that there exists 2×2 matrices A, B such that C = AB BA if and only if $c_{11} + c_{22} = 0$.
- 11. If A is a 2×1 matrix and B is a 1×2 matrix, prove that C = AB is not invertible.