Math 54 Section Worksheet 4

GSI: Jeremy Meza

Office Hours: Tues 10am-12pm, Evans 1047 September 6, 2018

1 Green Problems

- 1. (1.9 # 23). Mark each statement True or False.
 - (a) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - (b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle φ , then T is a linear transformation.
 - (c) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - (d) A mapping $T: \mathbb{R}^n \to R^m$ is onto R^m if every vector x in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
 - (e) If A is a 3×2 matrix, then the transformation $x \mapsto Ax$ cannot be one-to-one.
- 2. (1.9 # 24). Mark each statement True or False.
 - (a) Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
 - (b) The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.
 - (c) The standard matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$, where a and d are ± 1 .
 - (d) A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
 - (e) If A is a 3×2 matrix, then the transformation $x \mapsto Ax$ cannot map \mathbb{R}^2 onto \mathbb{R}^3 .

2 Extra Problems

3. Let $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $y_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, and $y_2 = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps e_1 to y_1 and maps e_2 to y_2 . Find the images of $\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

- 4. Prove that every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. That is, construct a matrix A such that T(x) = Ax for all $x \in R^n$. (Hint: look what T and A do to basis elements.)
- 5. Suppose $T:\mathbb{R}^3\to\mathbb{R}^4$ is one-to-one. Describe the possible echelon forms of its corresponding matrix.
- 6. Suppose $T: \mathbb{R}^4 \to \mathbb{R}^3$ is onto. Describe the possible echelon forms of its corresponding matrix.