Math 54 Section Worksheet 4
GSI: Jeremy Meza
Office Hours: Tues 10am-12pm, Evans 1047
September 6, 2018

1 Green Problems

1. (1.9 \# 23). Mark each statement True or False.
(a) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle φ, then T is a linear transformation.
(c) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
(d) A mapping $T: \mathbb{R}^{n} \rightarrow R^{m}$ is onto R^{m} if every vector x in \mathbb{R}^{n} maps onto some vector in \mathbb{R}^{m}.
(e) If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot be one-to-one.
2. (1.9 \# 24). Mark each statement True or False.
(a) Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
(b) The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
(c) The standard matrix of a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects points through the horizontal axis, the vertical axis, or the origin has the form $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$, where a and d are ± 1.
(d) A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps onto a unique vector in \mathbb{R}^{m}.
(e) If A is a 3×2 matrix, then the transformation $x \mapsto A x$ cannot map \mathbb{R}^{2} onto \mathbb{R}^{3}.

2 Extra Problems

3. Let $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}, y_{1}=\binom{2}{5}$, and $y_{2}=\binom{-1}{6}$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps e_{1} to y_{1} and maps e_{2} to y_{2}. Find the images of $\binom{5}{-3}$ and $\binom{x_{1}}{x_{2}}$.
4. Prove that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation. That is, construct a matrix A such that $T(x)=A x$ for all $x \in R^{n}$. (Hint: look what T and A do to basis elements.)
5. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one. Describe the possible echelon forms of its corresponding matrix.
6. Suppose $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto. Describe the possible echelon forms of its corresponding matrix.
