Math 54 Section Worksheet 3
GSI: Jeremy Meza
Office Hours: Tues 10am-12pm, Evans 1047
August 30, 2018

1 Green Problems

1. (1.4 \# 31). Let A be a 3×2 matrix. Explain why the equation $A x=b$ cannot be consistent for all b in \mathbb{R}^{3}. Generalize your argument to the case of an arbitrary A with more rows than columns.
2. (1.4 \# 34). Suppose A is a 3×3 matrix and b is a vector in \mathbb{R}^{3} with the property that $A x=b$ has a unique solution. Explain why the columns of A must span \mathbb{R}^{3}.
3. (1.7 \#21). Mark each statement True or False.
(a) The columns of a matrix A are linearly independent if the equation $A x=0$ has the trivial solution.
(b) If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
(c) The columns of any 4×5 matrix are linearly dependent.
(d) If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in $\operatorname{Span}\{x, y\}$
4. (1.7 \# 22). Mark each statement True or False.
(a) Two vectors are linearly dependent if and only if they lie on a line through the origin.
(b) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
(c) If x and y are linearly independent, and if z is in $\operatorname{Span}\{(x, y\}$, then $\{x, y, z\}$ is linearly dependent.
(d) If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more vectors than there are entries in each vector.

2 Extra Problems

5. Let $v_{1}=\left(\begin{array}{c}1 \\ -5 \\ -3\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 10 \\ 6\end{array}\right), v_{3}=\left(\begin{array}{c}2 \\ -9 \\ h\end{array}\right)$. For what values of h is v_{3} in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, and for what values of h is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly dependent?
