Math 54 Section Worksheet 13
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047
 October 16, 2018

1 Green Problems

4. (6.5 \#17) True or False. $\left(A\right.$ is a $m \times n$ matrix and \mathbf{b} is in $\left.\mathbb{R}^{m}\right)$.
(a) The general least-squares problem is to find an \mathbf{x} that makes $A \mathbf{x}$ as close as possible to \mathbf{b}.
(b) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ that satisfies $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.
(c) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b}-A \mathbf{x}\| \leq$ $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ for all \mathbf{x} in \mathbb{R}^{n}.
(d) Any solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$.
(e) If the columns of A are linearly independent, then the equation $A \mathbf{x}=$ b has exactly one least-squares solution.
5. (6.5 \#18) True or False. $\left(A\right.$ is a $m \times n$ matrix and \mathbf{b} is in $\left.\mathbb{R}^{m}\right)$.
(a) If \mathbf{b} is in the column space of A, then every solution of $A \mathbf{x}=\mathbf{b}$ is a least squares solution.
(b) The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the point in the column space of A closest to \mathbf{b}.
(c) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a list of weights that, when applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.
(d) If $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$, then $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$.
(e) The normal equations always provide a reliable method for computing least-squares solutions.
(f) If A has a $Q R$ factorization, say $A=Q R$, then the best way to find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is to compute $\mathbf{x}=R^{-1} Q^{T} \mathbf{b}$.
6. Find someone with a book and go through Supplementary 1.
