Math 54 Section Worksheet 12 GSI: Jeremy Meza Office Hours: Tues 10am-12pm, Evans 1047 October 11, 2018

1 Green Problems

- 1. (6.3 # 21) True or False.
 - (a) If **z** is orthogonal to \mathbf{u}_1 and to \mathbf{u}_2 and if $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, then z must be in W^{\perp} .
 - (b) For each \mathbf{y} and each subspace W, the vector $\mathbf{y} \text{proj}_W \mathbf{y}$ is orthogonal to W.
 - (c) The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
 - (d) If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself.
 - (e) If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
- 2. (6.3 # 22) True or False.
 - (a) If W is a subspace of \mathbb{R}^n and if **v** is in both W and W^{\perp} , then **v** must be the zero vector.
 - (b) In the Orthogonal Decomposition Theorem, each term $\frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \mathbf{u}_i$ in the formula for $\hat{\mathbf{y}}$ is itself an orthogonal projection of \mathbf{y} onto a subspace of W.
 - (c) If $\mathbf{y} = \mathbf{z}_1 + \mathbf{z}_2$, where \mathbf{z}_1 is in a subspace of W and \mathbf{z}_2 is in W^{\perp} , then \mathbf{z}_1 must be the orthogonal projection of \mathbf{y} onto W.
 - (d) The best approximation to \mathbf{y} by elements of a subspace W is given by the vector $\mathbf{y} - \operatorname{proj}_W \mathbf{y}$.
 - (e) If an $n \times p$ matrix U has orthonormal columns, then $UU^T x = x$ for all x in \mathbb{R}^n .
- 3. (6.4 # 17) True or False.
 - (a) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for W, then multiplying v_3 by a scalar c gives a new orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, c\mathbf{v}_3\}$.
 - (b) The Gram-Schmidt process produces from a linearly independent set {x₁,..., x_p} an orthogonal set {v₁,..., v_p} with the property that for each k, the vectors v₁,..., v_p span the same subspace as that spanned by x₁,..., x_p.
 - (c) If A = QR, where Q has orthonormal columns, then $R = Q^T A$.

- 4. (6.4 # 18) True or False.
 - (a) If $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ with $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ linearly independent and if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for W.
 - (b) If **x** is not in a subspace W, then $\mathbf{x} \text{proj}_W \mathbf{x}$ is not zero.
 - (c) In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.

2 Extra Problems

5. Use the Gram-Schmidt process to find an orthogonal basis for the column space of the matrix

$$A = \begin{pmatrix} -1 & 6 & 6\\ 3 & -8 & 3\\ 1 & -2 & 6\\ 1 & -4 & -3 \end{pmatrix}$$

3 Challenge

- 6. Let A be a real orthogonal $n \times n$ matrix. Prove that every eigenvalue of A is either 1 or -1, and also that det $A = \pm 1$.
- 7. Let A be a 2×2 orthogonal matrix. Prove that the linear transformation $x \mapsto Ax$ is either a rotation about the origin or a reflection about a line through the origin. (Hint: Ax is determined by Ae_1 and Ae_2).
- 8. Let A be a 3×3 orthogonal matrix and suppose there is some vector v such that Av = v. Make a guess as to what the linear transformation $x \mapsto Ax$ can be, geometrically, as in the problem above.