Math 54 Section Worksheet 12
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047
 October 11, 2018

1 Green Problems

1. (6.3 \#21) True or False.
(a) If \mathbf{z} is orthogonal to \mathbf{u}_{1} and to \mathbf{u}_{2} and if $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then z must be in W^{\perp}.
(b) For each \mathbf{y} and each subspace W, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W.
(c) The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
(d) If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself.
(e) If the columns of an $n \times p$ matrix U are orthonormal, then $U U^{T} \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
2. (6.3 \#22) True or False.
(a) If W is a subspace of \mathbb{R}^{n} and if \mathbf{v} is in both W and W^{\perp}, then \mathbf{v} must be the zero vector.
(b) In the Orthogonal Decomposition Theorem, each term $\frac{y \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} \mathbf{u}_{i}$ in the formula for $\hat{\mathbf{y}}$ is itself an orthogonal projection of \mathbf{y} onto a subspace of W.
(c) If $\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}$, where \mathbf{z}_{1} is in a subspace of W and \mathbf{z}_{2} is in W^{\perp}, then \mathbf{z}_{1} must be the orthogonal projection of \mathbf{y} onto W.
(d) The best approximation to \mathbf{y} by elements of a subspace W is given by the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$.
(e) If an $n \times p$ matrix U has orthonormal columns, then $U U^{T} x=x$ for all x in \mathbb{R}^{n}.
3. (6.4 \#17) True or False.
(a) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for W, then multiplying v_{3} by a scalar c gives a new orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, c \mathbf{v}_{3}\right\}$.
(b) The Gram-Schmidt process produces from a linearly independent set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ an orthogonal set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ with the property that for each k, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span the same subspace as that spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$.
(c) If $A=Q R$, where Q has orthonormal columns, then $R=Q^{T} A$.
4. (6.4 \#18) True or False.
(a) If $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ with $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ linearly independent and if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthognal set in W, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for W.
(b) If \mathbf{x} is not in a subspace W, then $\mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ is not zero.
(c) In a $Q R$ factorization, say $A=Q R$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.

2 Extra Problems

5. Use the Gram-Schmidt process to find an orthogonal basis for the column space of the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right)
$$

3 Challenge

6. Let A be a real orthogonal $n \times n$ matrix. Prove that every eigenvalue of A is either 1 or -1 , and also that $\operatorname{det} A= \pm 1$.
7. Let A be a 2×2 orthogonal matrix. Prove that the linear transformation $x \mapsto A x$ is either a rotation about the origin or a reflection about a line through the origin. (Hint: $A x$ is determined by $A e_{1}$ and $A e_{2}$).
8. Let A be a 3×3 orthogonal matrix and suppose there is some vector v such that $A v=v$. Make a guess as to what the linear transformation $x \mapsto A x$ can be, geometrically, as in the problem above.
