Math 54 Section Worksheet 10
 GSI: Jeremy Meza
 Office Hours: Tues 10am-12pm, Evans 1047 October 4, 2018

1 Green Problems

1. (5.3\#21) A, B, P, D are $n \times n$ matrices. True or False.
(a) A is diagonalizable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
(b) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
(d) If A is diagonalizable, then A is invertible.
2. (5.3 \#22) A, B, P, D are $n \times n$ matrices. True or False.
(a) A is diagonalizable if A has n eigenvectors.
(b) If A is diagonalizable, then A has n distinct eigenvalues.
(c) If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
(d) If A is invertible, then A is diagonalizable.
3. (5.5 $\# 23)$ Let A be an $n \times n$ real matrix with the property that $A^{T}=A$. Let \mathbf{x} be any vector in \mathbb{C}^{n}, and let $q=\overline{\mathbf{x}}^{T} A \mathbf{x}$. The equalities below show that q is a real number by verifying that $\bar{q}=q$. Give a reason for each step.

$$
\bar{q}=\overline{\overline{\mathbf{x}}^{T} A \mathbf{x}}=\mathbf{x}^{T} \overline{A \mathbf{x}}=\mathbf{x}^{T} A \overline{\mathbf{x}}=\left(\mathbf{x}^{T} A \overline{\mathbf{x}}\right)^{T}=\overline{\mathbf{x}}^{T} A^{T} \mathbf{x}=q
$$

2 Extra Problems

4. Define the matrix

$$
A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right)
$$

A has eigenvalues $\lambda=2,8$. Diagonalize A or explain why A is not diagonalizable.
5. Let $\mathcal{D}=\left\{d_{1}, d_{2}\right\}$ and $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ be bases for vector spaces V, W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that

$$
T\left(d_{1}\right)=2 b_{1}-3 b_{2} \quad T\left(d_{2}\right)=-4 b_{1}+5 b_{2}
$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B}.
6. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $p(t)$ to the polynomial $p(t)+t^{2} p(t)$.
(a) Find the image of $p(t)=2-t+t^{2}$.
(b) Show that T is a linear transformation.
(c) Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
7. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

3 Challenge

8. Recall the Fibonacci sequence F_{n}, defined recursively as $F_{n}=F_{n-1}+F_{n-2}$ with initial conditions $F_{0}=0, F_{1}=1$. We can write this as

$$
\binom{F_{n}}{F_{n-1}}=A\binom{F_{n-1}}{F_{n-2}} \quad \text { with } \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Reason to yourself that $\binom{F_{n}}{F_{n-1}}=A^{n-1}\binom{F_{1}}{F_{0}}$.
(a) Find the eigenvalues and corresponding eigenvectors for A.
(b) Diagonalize A, i.e. write $A=P D P^{-1}$ for some diagonal matrix D.
(c) Calculate A^{n-1}.
(d) Derive Binet's formula for F_{n} :

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

