Math 54 Section Worksheet 10 GSI: Jeremy Meza Office Hours: Tues 10am-12pm, Evans 1047 October 4, 2018

1 Green Problems

- 1. (5.3 # 21) A, B, P, D are $n \times n$ matrices. True or False.
 - (a) A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.
 - (b) If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - (c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
 - (d) If A is diagonalizable, then A is invertible.
- 2. (5.3 # 22) A, B, P, D are $n \times n$ matrices. True or False.
 - (a) A is diagonalizable if A has n eigenvectors.
 - (b) If A is diagonalizable, then A has n distinct eigenvalues.
 - (c) If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
 - (d) If A is invertible, then A is diagonalizable.
- 3. (5.5 #23) Let A be an $n \times n$ real matrix with the property that $A^T = A$. Let **x** be any vector in \mathbb{C}^n , and let $q = \overline{\mathbf{x}}^T A \mathbf{x}$. The equalities below show that q is a real number by verifying that $\overline{q} = q$. Give a reason for each step.

$$\bar{q} = \bar{\mathbf{x}}^T A \mathbf{x} = \mathbf{x}^T \overline{A} \bar{\mathbf{x}} = \mathbf{x}^T A \overline{\mathbf{x}} = (\mathbf{x}^T A \overline{\mathbf{x}})^T = \bar{\mathbf{x}}^T A^T \mathbf{x} = q$$

2 Extra Problems

4. Define the matrix

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

A has eigenvalues $\lambda = 2, 8$. Diagonalize A or explain why A is not diagonalizable.

5. Let $\mathcal{D} = \{d_1, d_2\}$ and $\mathcal{B} = \{b_1, b_2\}$ be bases for vector spaces V, W, respectively. Let $T: V \to W$ be a linear transformation with the property that

$$T(d_1) = 2b_1 - 3b_2$$
 $T(d_2) = -4b_1 + 5b_2$

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

- 6. Let $T : \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial p(t) to the polynomial $p(t) + t^2 p(t)$.
 - (a) Find the image of $p(t) = 2 t + t^2$.
 - (b) Show that T is a linear transformation.
 - (c) Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}$.
- 7. Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

3 Challenge

8. Recall the Fibonacci sequence F_n , defined recursively as $F_n = F_{n-1} + F_{n-2}$ with initial conditions $F_0 = 0, F_1 = 1$. We can write this as

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} \quad \text{with} \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Reason to yourself that $\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$.

- (a) Find the eigenvalues and corresponding eigenvectors for A.
- (b) Diagonalize A, i.e. write $A = PDP^{-1}$ for some diagonal matrix D.
- (c) Calculate A^{n-1} .
- (d) Derive Binet's formula for F_n :

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$