\qquad
GSI: Jeremy Meza
September 13, 2017

1. Let $f(x)=-x^{2}+8 x-11$.
(a) Graph f.
(b) Does f have a minimum, a maximum, both, or neither?
(c) If f has a minimum or maximum, find the x and y coordinates of that min or max.

Completing the square, we get

$$
f(x)=-\left(x^{2}-8 x+11\right)=-\left(x^{2}-8 x+16-16+11\right)=-\left((x-4)^{2}-5\right)=-(x-4)^{2}+5
$$

f has a maximum value, which is $y=5$ and is attained at $x=4$.
2. Find the equation of the line that contains the points $(2,-1)$ and $(4,9)$.

The slope is

$$
m=\frac{9-(-1)}{4-2}=5
$$

$$
y-(-1)=5(x-2) \text { or } y=5 x-11
$$

3. Write 27^{4000} as a power of 3 .
4. Simply the following expression by writing it as a power of a single variable:

$$
t^{4}\left(t^{3}\left(t^{-2}\right)^{5}\right)^{4}
$$

t^{-24}
5. True or False?

$$
(x+y)^{2}=x^{2}+y^{2}
$$

False

