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Abstract

I foolhardily attempt to give a 50-min introduction to Hecke Alge-
bras and Kazhdan-Lusztig polynomials. In the first three sections I will
(hopefully) sufficiently motivate Hecke algebras and introduce Kazhdan-
Lusztig polynomials. The remainder will then be devoted to explaining,
with examples, the connection between Kazhdan-Lusztig polynomials and
representations of the associating Weyl group, with emphasis on W = Sn

in section 4 and type B in section 5. If time permits, I will mention
unexpected connections to other areas of algebra, combinatorics, and ge-
ometry.

0 Disclaimer

As the abstract suggests, this talk will be an incomplete (albeit lengthy) primer
on Hecke Algebras and Kazhdan-Lusztig polynomials. For the curious audience
member, I suggest reading any of the well written expositions given in the
references. In particular, [Cur79, Mar] are great for motivation of the Hecke
algebra, [Hum92] goes deeper into the structure of the Hecke algebra and the
R-polynomials, [BB06] expands on the particular representation theory of the
Hecke Algebra for Sn, as first outlined by Kazhdan-Lusztig in their seminal
paper [KL79], and applications can be found in [Shi06]. While many of the
talking points here are adapted from these references, any and all errors are
completely my own.

1 An Incomplete Motivation for Hecke Algebras

Representation theory, while admittedly vast and intangible, can be traced back
to two guiding problems: first, the construction of the irreducible (or indecom-
posable) representations, and second how to decompose a representation into
its irreducible constituents (this is of course assuming one is already interested
in knowing how a group represents itself as acting on some space).
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One such object that arose in this program was the Iwahori-Hecke algebra,
whose irreducible representations will be in bijection with the irreducible com-
ponents of an induced representation. Before we delve into this, I should warn
that the following section will contain some constructions in representation the-
ory that may not be familiar to the uninitiated representation theorist. Given
our time constraint, I will be going fast and loose through these concepts, but
I will be sure to highlight the main takeaway before we enter the next section.
So don’t fret, this part will all be over soon, with the world of Coxeter groups
and combinatorics waiting ahead.

To adequately motivate the appearance of Hecke algebras, let’s first consider
the case where we have some finite group G and an irrep ψ of a subgroup H ≤ G.
We can view ψ as the CH-module CHeψ for some idempotent eψ (think pro-
jecting down from the regular representation to the irreducible constituent ψ).
To construct a representation of G, we can look at the induced representation
ψG ≃ CGeψ, which will in general not be irreducible. The centralizer algebra
EndCG(CGeψ) will yield information about the decomposition of ψG (for ex-
ample, Schur’s lemma tells us that ψG is irreducible iff dim EndCG(CGeψ) = 1.
In general, see Mackey’s Theorem). Some general nonsense from ring theory
shows that EndCG(CGeψ) is isomorphic to the double coset eψCGeψ.

Let’s do an example. The idempotent eH =
1
∣H ∣ ∑h∈H h affords the trivial rep

of H, and hence CGeH is the permutation representation on the cosets of H.
Recall that CG may be identified with complex valued functions on G under
convolution:

(fg)(x) = ∑
y∈G

f(xy)g(y−1
)

Under this identification, the centralizer algebra eHCGeH is the subalgebra of
functions constant on (H,H)-double cosets.

We define the Hecke algebra wrt to ψ to be H(G,H,ψ) = eψCGeψ.

Theorem 1.1. The map χ↦ χ∣H defines a bijection from the irreducible com-
ponents of ψG to the irreducible characters of H.

This is the big reason why one studies the representations of the
Hecke Algebra: They tell you how to decompose induced representations.

If we now specialize G to be a Chevalley group (finite group of Lie type)
over a finite field Fq, and B its Borel, then Iwahori gave specific generators and
relations for H(G,B,1B) as a deformed group algebra over the Weyl group W
of G.1 It is this presentation that we will be employing.2

1For the curious reader, if we want to extend this theory to topological groups G with a
closed subgroup K, the centralizer algebra which consists of complex-valued functions constant
on (H,H)-double cosets becomes the space of K-biinvariant continuous functions of compact
support Cc(K/G/K). This algebra, denoted H(G//K), is called the Hecke Ring.

2To produce the Hecke Algebra over an affine Weyl group, one can instead look at G a
reductive algebraic group over a (non-Archimedean local) field and K an (Iwahori) subgroup.
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2 A Modern Definition

Let’s now move on to the world of Coxeter groups, as promised. Let (W,S) be
a Coxeter system.

Definition 2.1. Let A = Z[q, q−1
]. The Hecke Algebra H = Hq(W ) is the free

A-module on the set W , with basis elements denoted Tw for w ∈W , subject to
the following relations:

TsTw = Tsw if sw > w

(Ts − q)(Ts + 1) = 0

A few remarks are in order:

Remark 2.1. If we set q = 1, we get the group algebra CW with basis {Tw}. As
such, we may call this a q-deformed group algebra.

Remark 2.2. The presence of the q−1 is needed so as to introduce inverses.
Indeed, we have directly that

T 2
s + (1 − q)Ts − q = 0 Ô⇒ T −1

s = q−1Ts + (q−1
− 1)

and we can calculate T −1
w since by the first relation Tw = Ts1⋯Tsr if w = s1⋯sr

is a reduced decomposition.

Remark 2.3. For those who didn’t gloss over the first section, to see the con-
nection between this presentation and the motivation above, we can let Tw =

1
∣B∣ ∑x∈BwB x be the characteristic functions on (B,B)-double cosets, which form

a basis for the subalgebra H(G,B,1B) of functions constant on (B,B)-double
cosets.

As an algebra H is given by the Coxeter-like generators and relations

H = ⟨Ti ∣ T
2
i = (q − 1)Ti + q, TiTjTi⋯ = TjTiTj⋯⟩

Tits showed that H⊗C is isomorphic to CW , but in order to write down an
explicit bijection, we need to enlarge the ground ring to include q1/2. As such,
often the Hecke algebra has as its ground ring Z[q1/2, q−1/2

], and the second
relation may be written as

(T ′s − q
1/2

)(T ′s + q
−1/2

) = 0 (1)

Which is seen to be equivalent to the first definition by the substitution T ′s =
q−1/2Ts. (It’s an annoying fact of the literature that this definition seems to
be non-standardized. You will see either or both of these definitions, with the
assumption that the reader is able to follow computations “up to a factor of
q1/2”. In keeping with tradition, I too will present both scaled relations, i.e. my
Tw may in fact carelessly refer to T ′w.)

Now, we want to understand the structure of H more closely. To start, let’s
note that (1) is somewhat arbitrary, in that we can map q ↦ q−1 and T ′s ↦ −T ′s
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and the relation still holds. Similarly, we can also map T ′s ↦ −(T ′s)
−1 and again

(1) holds:

(−(T ′s)
−1
− q1/2

)(−(T ′s)
−1
+ q−1/2

) = (−T ′s − (q−1/2
− q1/2

) − q1/2
)(−T ′s − (q−1/2

− q1/2
) + q−1/2

)

= (−T ′s − q
−1/2

)(−T ′s + q
1/2

) = 0

Composing both these maps give us the following fact:

Proposition 2.1. There exists a unique ring involution H →H sending q ↦ q−1

and Tw ↦ T −1
w−1 .

This involution is called the bar involution and is denoted ⋅̄. As the length
of w increases, computing the inverse seems to become quite infeasible. It is
the main property of this involution that the computation is not as bad as one
might initially guess:

Proposition 2.2.
Tw = T −1

w−1 = q
−`(w)

∑

x≤w
Rx,w(q)Tx

where Rx,w(q) ∈ Z[q] is a polynomial in q of degree `(w) − `(x) and Rw,w = 1.

The polynomials Rx,y(q) above are referred to as R-polynomials and play an
intermediary role in defining Kazhdan-Lusztig polynomials. They can be com-
puted recursively using reduced decompositions of x,w and the lifting property
of Coxeter groups.

3 The Kazhdan-Lusztig Basis

We now fast forward to the year 1979. In their exploration of the Springer
correspondence, Kazhdan and Lusztig introduced a rather mysterious theo-
rem/definition for a collection of polynomials.

Definition/Theorem 3.1. For any w ∈W , there is a unique element Cw ∈ H

such that

Cw = Cw

Cw = q−`(w)/2 ∑
x≤w

Px,w(q)Tx

where Px,w(q) ∈ Z[q] is a polynomial in q of degree ≤ 1
2
(`(w)−`(x)−1) for x < w

and Pw,w = 1.

The elements Cw are referred to as the Kazhdan-Lusztig basis elements and
the polynomials Px,w are Kazhdan-Lusztig polynomials (hereby referred to as
KL polynomials). In the words of Humphreys, “They [KL polynomials] are
appreciably more subtle than the earlier Rx,w”. For starters, their degrees are
not even immediately evident.
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Keep in mind that we are ultimately interested in the representations of H.
The natural place to look for representations is in the regular representation,
and to understand why these polynomials were originally defined the way they
are, it is essential to see the way in which they multiply. This structure can be
obtained from their existence proof, and hence let’s first delve into this.

The existence of the Cw is proved by induction. Take s ∈ S with sw < w. If
Px,w has maximal degree, that is, the degree (`(w)− `(x)− 1)/2 is achieved, we
write x ≺ w and define µ(x,w) to be the coefficient of this highest power of q in
Px,w. Otherwise, we define µ(x,w) = 0.

Now, to calculate the KL polynomials, we can take the second line of the
definition of Cw, apply bar to both sides, and expand out Tx in terms of R-
polynomials and Ty for y ≤ x. Following this calculation, we get the following
recursive definition for Px,w:

Px,w(q) ∶=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

qPsx,sw + Px,sw − ∑
sz<z

µ(z, sw)q(`(w)−`(z))/2Px,z ∶ x < sx

Psx,sw + qPx,sw − ∑
sz<z

µ(z, sw)q(`(w)−`(z))/2Px,z ∶ sx < x
(2)

This seems rather technical, so let’s do an example and deduce some useful
properties.

Example 3.1. Take W = S3. First note that if `(w)− `(x) ≤ 2, then degPx,w ≤

(2− 1)/2 = 1/2, and so Px,w is a constant. Setting q = 0 in (2) and by induction,
we see that Px,w = 1. We only have left to compute Pe,s1s2s1 . Applying (2), we
get

Pe,s1s2s1 = qPs1,s2s1 + Pe,s2s1 − ∑
z≤s2s1
s1z<z

µ(z, s2s1)q
(3−`(z))/2Pe,z

= q + 1 − µ(s1, s2s1)qPe,s1

= 1

Hence, all Kazhdan-Lusztig polynomials are identically 1 for S3.

Example 3.2. Take W = In = ⟨s, t ∣ s2
= t2 = (st)n = e⟩. The computation of

the KL polynomials is greatly simplified in this case because of the behavior of
the Bruhat order: x < w ⇐⇒ `(x) < `(w). We prove by induction on `(w) that
Px,w = 1.

Consider any term in the sum of (2). Since Pz,sw = 1 by assumption, then
µ(z, sw) ≠ 0 iff (`(sw)− `(z)−1)/2 = 0 iff `(sw)− `(z) = 1. For sw ≠ e, s, t, there
are precisely two such z that satisfy this: one with a reduced expression starting
with s and the other with a reduced expression starting with t. Only the former
satisfies sz < z and hence either we get Px,w = q + 1− q = 1 or Px,w = 1, using the
lifting property and depending on whether sx < sw or not.

Following these examples, you might question whether there are ever non-
constant KL polynomials. In fact, most are, but unfortunately we won’t do any
of these “non-trivial” examples in which Px,w ≠ 1, as the KL polynomials are
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difficult to compute in general. Brenti has a lot of work (not cited here) on the
computation of these polynomials. Below I give a few useful properties of the
KL polynomials, some of which were witnessed in the above examples.

Proposition 3.1. Let x ≤ w and s ∈ S. We have

(i) Px,w(0) = 1.

(ii) Px,w = 1 if `(w) − `(x) ≤ 2.

(iii) If sw < w then Px,w = Psx,w.

(iv) If W has a longest element w0, then Px,w0 = 1.

(v)

TsCw =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

−Cw ∶ sw < w

qCw + q
1/2Csw + q

1/2
∑

sz<z
µ(z,w)Cz ∶ w < sw

Proposition 3.1(v) is of particular importance as we will soon see how it
relates to representations of the Hecke algebra. For those purposes, we will
extend our definition of µ(z,w) when z > w, in which case we set µ(z,w) =

µ(w, z).
Here is a curious non sequitur:

Theorem 3.1. (Polo.) Any polynomial in q with positive integer coefficients
and constant term 1 occurs as a KL polynomial Py,w for y,w ∈ Sn.

4 Representations of the Hecke Algebra

Following Kazhdan and Lusztig, we will construct a representation ofH in terms
of certain KL-graphs. This representation will have as a basis some of the Cw’s,
with actions given by the Py,w’s. They will be indexed by subsets called cells
which are defined in terms of preorders.

A reflexive and transitive relation ≤ is a called a preorder. To any preorder
we can associate an equivalence relation given by x ∼ y if x ≤ y ≤ x. The preorder
then induces a partial order on equivalence classes.

Preorders ≤L and ≤R on W are defined as follows: ≤L (resp. ≤R) is the
weakest relation such that for all w, the linear span of {Cv ∣ v ≤L w} (resp.
{Cv ∣ v ≤R w}) is a left (resp. right) ideal in H. The transitive closure of
≤L ∪ ≤R is denoted ≤LR, and hence {Cv ∣ v ≤LR w} forms a 2-sided ideal in
H. The equivalence classes ∼L,∼R,∼LR are denoted left, right and 2-sided cells,
respectively.

Without giving a precise definition of ≤L just yet, let’s see if we can make
this more explicit. Let’s set z ≤L w if there is s ∈DL(z)/DL(w) and µ(z,w) ≠ 0.
We note that if w < sw, then sw ≤L w and every term in the sum of Proposition
3.1(v) is less than w in this left preorder. Thus, Ts takes Cw into the span of
itself and various Cz for z ≤L w. After taking an appropriate transitive closure
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of our incomplete definition of ≤L, we see that {Cv ∣ v ≤L w} will then be a left
ideal.

In keeping with this imprecise definition, let us fix a left cell Z ⊂ W and
define IZ to be the span of all Cw (w ∈ Z) together with Cz for z ≤L w (w ∈ Z).
Define I ′Z to be the span of all Cz for which z ≤L w for some w ∈ Z, but z /∈ Z.
Then, IZ is a left ideal in H by the discussion above, and I ′Z is an ideal by
transitivity. Hence the quotient M ∶= IZ/I

′
Z affords a representation of H,

moreover with basis in natural correspondence with Cw,w ∈ Z.
If you didn’t follow all this, that’s okay. Everything discussed in the previous

few paragraphs can be visualized and encoded in what Kazhdan and Lusztig
call a W -graph, which is a more general notion of what we will call a KL-graph.

Definition 4.1. The (left) colored Kazhdan-Lusztig graph is the directed graph

Γ̃(W,S) = (W,E) whose set E of labeled edges x
µ
Ð→
s
y are of the following two

types:

(i) x ≠ y, µ = µ(x, y) ≠ 0, s ∈DL(x)/DL(y).

(ii) x = y, s ∈ S, µ =

⎧
⎪⎪
⎨
⎪⎪
⎩

q1/2 s /∈DL(x)

−q−1/2 s ∈DL(x)

Figure 1 shows the KL-graph for S3. The first thing we might notice is that
if `(x) > `(y), then x → y is an edge in Γ̃(W,S) iff x is greater than y in the left
weak Bruhat order, i.e. x = sy for some s ∈ S. Let’s now reformulate our notion
of left cell.

Definition 4.2. Let x, y ∈W . We say that x ≤L y if there exists a directed path
in Γ̃(W,S) from x to y. Define x ∼L y if there is a directed path from x→ y and

from y → x, i.e. x, y are in the same strongly connected component of Γ̃(W,S).
In this case, we say that x and y are in the same left cell.

In Figure 1, the left cells are {e},{w0},{s1, s2s1},{s2, s1s2}. We should note
that not all edges in Γ̃(W,S) may be edges in the Bruhat graph. For example,
Figure 2 shows a left cell in S5. As another example, let’s compute the left cells
and left KL-graph of the dihedral group.

Example 4.1. SetW = In. Firstly, the condition in xÐ→
s
y that s ∈DL(x)/DL(y)

means that there is no arrow from e to any other element, and so e is in its own
left cell. Likewise, there is no arrow to w0, and so {w0} is another left cell.

Now, for x ≠ e and w ≠ w0, from Example 3.2, we know that Px,w = 1 for any
x ≤ w, and so µ(x,w) = 1 iff w = sx or w = xs for some s ∈ S. Thus, x→ w iff the
reduced expressions of x and w start with different generators. There are then
two remaining left cells, namely: {s, ts, sts, tsts, . . .} and {t, st, tst, stst, . . .}.
The KL graph is left as an exercise to the reader.

With our notion of KL-graph, the left regular actions of Ts on the basis Cw
given by Proposition 3.1(v) can be combined and rewritten as

TsCw = q1/2
∑

z
µ
Ð→
s
w

µ(z,w)Cz (3)
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q1/2

−q−1/2

q1/2

−q−1/2
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−q−1/2

s1
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Figure 1: The (left) colored KL-graph Γ̃(W,S) of S3. All labels µ(x, y) = 1 are
dropped for clarity.

In general, we can redefine w ≤L w
′ if Cw appears with non-zero coefficient in

TsCw′ for some s ∈ S. Similarly, w ≤R w
′ if Cw appears with non-zero coefficient

in Cw′Ts.
Recall that we have a partial order on the set of left cells induced by the

left preorder: C ≤L C
′ if there exists (equivalently any) x ∈ C satisfying x ≤L y

for some (equivalently any) y ∈ C
′. If W is finite, we can order the left cells

C
1, . . . ,Ck so that if Ci ≤L C

j , then i < j. As we have noted, (3) implies that Ts
sends Cw for w ∈ C

j to a linear combination of elements Cz for z ∈ Ci with i ≤ j.
In other words, the regular representation of H, when written as a matrix with
respect to the Cw basis, is block upper triangular of the form:

A(s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

AC1(s)

AC2(s) ∗
⋱

⋱

0 ⋱

ACk(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

For each left cell C, we can define a representation KLC which sends Ts to the
matrix AC(s). In other words, we quotient out by the ideal I of elements Cz
for z /∈ C as discussed earlier. Belaboring the point, if one wants to write down
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Figure 2: The KL-graph Γ̃C for a left cell in S5, without loops and labels µ(x, y).
Labels i correspond to simple transpositions si. Note the edge from 24135 to
45123 that is not an edge in the Bruhat graph.

the matrix of Ts for the representation KLC , one can use (3) to expand TsCw
for w ∈ C and zero out any terms Cz for z /∈ C.

To restate,

Theorem 4.1. Let (W,S) be a finite Coxeter system. Then,

RegH ≃⊕

C
KLC

where RegH is the regular representation of H, KLC is the left cell representation
defined above, and C runs over all left cells of W .

This theorem necessitates an example to fully understand what is happening.
We will do just that for the case q1/2

= 1 and W = Sn.

4.1 Connection to Type A Combinatorics

In general, the KL representations are reducible. This can be quickly seen in the
case of the dihedral group In, in which there are always 4 left cells for any n (see
Example 4.1), but the number of irreps grows with n. However, perhaps one of
the miracles of Type A is that the left cell representations are each isomorphic
to a particular irreducible representation of Sn. The exact partition is in fact
given by the RSK algorithm. (for a refresher on RSK and the representation
theory of Sn in general, I suggest the excellent resources [Ful97] and [Sag13].)
Let’s see how this all unfolds.

We now set q1/2
= 1 and W = Sn for the remainder of §4.1

9



Looking at Figure 1, we see that the left cells are {e},{w0},{s2, s1s2},{s1, s2s1}.
This is eerily similar to the decompositions of the regular representation of Sn,
in which case there is a 1-dimensional trivial rep, a 1-dim sign rep, and 2 copies
of the 2-dim rep corresponding to the tableau .

In fact, the left cell {e} will always correspond to the trivial representation,
since TsCe = Ce = 1 and {w0} will always correspond to the sign representation,
since sw < w for all s and hence TsCw0 = −Cw0 .

Let’s write out the matrices for the left cell {s1, s2s1}. Again looking at the
KL-graph given in Figure 1 and using (3), we find

Ts1Cs1 = −Cs1 Ts2Cs1 = Cs1 +Cs2s1

Ts1Cs2s1 = Cs2s1 +Cs1 +Cw0 Ts2Cs2s1 = −Cs2s1

and hence after zeroing out any Cz for z /∈ {s1, s2s1}, the matrices in the basis
{Cs1 ,Cs2s1} are given by

A(s1) = (
−1 1
0 1

) A(s2) = (
1 0
1 −1

)

For those not familiar with the representations of Sn, there is a natural basis
for the irrep corresponding to a partition λ given by Garnir polynomials gT
indexed by standard Young tableaux T on λ. There are 2 standard Young
tableaux of shape (2,1), namely 2

1 3
and 3

1 2
. The Garnir polynomials are

given respectively by gT = (x1 − x2) and gS = (x1 − x3). S3 acts on these
polynomials by permuting indices. The actions of s1, s2 are then given by

s1 ∶ gT ↦ −gT s2 ∶ gT ↦ (x1 − x3) = gS

s1 ∶ gS ↦ (x2 − x3) = gS − gT s2 ∶ gS ↦ (x1 − x2) = gT

In the basis {gT ,−gT +gS}, the matrices for s1, s2 are given by exactly the same
matrices A(s1),A(s2) above.

If you believe me that each left cell representation is in fact an irreducible
representation, the natural question to ask next is what irreducible representa-
tion? The irreducible representations of Sn are indexed by partitions, whereas
the KL representations are indexed by left cells, themselves composed of per-
mutations of Sn. We therefore would like some way to go from permutations of
Sn to partitions. Those acquainted with tableau combinatorics might recognize
this as RSK! In fact, there is a deep connection at play.

Theorem 4.2. Let w, v ∈ Sn and suppose w↔ (P (w),Q(w)) and v↔ (P (v),Q(v))
under RSK. Let λ = sh(P (w)) = sh(Q(w)) and µ = sh(P (v)) = sh(Q(v)).
Then,

1. w ≃L v iff Q(w) = Q(v), i.e. w
dK
∼ v, where

dK
∼ is a dual Knuth equivalence

class. In other words, left cells are exactly dual Knuth equivalence classes.

2. w ≃R v iff P (w) = P (v), i.e. w
K
∼ v, where

K
∼ is a Knuth equivalence class.

In other words, right cells are exactly Knuth equivalence classes
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3. w ≃LR v iff λ = µ.

Moreover, if w ∈ C for a left cell C, then the representation KLC is isomorphic
to the irreducible representation Vλ of Sn.

5 Modification for Type B

Time will certainly not permit for this section, so I will not go into as much
detail as one might desire, but rather send the reader to [Shi06, §2.1]. To start
off, recall that in general, 2-sided cells are not in bijection with irreducible repre-
sentations (what they are actually in bijection with is a class of representations
called special representations). To fix this, one modifies the parameters of the
Hecke algebra, and in turn the notion of left cell, by introducing a function Φ
from W to an infinite cyclic group.

Let Γ be the infinite cyclic group with generator q1/2. Define Φ ∶W → Γ by
the condition that Φ(w) = Φ(s1)⋯Φ(sr) if w = s1⋯sr is a reduced expression,

and Φ(si) = qm(si)/2 for some positive integers m(si). Set q
1/2
w = Φ(w). For

example, if m(si) = 1 for all i, then q
1/2
w = q`(w)/2.

Now define the HΦ to be the generic Hecke algebra of W with respect to Φ:
It is an algebra over A = Z[q1/2, q−1/2

] with basis Tw, w ∈W and relations

TsTw = Tsw if sw > w

(Ts − q
1/2
s )(Ts + q

−1/2
s ) = 0

Again, we note that if m(si) = 1, then HΦ is our original Hecke algebra. Fol-
lowing the same program, there exists unique elements Cw which form a basis
of HΦ subject to the similar conditions as before, from which we get Kazhdan-
Lusztig polynomials with respect to Φ. We transport our notion of left preorder
and define w ≤

L,Φ
w′ if Cw appears with non-zero coefficient in TsCw′ for some

s ∈ S.
Now, assume that (W ′, S′) is a Weyl group of type An for n ≥ 3. Let α be

the unique automorphism of order 2 of (W ′, S′). The fixed point set W of α in
W ′ is Coxeter group in its own right, with set of generators corresponding to
the orbits of α in S′: to an orbit O there corresponds the longest element in the
subgroup generated by O. One can show that (W,S) is a Weyl group of type
Bn/2 if n even and of type B(n+1)/2 if n odd.

Let Φ be the function on W which maps w ↦ q`(w), where `(w) is the
length of w with respect to (W ′, S′). Then, the restriction of Φ to S has
values q2, q2, . . . , q2, q3 if n even and q2, q2, . . . , q2, q if n odd. Lusztig proved the
following result on left Φ-cells of W :

Theorem 5.1. Let (W ′, S′), (W,S) and Φ be defined as above. Then, each left
Φ-cell of W affords an irreducible representation of W , and is the intersection
of W with a left cell of W ′. Moreover, all the irreducible representations of W
arise in this way.
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6 Further applications

We now discuss some of the areas in which Kazhdan-Lusztig polynomials play
a key role.

1. Kostka-Foulkes Polynomials (Weight Multiplicities)
Let g be a finite dimensional semisimple Lie algebra over C with Cartan
subalgebra h. Let Q denote the root lattice Let Q ⊆ P ⊆ h∗ denote the root
and weight lattices, respectively. Recall that for each dominant weight λ ∈
P+ there is a unique finite dimensional irreducible representation Vλ with
highest weight λ. Let χλ denote the character of Vλ. This representation
decomposes into weight spaces for h as

Vλ =⊕
µ≤λ

dim((Vλ)
µ
)Vµ

We define the multiplicity of µ in λ to be Kλ,µ = dim(Vλ)
µ. In Type

A, these are called Kostka numbers. They have the following alternative
definitions:

Proposition 6.1. The following expressions are all equal to Kλ,µ:

(a) ∑w∈W (−1)wP(w(λ+ρ)−(µ+ρ)) where for ν ∈ P , P (ν) is the number
of ways to write ν as a sum of positive roots.

(b) The coefficient of mµ in χλ, where mµ is the appropriate monomial
W -symmetric polynomial.

(c) The coefficient of χλ in hµ, where hµ is the appropriate homogeneous
W -symmetric polynomial.

In Type A, we also have the following characterization:

Kλ,µ = The number of semistandard Young tableaux of shape λ and weight µ

The Kazhdan-Lusztig polynomials we consider are those for an affine Weyl
group. Viewing W as a group of reflections about the linear hyperplanes
orthogonal to the roots, we define the (unextended) affine Weyl group Wa

to be the group of reflections about all the affine hyperplanes orthogonal to
the roots. Note that a reflection about an affine hyperplane is equivalent
to translating by a root, reflecting about the corresponding linear hyper-
plane, and translating back. As such, Wa can be written as the semidirect
product Wa =W ⋉Q. Enlarging even further to translations by the whole
weight lattice, we define the extended affine Weyl group W̃ ∶=W ⋉ P .

As a side note, a perhaps more conceptual way to visualize Wa is as a
Coxeter group with generators S ∪ {s0}, where s0 is an affine reflection
about the plane perpendicular to the dominant short root. Viewing it this
way, Wa will triangulate the ambient space into what are called alcoves.
While W̃ is in general not a Coxeter group, it can still be visualized in the
same manner.
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With our presentations, the cosets W̃ /W are canonically identified with
the weight lattice P , and hence the double cosets W /W̃ /W identified with
the W -orbits of P , i.e. with the dominant weights P+.

For λ ∈ P , we denote t(λ) for the element (e, λ) corresponding to transla-
tion by λ. Define wλ be the unique maximal length representative of the
double coset Wt(λ)W . Note that w0 is indeed the longest element of W .
Lusztig showed the following connection:

Theorem 6.1. Let µ,λ be dominant integral weights with µ ≤ λ. Then,

Kλ,µ = Pwµ,wλ(1)

In fact, we can say much more about these KL polynomials than just their
value at 1. There exists a q-analog of Kostka numbers, denoted Kλ,µ(q),
and known as Kostka-Foulkes polynomials. They have the following equiv-
alent characterizations:

Proposition 6.2. The following expressions are all equal to Kλ,µ(q):

(a) ∑w∈W (−1)wPq(w(λ+ρ)−(µ+ρ)) where for ν ∈ P , Pq(ν) = ∑k≥0 rkq
k
⋅

with rk = the number of ways to write ν as a sum of k positive roots.

(b) The coefficient of Pµ in χλ, where Pµ is a Hall-Littlewood polynomial.

(c) The coefficient of χλ in Hµ where Hµ is a transformed Hall-Littlewood
polynomial.

In Type A, we also have the following characterization:

Kλ,µ(q) = ∑

T ∈SSY T (λ,µ)
qcharge(T )

With these in mind, Kato showed that the Kostka-Foulkes polynomials
coincide with certain Kazhdan-Lusztig polynomials.

Theorem 6.2. Let µ,λ be dominant integral weights with µ ≤ λ. Then,

Kλ,µ(q) = q
⟨λ−µ,ρ∨⟩Pwµ,wλ(q

−1
)

2. Intersection Cohomology of Schubert Varieties
Many properties known about Kazhdan-Lusztig polynomials, and proofs
thereof, come from an underlying geometry at play. One particular long-
standing conjecture was the notion of positivity :

Question: Are the coefficients of KL polynomials always non-negative?

In the case of Weyl groups, I will briefly explain how we get an answer
in the affirmative by interpreting the coefficients of KL polynomials as
dimensions of intersection cohomology groups.
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Recall that for a reductive Lie group we have a Bruhat decomposition G =

∐w∈W BwB and hence we have for the flag variety G/B =∐w∈W BwB/B.
The cell X○

w ∶= BwB/B is called a Schubert cell in G/B and their closures

Xw ∶=X○
w = ∐

y≤w
X○
y

are called Schubert varieties.

Theorem 6.3. Let Hi
(Xw) denote the ith cohomology sheaf of the inter-

section chain complex of Xw. Then,

(a) The stalks Hi
py(Xw) at all points py ∈X

○
y are isomorphic.

(b) H2i+1
py (Xw) = 0 for all y ≤ w and all i.

(c) Py,w(q) =∑
i≥0
qi dimH2i

py(Xw)

Thus, the coefficient of qi in Py,w(q) is the dimension of the local inter-
section cohomology group in degree 2i of Xw at a point in X○

y .

When the Coxeter group isn’t a Weyl group, we don’t have the geometry
of the flag variety to utilize. However, positivity can still be achieved
with the notion of perverse sheaves on flag varieties and using Beilinson-
Bernstein-Deligne’s celebrated decomposition theorem. Algebraic proofs
have also recently been established by Elias and Williamson using the
theory of Soergel bimodules, in which they give Hodge-theoretic proofs of
the decomposition theorem.

Nevertheless, combinatorial proofs continue to elude. This can be illus-
trated in the following problem.

Conjecture 6.1. If (W,S) and (W ′, S′) are Coxeter systems and y,w ∈

W and y′,w′
∈ W ′, then Py,w = Py′,w′ whenever the intervals [y,w] and

[y′,w′
] are isomorphic posets.

This innocuous conjecture is owed a remark. To a combinatorialist, this
conjecture seems true, as the KL polynomials can be computed recursively
using elements in the interval. However, to a geometer, this conjecture
seems dubious. The following is quoted verbatim by Brenti [Bre03]:

In effect, if the answer to the problem is yes, then this would
mean that you could go to some geometer and say “Please com-
pute the intersection homology of a Schubert variety”, and at
her reply “which Schubert variety?” you would say “Oh no...,
sorry. I am not allowed to tell you that. I can only tell you,
among all the Schubert cells contained in this Schubert variety,
which pairs of cells touch each other, and in this case, which is
the one of largest dimension”. It is not unlikely that, at your re-
ply, the geometer would probably never talk to you again about
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mathematics. This is the reason, essentially, why most geome-
ters think that the answer to this problem is no. Philosophically,
it is thought that intersection homology is a deeper property
than adjacency of Schubert cells. Yet, as some geometers have
told me “There are many miracles that happen in Schubert va-
rieties, and this could be one of them. It would certainly be one
of the most amazing”.

3. Intersection Homology of Unipotent Variety
We have a similar setup as above, only now we specialize to GLn(Fq)
and take the variety Uµ ⊂ GLn(Fq) of the conjugacy class of unipotent
elements with Jordan blocks indexed by µ. If we let IHi

pµ(Uλ) denote the
local intersection homology of Uλ at any point x ∈ Uµ, then

Pwµ,wλ(q) =∑
i≥0
qi dim IH2i

pµ(Uλ)

where wµ,wλ are the maximal length representatives ofWtµW andWtλW ,
respectively, as first defined in the application to Kostka-Foulkes polyno-
mials.

We note that it is possible to extend this to general semisimple Lie groups,
but one needs to adjust to account for local systems.

4. Composition Factors of Verma Modules
Let’s get right into it:

Conjecture 6.2. (Theorem 6.2) For w ∈ W , let Mw denote the Verma
module M−w(ρ)−ρ. Let Lw denote the irreducible quotient of Mw. The
decomposition of Mw into simple modules Lw and vice versa is given as

ch(Lw) = ∑
y≤w

(−1)`(w)−`(y)Py,w(1)ch(Mw) ch(Mw) = ∑
y≤w

Pw0w,w0y(1)ch(Lw)

The Kazhdan-Lusztig conjectures were proven independently by Beilinson
and Bernstein, and Brylinski and Kashiwara. Elaborating more on what
was mentioned above with Schubert varieties, BB established a connec-
tion between highest weight representation theory and perverse sheaves
using D-modules and Riemann-Hilbert correspondence. This led to devel-
opments in geometric representation theory.

5. Primitive Ideals in U(g)

6. Modular Representation Theory of Algebraic Groups
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