Complex Analysis II

- Zeros and Poles Identity principle. Removable singularity. Meromorphic functions. Pole. Laurent series. Essential singularity. Rational functions as meromorphic functions on $\mathbb{C} \cup \{\infty\}$.
- **Harmonic Functions** Harmonic conjugates. Mean value property for harmonic functions. Maximum principle for harmonic functions.
- Integrals and Residues: Contour integral. Homotopy of contour. Winding number. Residue theorem. Argument principle. Evaluation of definite integrals.
- Common Approaches:
 - Use (punctured) half circles for finitely many poles, rectangles for infinitely many poles, and keyholes for branches
 - Exponentials can be substituted for trigometric functions. Use bound $\int_{\gamma} |e^{iz}| |dz| \leq \text{constant}$ where γ half circle of any radius.
 - Often key hole contours can be replaced by half circles using change of coordinates $x\mapsto x^2$

(1) Find a harmonic function on $\{z \in \mathbb{C} : 0 < |z| < 1\}$ that is not the real part of a holomorphic function.

(2) Find four power series f_1, f_2, f_3, f_4 with radius of convergence 1 such that f_1, f_2 converge at 1 but f_3, f_4 do not, and the functions given by f_1, f_3 can be extended to functions holomorphic in a neighborhood of 1 but the functions given by f_2, f_4 cannot be.

(3) Let $f: B_0(1) - \{0\} \to \mathbb{C}$ be holomorphic where $B_0(1)$ is the unit ball. Assume $\int_{B_0(1)} |f|^2 dx dy < \infty$. Show that f extends to a holomorphic function on $B_0(1)$.

(4) True/False: A function f(z) analytic on |z - a| < r and continuous on $|z - a| \le r$ extends for some $\delta > 0$ to a function analytic on $|z - a| < r + \delta$?

Past Exam Problems:

(5) Evaluate the integral

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{(z+2)^2}{z^2(2z-1)} dz$$

where the orientation is counterclockwise.

(6) Let D be the set consisting of the open unit disk and the point 1. Show that the power series

$$\sum_{n>0} \frac{z^{3^n}}{n} - \frac{z^{2 \cdot 3^n}}{n}$$

converges at all points of D. By examining points with argument of the form $\pi/3^k$ show that the function it converges to is not continuous.

(7) For 0 < a < b evaluate the integral

$$\frac{1}{2\pi i} \int_0^{2\pi} \frac{1}{|ae^{i\theta} - b|^4} dz.$$

(8) Let $u : \mathbb{R}^2 \to \mathbb{R}$ be harmonic. Show that if u(z) > 0 for all $z \in \mathbb{R}^2$, then u is constant.

(9) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{(x+i)^2} dx$$

where $t \in \mathbb{R}$

(10) Evaluate

$$\int_0^\infty \frac{x^C}{x(1+x)} dx$$

where 0 < C < 1.