Complex Analysis I

- Derivatives and power series in C: Holomorphic functions. Conformal map. Rational functions, square root, exponential, logarithm. Cayley transform. Schwarz lemma. Automorphisms of the upper half plane and unit disk.
- **Properties of holomorphic functions:** Mean value property. Open mapping theorem. Maximum principle. Cauchy theorem. Morera theorem. Rouché theorem. Liouville theorem.
- Common Approaches:
 - Recall the inequality in Rouché's theorem is strict
 - $-\frac{1+z}{1-z}$ is a holomorphic bijection from the unit ball to $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$
 - Any three points in $\mathbb C$ can be taken to any other three points in $\mathbb C$ by a fractional linear transformation.

(1) Show that the polynomial $p(z) = z^{47} - z^{23} + 2z^{11} - z^5 + 4z^2 + 1$ has at least one root in the disk |z| < 1.

(2) Suppose that f is analytic on the open upper half plane and satisfies f(i) = 0 and $|f(z)| \le 1$ for all $z \in \mathbb{C}$. How large can |f(2i)| be under these conditions?

(3) Let the function f be analytic on \mathbb{C} . Suppose that $\frac{f(z)}{z} \to 0$ as $|z| \to \infty$. Show that f is constant.

(4) Let c_0, \ldots, c_{n-1} be complex numbers. Show that the zeros of the polynomial

$$z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0$$

lie in the open disk with center 0 and radius

$$(1+|c_0|^2+\cdots+|c_{n-1}|^2)^{1/2}$$

Past Exam Problems:

(5) Let $a, b \in \mathbb{C}$ have nonpositive real parts. Show $|e^a - e^b| \le |a - b|$.

(6) Let f and g be analytic functions on \mathbb{C} with the property that h(z) = f(g(z)) is a nonconstant polynomial. Show that f and g are polynomials.

(7) How many zeros (counting multiplicities) does the polynomial

$$2z^5 - 6z^3 + z + 1$$

have in the annular region $1 \le |z| \le 2$?

(8) Suppose $f : \mathbb{C} \to \mathbb{C}$ is continuous. Assume f is holomorphic on $\mathbb{C} - \{z : \text{Im } z = 0\}$. Show that f extends to a holomorphic function on \mathbb{C} .

(9) Let f be a nonconstant entire function whose values on \mathbb{R} are real and nonnegative. Prove that all zeros of f on \mathbb{R} have even order.

(10) Show the coefficients of the power series expansion of $\frac{z}{e^z - 1}$ are rational.