Differential Equations

- Differential equations and sequences/series of functions: Linear with constant coefficients. First order with continuous coefficients. Sturm-Liouville equation for second order with continuous coefficients. Separation of variables. Series solution. Fourier series.
- Existence and behavior of solutions: Contraction mapping theorem. Lipschitz function. Existence and uniqueness of ordinary differential equations. Behavior of system

$$\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Riemann-Lebesgue lemma. Bessel inequality and Parseval theorem. Dirichlet-Jordan theorem on pointwise convergence.

• Common Approaches:

- Use integrating factor to simplify differential equation/inequality.
- Study dominant terms in differential equation to determine limiting behavior of solution.
- Note $\hat{f}'(n) = in\hat{f}(n)$. Use Fourier series to turn derivatives into multiplication

(1) Let $a, b \in \mathbb{R}$ be positive. Let $f : [0, a] \to \mathbb{R}$ satisfy $f(x) \ge b \int_0^x f(t) dt$ for all $x \in [0, a]$. Show that f is nonnegative on [0, a].

(2) Show that the initial value problem

$$y'(x) = 2 + 3\sin(y(x)), \quad y(0) = 4$$

has a solution defined for $-\infty < x < \infty$.

(3) Show that there does not exist a unique differentiable function $y : \mathbb{R} \to \mathbb{R}$ satisfying $\frac{dy}{dx} = y^{1/2}$ and y(0) = 0. Find all solutions.

(4) The Bessel function $J_1(x) = a_0 + a_1x + a_2x^2 + \dots$ satisfies the differential equation

$$x^{2}\frac{d^{2}J_{1}}{dx^{2}}(x) + x\frac{dJ_{1}}{dx}(x) + (x^{2} - 1)J_{1}(x) = 0$$

with $\frac{dJ_1}{dx}(0) = 1$. Find the coefficients $\{a_n\}_{n \ge 0}$

(5) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that

$$f(x) = f(x+1) = f(x+\sqrt{2})$$

for all $x \in \mathbb{R}$. Show that f is constant.

Past Exam Problems:

(6) Let $f : \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable. Assume that f(0) = 0, f'(0) > 0 and $f(x) \le f''(x)$ for all $x \ge 0$. Show that f(x) > 0 for all x > 0.

(7) Let n > 0 be an integer. Let α and ε be real numbers with $\varepsilon > 0$. Show that there exists a function $f : \mathbb{R} \to \mathbb{R}$ such that

- 1. $|f^{(k)}(x)| \leq \varepsilon$ for k = 0, 1..., n-1 and all $x \in \mathbb{R}$
- 2. $f^{(k)}(0) = 0$ for k = 0, 1..., n-1
- 3. $f^{(n)}(0) = \alpha$

(8) Let $f : \mathbb{R} \to \mathbb{R}$ be infinitely differentiable. Assume that for some n > 0

$$f(0) = f(1) = f'(0) = f''(0) = \dots = f^{(n)}(0) = 0$$

Show that $f^{(n+1)}(x) = 0$ for some $x \in (0, 1)$.

(9) Find all $c \in \mathbb{R}$ such that the differential equation with boundary conditions

$$f'' - cf' + 16f = 0, \quad f(0) = f(1) = 1$$

has no solution.

(10) Let $f : [0, \infty) \to \mathbb{R}$ be a continuous non-increasing function. Assume that $f(x) \ge 0$ with $\lim_{x \to \infty} f(x) = 0$. Show that

$$\lim_{R \to \infty} \int_0^R f(x) \sin(x) dx$$

exists.

(11) Let y(t) be a \mathbb{R} -valued solution defined for $0 < t < \infty$ of the differential equation

$$\frac{dy}{dt} = e^{-y} - e^{-3y} + e^{-5y}.$$

Show that $\lim_{t \to \infty} y(t) = \infty$.

(12) Let $g: [0,1] \to \mathbb{R}$ be continuous. Show that there exists $f: [0,1] \to \mathbb{R}$ continuous such that

$$f(x) - \int_0^x f(x-t)e^{-t^2}dt = g(x)$$

for all $x \in [0, 1]$