Real Analysis I

- Single variable calculus and sequences: (Cauchy) Sequences. Limits. Infimum/Supremum and liminf/limsup. Derivatives. (In)definite integrals. Increasing/Decreasing functions. (Uniform) continuity. Polynomials. Interpolation polynomials. Inequalities.
- Relations between derivatives and integrals, and approximation of functions by polynomials: Fundamental theorem of calculus. Mean value theorem. L'Hospital's rule. Lagrange polynomial. Taylor expansion with remainder. Arithmetic mean geometric mean inequality. Cauchy-Schwarz inequality. Stirling's formula.
- Common Approaches:
 - Fundamental theorem of calculus better than mean value theorem.
 - Continuous functions can be approximated by differentiable functions.
 - Vary constants in integrand and differentiate under the integral.

(1) Let $f : [0,1] \to \mathbb{R}$ be a continuous function with f(0) = 0. Assume for 0 < x < 1 f is differentiable and $0 \le f'(x) \le 2f(x)$. Prove that $f \equiv 0$.

(2) Show that e is irrational.

(3) Let f be a continuous \mathbb{R} -valued function on [0,1]. Check that $\alpha \int_0^1 x^{\alpha-1} f(x) dx \xrightarrow[\alpha \searrow 0]{} f(0)$.

(4) Compute the definite integral $\int_0^1 \frac{x^2 - 1}{\log x} dx$.

(5) Suppose that the real numbers a_0, a_1, \ldots, a_n and x with 0 < x < 1 satisfy

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

Prove that there exists a real number y with 0 < y < 1 such that

$$a_0 + a_1 y + \dots + a_n y^n = 0.$$

Past Exam Problems:

(6) Is there a differentiable function $f : \mathbb{R} \to \mathbb{R}$ with f(0) = 1 such that $f'(x) \ge f(x)^2$ for all $x \in \mathbb{R}$?

(7) Suppose that f is a twice differentiable \mathbb{R} -valued function on \mathbb{R} . Assume that $|f(x)| \leq 1$ and $|f''(x)| \leq 1$ for all $x \in \mathbb{R}$. Find a constant b such that |f'(x)| < b for all $x \in \mathbb{R}$.

(8) Show that the improper integral

$$I = \int_0^\pi \log(\sin x) dx$$

converges. Compute I. Hint: Use the substitution x = 2u.

(9) Let $0 \le a \le 1$. Can there exist a nonnegative continuous \mathbb{R} -valued function f on [0,1] which satisfies the three conditions

1. $\int_0^1 f(x) dx = 1$ 2. $\int_0^1 x f(x) dx = a$

3.
$$\int_0^1 x^2 f(x) dx = a^2$$

(10) Prove or supply a counterexample. If f and g are continuously differentiable functions on the interval 0 < x < 1 which satisfy the conditions

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$$

and

$$\lim_{x \to 0} \frac{f(x)}{g(x)}$$

exists (as a finite limit), then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}.$$

(11) Let $\{a_n\}_{n>0} \subset \mathbb{R}$ be a sequence such that $a_{n+m} \leq a_n + a_m$ for all n, m. Assume that $\{\frac{a_n}{n}\}_{n>0}$ bounded from below. Show existence of $\lim_{n\to\infty} \frac{a_n}{n}$.