1 Linear algebra

1. Let $k$ be a field, char $k \neq 2$. For $n \geq 2$, show that there is a basis of $M_n(k)$ (the ring of $n \times n$ matrices over $k$) consisting only of non-diagonalizable matrices.

2. Let $k$ be a field, and $D : M_n(k) \to k$ a multiplicative function, i.e. $D(AB) = D(A)D(B)$ for all $A, B \in M_n(k)$.
   i) Show that the following are equivalent:
      a) $D(0) \neq D(I)$
      b) $D(0) = 0, D(I) = 1$
      c) $D$ vanishes on a proper nonempty subset of $M_n(k)$.
   ii) If the conditions in (i) are satisfied, show that the vanishing set of $D$ is precisely the set of singular matrices, i.e. matrices with determinant 0. Deduce that the set of maps $D$ satisfying (i) is in bijection with group homomorphisms from $GL_n(k)$ to $k^\times$.

3. i) Let $\varphi$ be an endomorphism of a finite-dimensional $k$-vector space. Suppose $g, h \in k[x]$ satisfy $(g, h) = 1, g(\varphi)h(\varphi) = 0$. Show that $\ker g(\varphi) \cap \im g(\varphi) = 0$.
   ii) Show that one can always satisfy the hypotheses of (i) by taking $g = x^n$ for some $h \in k[x], n \geq \dim \ker \varphi$.

4. Let $V$ be a vector space, $f_i \in \End(V)$ pairwise commuting endomorphisms, and $E_i := \ker f_i$.
   Show that $\sum_i E_i = \bigoplus_i E_i$ iff $E_i \cap E_j = 0$ for all $i \neq j$.

5. Let $V$ a finite-dimensional $\mathbb{Q}$-vector space. Show that there exists $\varphi \in \End(V)$ with no non-trivial proper invariant subspaces.

2 Past exam problems

6. (6.10.2) Let $k$ be a field. Show that the only two-sided ideals of $M_n(k)$ are 0 and $M_n(k)$.

7. (7.7.7) Let $A \in GL_2(\mathbb{Z})$. If $A^n = I$ for some $n$, show that $A^{12} = I$.

8. (7.7.12) Let $A \in M_n(\mathbb{C})$. Is $A$ similar to $A^t$?

9. (7.4.31) Let $V$ be the vector space of polynomials in one variable over $\mathbb{R}$ of degree $\leq 10$, and let $D : V \to V$ be differentiation.
   i) Show that $\tr D = 0$.
   ii) Find all eigenvectors of $D$ and $e^D$.

10. (7.5.21) If $A \in M_n(\mathbb{C})$, and $f \in \mathbb{C}[x]$, show that the eigenvalues of $f(A)$ are precisely $f(\lambda)$, where $\lambda$ is an eigenvalue of $A$. 