1 Intro/review

- 1. Let G be a group of order n.
 - i) Show that G is isomorphic to a subgroup of A_{n+2} .
 - ii) Show that if G has no subgroup of index 2, G is isomorphic to a subgroup of A_n .
- 2. Let k be a field, and $A \in M_n(k)$. If B is a nilpotent matrix commuting with A, show that $\det(A+B) = \det A$.
- 3. Let R be a local ring, i.e. a ring with a unique maximal ideal. Show that the only idempotents in R are 0 and 1.
- 4. Let K/\mathbb{Q} be a field extension, and $n \in \mathbb{N}$ odd. Show that K contains a primitive n^{th} root of unity iff K contains a primitive $(2n)^{\text{th}}$ root of unity.
- 5. Let K be the splitting field of $x^4 10x^2 + 1$ over \mathbb{Q} . Determine $\operatorname{Gal}(K/\mathbb{Q})$, and find α such that $K = \mathbb{Q}(\alpha)$.

2 Past exam problems

- 6. i) (6.4.5) Show that no group of order 112 is simple.
 ii) Let p < q < r be primes. Show that no group of order pqr is simple.
- 7. i) (6.11.21) Show that xⁿ⁻¹ + xⁿ⁻² + ... + x + 1 is irreducible over Q iff n is prime.
 ii) (6.11.25) Show that x⁴ + x³ + x² + 6x + 1 is irreducible over Q.
- 8. (7.6.25) Let $A \in M_n(\mathbb{C})$, with characteristic and minimal polynomials χ and μ , respectively. If $\chi(\lambda) = \mu(\lambda)(\lambda i), \ \mu(\lambda)^2 = \chi(\lambda)(\lambda^2 + 1)$, find the Jordan canonical form of A.
- 9. (6.12.6) Let k be a field. Show that k is finite iff the additive group of k is finitely generated.
- 10. (7.6.41) Let p be a prime. Show that every element of $GL_2(\mathbb{F}_p)$ has order dividing either $p^2 1$ or p(p-1).