
Characteristic Classes

By John W. Milnor & James D. Stasheff

Solutions By Julian C. Chaidez

Problem 4-A Show that the Stiefel-Whitney classes of a Cartesian product are given by wk(ξ × η) =∑k
i=0wi(ξ)× wk−i(η).

Solution 4-A We note that ξ × η ' p∗Xξ ⊕ p∗Y η with pX : X × Y → X and pY : X × Y → Y being

the projection maps, and ⊕ the Whitney sum. Now we just note that wi(ξ × η) = wi(p
∗
Xξ ⊕ p∗Y η) =∑i

k=0wk(p
∗ξ)∪wi−k(p∗η) =

∑i
k=0wk(ξ)×wi−k(η). The last identity uses the definition of the product ×.

Problem 4-B Prove the following theorem of Stiefel. If n + 1 = 2rm with m odd, then there do not

exist 2r vector fields on the projective space P n which are everywhere linearly independent.

Solution 4-B By Theorem 4.5 we know that w(P n) = (1 + a)n+1 for a non-zero section a of H1(P n). If

n = 2rm − 1 then w(P n) = (1 + a)2rm = (1 + a2r)m. The later polynomial has coefficient m = 1 mod 2

in for the a2r factor, thus wn−2r+1(P n) = w2r(m−1)(P
n) = w2r(P n) 6= 0. Thus by Proposition 4.4 we know

that 2r global sections cannot exist.

Problem 4-C A manifold M is said to admit a field of tangent k-planes if its tangent bundle admits a

sub-bundle of dimension k. Show that P n admits a field of tangent 1-planes if and only if n is odd. Show

that P 4 and P g6 do not admit fields of tangent 2-planes.

Solution 4-C Again, w(P n) = (1 + a)n+1. If TP n = ξ ⊕ η for a line-bundle ξ, then we must have

w(ξ)w(η) = w(P n) = (1 + a)n+1. w(ξ) and w(η) must be order 1 and n− 1 respectively (by the axioms of

Stiefel-Whitney classes) so it must be the case that w(ξ) = 1 + a or 1.

If n is even, then in the first case, w(η) = (1 + a)n has wn(ξ) =
(
n
n

)
an = an, and in the latter case

wn(ξ) =
(
n+1
n

)
an = an. This contradicts the fact that for an n− 1-bundle such as η, wn(η) = 0. Thus such

a splitting cannot happen.

If n is odd, then wn(P n) = 0. This implies that TP n admits one global section by , whose span defines

a 1-plane field.

Likewise, take P 4. Then w(P 4) = (1+a)5 and if TP 4 = ξ⊕η with ξ 2-dimensional then w(ξ) = 1, 1+a

or (1+a)2 and w(η) = (1+a)5, (1+a)4 or (1+a)3. In the first two cases, there is a non-zero a4 coefficient and

in the last case there is a non-zero a3 coefficient, even though η must be a 2-bundle. So this isn’t possible.

Finally, given P 6 we see that using a similar splitting TP 6 = ξ ⊕ η we know that w(η) = (1 + a)7, (1 + a)6

or (1 + a)5 and η must be dimension 4. The same argument then shows that in the first two cases there

is a non-zero a6 coefficient and in the last a non-zero a5 coefficient, which contradicts the fact that η is a

4-bundle.

1



Problem 4-D If the n-dimensional manifold M can be immersed in Rn+1 show that each wi(M) is equal

to the i-fold cup product w1(M)i. If P n can be immersed in Rn+1 show that n must be of the form 2r − 1

or 2r − 2.

Solution 4-D In the above case, we see that w(TM) = w̄(NM). Furthermore, w1(TM) = w̄1(NM) and

since NM is 1-dimensional, wi(NM) = 0 for i ≥ 2. Then Taylor expansing w(TM) = (1 + w(NM))−1 =

(1 +w1(NM) + . . . )−1 shows us that wi(TM) = w1(NM)i + · · · = w1(TM)i where . . . are terms wi(NM)

for i ≥ 2.

Applying this, we see that if P n can be embedded in this way then w(TP n) = (1 + a)n+1 = 1 +∑n
i=1w1(TM)i. And we see that when n = 2rm − 1 for some odd m, then (1 + a)n+1 = (1 + a2r)m. If

m is 1, then w1(TP n) = 0 makes w(TP n) satisfy the necessary condition set out by the above statement.

Likewise, if m 6= 1 but r = 0 (thus n = m − 1 = 2r − 2 for some r) then (1 + a)m = 1 +
∑
a and

w1(TP n) = a makes w(TP n) satisfy the necessary condition set out by the above statement. Otherwise,

(1 + a)n+1 has a 0 a coefficient and a non-zero m coefficient, so it cannot satisfy the above statement.

Problem 4-E Show that the set Cn of all unoriented cobordism classes of smooth closed n-manifolds

can be made into an abelian group. This cobordism group Gn is finite by Proposition 4.11, and is also

a module over Z/2Z. Using the manifolds P 2 × P 2 and P 4, show that G4 contains at least four distinct

elements.

Solution 4-E The addition operation on Cn is disjoint union t. We see that if [M1] = [N1] and [M2] =

[M2] (where Mi and Ni are closed n-manifolds and [·] is the cobordism class) then [M1 tM2] = [N1 tN2]

since the disjoint unions are the boundary of the disjoint union of the manifold with boundary M1 t N1

and the manifold with boundary M2 t N2. Commutativity and associativity follow from the fact that t
has these properties on manifolds. The identity is given by the class of manifolds [M ] which are already

the boundary of some manifold with boundary. Last, every element is its own inverse, since M tM is the

boundary of M × [0, 1] and so is in the identity class.

Now observe that w(P 4) = (1 + a)5 and w(P 2 × P 2) = (1 + a)6. They are non-cobordant since their

Stiefel-Whitney classes are different and they are non-zero since their Stiefel-Whitney classes are non-zero.

So [0], [P 4], [P 2 × P 2] and [P 2 × P 2] + [P 4] are all distinct cobordism classes.

Problem 5-A Show that the Grassmann manifold Gn(Rn+k) can be made into a smooth manifold as

follows: a function f : Gn(Rn+k) → R belongs to the collection F of smooth real valued functions if and

only if f ◦ q : Vn(Rn+k)→ R is smooth.

Solution 5-A It suffices to show that the coordinate patches, coordinate functions and associated tran-

sition constructed on p. 58-59 are smooth by this definition. Let X0 ∈ Gn(Rn+k), let F ∈ Rn(n+k) be

a frame of X0 and define U(X0) ⊂ Gn(Rn+k) as U(X0) := {Y ⊂ Gn(Rn+k)|Y ∩ X⊥0 = ∅}. Note that

q−1U(X0) = {G ∈ Vn(Rn+k|ΠG 6= 0} where G is seen as n× (n+ k) matrix and Π is the projection to X0,

so U(X0) is open in the quotient topology.
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Define the coordinate function φF : U(X0) → Hom(X0, X
⊥
0 ) ' Rn(n+k) as the map sending Y to the

map T (Y ) : X0 → X⊥0 with graph Y . If G ∈ q−1U(X0) and we again interpret G as a matrix (using the

basis F for X0 and a basis F⊥ of X⊥0 as the basis for Rn+k) then the matrix can be written as:

MG = Π⊥G(ΠG)−11X0 =: T (Y )

Note that T (Y ) is invariant under the right action by GLn(R), so it only depends on our choice of Y . Here Π

and Π⊥ are the projection matrices to X0 and X⊥0 respectively. T (Y ) clearly satisfies Π(1X0+MG)1X0 = 1X0

and Graph(T (Y )) = span(x + T (Y )x) = col(G) = Y where col is the column space. The map φF ◦ q is

precisely the map G 7→ T (Y ), and by this expression it is smooth on the chosen open set, since ΠG

is invertible on U(X0). The transition functions φHφ
−1
F : Hom(X0, X

⊥
0 ) → Hom(Y0, Y

⊥
0 ) is given by

MF 7→ Π⊥YC
Y
X(1X + MF ). Here CY

X is the change of basis from F, F⊥ to G,G⊥. This is also evidently

smooth in the matrix MF , so the transition functions are smooth.

Problem 5-B Show that the tangent bundle τ of Gn(Rn+k) is isomorphic to Hom(γn(Rn+k), γ⊥) where

γ⊥ is the normal bundle to γn(Rn+k) in εn+k. Now consider a smooth manifold M ⊂ Rn+k. If ḡ :

M → Gn(Rn+k) denotes the generalized Gauss map show that Dḡ : DM → DGn(Rn+k) gives rise to a

cross-section of Hom(τM,Hom(τM, ν)) ' Hom(τM ⊗ τM, ν), the second fundamental form of M .

Solution 5-B We have a naturally defined map Hom(γn, γ⊥)→ τ given fiber-wise at X ∈ Gn(Rn+k) by

TX ∈ Hom(γn, γ⊥) 7→ d
ds

((1 + sTX)X)s=0 ∈ τX . The image of a smooth section under this map clearly

varies smoothly with X and the fact that it’s fiber-wise bijective follows from an examination in the chart

U(X). So this is a bundle isomorphism.

Now examining the Gauss map, we see that ḡ is covered by the bundle map g ⊕ g⊥ : τ ⊕ ν → γn ⊕ γ⊥
and the differential Dḡ : τM → τGn(Rn+k) ' Hom(γn, γ⊥). This thus yields a fiber-linear morphism

σ : τM → Hom(τM, ν) via (p, v) 7→ (g⊥)−1
ḡ(p) ◦Dḡp(v) ◦ gp. This is precisely a smooth section of the desired

bundle.

Problem 5-C Show that Gn(Rm) is diffeomorphic to the smooth manifold consisting of all m × m

symmetric idempotent matrices of trace n. Alternatively show that the map (x1, . . . , xn) 7→ x1 ∧ · · · ∧ xn
from Vn(Rm) to the exterior power ∧n(Rm) gives rise to a smooth embedding of Gn(Rm) in G1(R(mn)).

Solution 5-C For the first part, the diffeomorphism clearly must be defined as M 7→ col(M), the column

space of M (equivalently, the row-space). The inverse sends an n-plane X to the unique symmetric MX

with 1-eigenspace K and 0 eigenspace K⊥. This matrix is unique because (viewing the matrices as bilinear

forms) under any orthogonal change of basis splitting Rm into K ⊕K⊥ the matrices must be exactly the

matrix with n 1’s on the K diagonal and m− n 0’s on the K⊥ diagonal.

The map is smooth and smoothly invertible in coordinate charts U(X). Indeed, in the basis where MX

is the 1, 0 matrix described before (let’s call it In for now), the map can just be written as T (Y ) 7→ ST InS

where S = gs([1n +T (Y )|B(X⊥)] where 1n +T (Y ) is as in Problem 5-A, B(X⊥) is a matrix populated by

an arbitrary basis of X⊥ and gs(·) applies the Graham-Schmidt process to the matrix column-by-column.
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These are all smoothly dependent on T (Y ) so the expression given is also smooth. The inverse is likewise

given by M 7→ MO(M) where O(M) is the unique n × m matrix satisfying O(M)TMO(M) = 1n and

ΠXO(M) = 1n. MO(M) corresponds to MG as written in MG
1 Everything here again smoothly depends on

the idempotent symmetric M , so this establishes that the map M 7→ col(M) is indeed a diffeomorphism.

For the second part, observe that φ : Vn(Rm) → V1(∧n(Rm)) = ∧n(Rm) given by (x1, . . . , xn) 7→
x1∧ · · · ∧xn is smooth and factors through both quotients, since applying any T ∈ GLn to (x1, . . . , xn) via

right-multiplication (i.e map (xi) to M(xi) = (
∑

imijxj) changes x1 ∧ · · · ∧ xn by a multiplicative factor

detM). So the map must be smooth on the quotients.

Problem 5-D Show that Gn(Rn+k) has the following symmetry property. Given any two n-planes

X, Y ⊂ Rn+k there exists an orthogonal automorphism of Rn+k which interchanges X and Y . [Whitehead,

1961] defines the angle α(X, Y ) between n-planes as the maximum over all unit vectors x ∈ X of the

angle between x and Y . Show that α is a matrix for the topological space Gn(Rn+k) and show that

α(X, Y ) = α(Y ⊥, X⊥).

Solution 5-D Without loss of generality, assume that X ∩ Y = 0 and that X, Y ∈ Gn(R2n). We can

make these assumptions by fixing the subspace span(X∩Y, (X∪Y )⊥), so that all of our rotations take place

in a subspace V ⊂ Rn+k where these assumptions hold for X ∩ V and Y ∩ V . In this regime, let e1, . . . , en
be an ortho-basis for X and f1, . . . , fn be a complimentary basis. Break R2n into ⊕ni=1span(ei, fi). Note

that each of these subspaces must intersect Y on a one-dimensional subspace precisely (if the intersection

is 0 this violates the dimension of Y and if it’s two the X ∩Y is non-trivial). Furthermore, the intersection

lines collectively span Y . Now on each span(ei, fi) let Ui be the orthogonal transformation exchanging

span(ei) and span(ei, fi)∩Y via reflection across the line bisecting the angle between them and at an angle

< 180 degrees from span(ei). Then the orthogonal transformation
∏

i Ui on R2n exchanges Y and X by

exchanging basis 1-dimensional subspaces.

Now let’s look at the metric α. We verify the metric axioms. It is clear that the angle of a vector x ∈ X
with Y is 0 if and only if x ∈ Y , so if α(X, Y ) = 0 then X ⊂ Y thus X = Y . Furthermore, the angle

is manifestly non-negative α(X, Y ) > 0 if X 6= Y . By the above argument, there is an angle preserving

linear map exchanging any X and Y , so α(X, Y ) = α(Y,X). Last, α(X,Z)

Problem 5-E Let ξ be an Rn-bundle over B.

Problem 5-E(1) Show that there exists a vector bundle η over B with ξ ⊕ η trivial if and only if there

exists a bundle map ξ → γn(Rn+k) for large k. ξ is then called finite type.

Solution 5-E(1) If there is such a map ψ : ξ → γn(Rn+k) then it comes from a map φ : ξ → Rn+k which

is fiber-wise linear. This map can be interpreted as a bundle map ξ → εn+k, the trivial n+k-bundle over B.

We can construct a normal bundle η as the perpendicular sub-bundle to ψ(ξ) ⊂ εn+k where εn+k is given

a metric by Rn+k. Conversely, if there exists a summand η with ξ ⊕ η trivial then there exists a fiber-wise

1Apologies for using M twice here.
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linear map B × Rn+k → Rn+k which is obvious and we can just get the desired map by composition with

the inclusion ξ → ξ ⊕ η.

Problem 5-E(2) Now assume B is normal. Show that ξ has finite type if and only if B is covered by

finitely many open sets U1, . . . , Ur with ξ|Ui trivial.

Solution 5-E(2) If there exist such Ui, then we can construct a map to γn(Rrn) using the proof in

Lemma 5.3. This requires normality. Conversely, if ξ has finite type then we can pull back trivializations

of γn(Rn+k) of which there are finitely many, since Gn(Rn+k) is compact.

Problem 5-E(3) If B is paracompact and has finite covering dimension, show (using the argument of

5.9) that every ξ over B has finite type.

Solution 5-E(3) Finite covering dimension implies that the U(S) costructed in the argument of Lemma

5.9 are empty for |S| > k and k sufficiently high, so the construction will only require a finite RN to embed

into. That is, there will be finitely many sets U1, . . . , Uk which cover B on which the bundle is trivial,

and the bundle can thus be given a bundle map ξ → Rnk via (p, v) 7→ ⊕ki=1λi(p)πi(p, v) where πi is the

projection Ui × Rn → Rn.

Problem 5-E(4) Using Stiefel-Whitney classes show that γ1 over RP∞ is not of finite type.

Solution 5-E(4) Any complimentary bundle η would have to have w(η) = w̄(γ1) =
∑∞

i=0 a
i. But this is

impossible for any finite-dimensional bundle since the Stiefel-Whitney class must vanish at cohomology of

higher dimension than its fibers.

Problem 6-A Show that a CW-comple is finite if and only if it’s underlying space is compact.

Solution 6-A Suppose that X is a finite CW complex. Then there is a continuous quotient map

∪αCα → X given by the gluing process. ∪αCα is compact, so its image is as well. Now suppose that X is

an infinite CW complex. Then there are two possibilities: X has infinitely many cells in some dimension

k or X has one cell of dimension ki for some sequence ki →∞ and each sub-complex Xk of all cells with

dimension ≤ k is finite.

In the first case, observe that every sub-complexXk is closed, so we can assume without loss of generality

that there are infinitely many cells of largest dimension k. Then the interior of each cell is open and the

collection of these interiors forms a countably infinite set of disjoint opens, so Xk is not compact. Thus

X cannot be either. Let Cki be a cell in each dimension ki and pick points pi ∈ Ci. The sequence pi
cannot have a limit point: such a limit point, say p, would be in a finite sub-complex Xk and thus would

be separated from all but finitely many pi by the open X \Xk, contradicting the fact that it was a limit

point. So X is not compact in this case either. This concludes the proof.
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Problem 6-B Show that the restriction homomorphism i∗ : Hp(Gn(R∞))→ Hp(Gn(R∞)) is an isomor-

phism for p < k. Any coefficient group may be used.

Solution 6-B Via Corollary 6.7 we see that the inclusionGn(Rn+k)→ Gn(R∞)) is onto on the r ≤ k cells.

This is because this inclusion takes cells to cells and the number of cells is the number of partitions of r into

n integers less than or equal to k (which is always satisfied when r < k). Thus there is an isomorphism

of chain complexes C∗(̇Gn(R∞)) ' C∗(Gn(Rn+k),Λ) if we restrict to the complex for ∗ ≤ k. But this

induces an isomorphism of the dual chain complexes as well for these dimensions, thus an isomorphism of

homology for ∗ < k (we do not get the kth cohomology necessarily because the k-th cohomology relies on

the content of the Ck+1 chain).

Problem 6-C Show that the correspondence f : X → R1⊕X defines an embedding of the Grassmanian

manifold Gn(Rm) into Gn+1(R1⊕Rm) = Gn+1(Rm+1) and that f is covered by a bundle map ε1⊕γn(Rm)→
γn+1(Rm+1). Show that f carries the r-cell of Gn(Rm) which corresponds to the partition i1, . . . , is of r

onto the r-cell of Gn+1(Rm+1) which corresponds to the same partition i1, . . . , is.

Solution 6-C This correspondence clearly defined an injective map f : Gn(Rm) → Gn+1(Rm+1), so we

only need to check that it is smooth. But this is clear, since on the coordinate patches U(X) defined in

ch. 5 the map takes the form M ∈ Hom(X,X⊥) 7→ [M |0] ∈ Hom(X ⊕R, X⊥). To check that it is covered

by a bundle map, we recall that γn(Rm) was defined as a sub-bundle of εm. The map f is accompanied

by a natural bundle map εm → εm+1 given by the inclusion Rm → Rm+1. Furthermore, this bundle

map maps the sub-bundle γn(Rm) → γn+1(Rm+1), due to the construction of these sub-bundles and the

definition of f . The orthocompliment of the embedded fiber of γn in γn+1 is just the constant R sub-space

in εm+1 = εm ⊕ R. So γn+1 splits as ε1 ⊕ γn along the embedding f , and we get a covering bundle map

ε1 ⊕ γn → γn+1 of f .

Finally, to argue the fact about cell’s, just observe that an element X of Schubert cell e(σ) corresponding

to σ = (σ1, . . . , σn) has dim(X ∩Rσi) = dim(X ∩Rσi−1)+1 = i by definition. Then f(X) = R⊕X satisfies

dim(f(X) ∩ Rσi+1) = dim(X ∩ Rσi) + 1 = i + 1 and dim(f(X) ∩ R1) = 1. This implies that it has the

Schubert symbol (1, σ1 + 1, σ2 + 1, . . . ) and the partition vector (0, σ1, σ2, . . . , σn) which is the same as

before.

Problem 6-D Show that the number of distinct Stiefel-Whitney numbers is equal to p(n) (the number

of partitions of n).

Solution 6-D The Stiefel-Whitney numbers correspond bijectively with their indices (ri), which are

defined as non-negative integers such that
∑

i iri = n and 1 ≤ i ≤ n. These are in bijection with partitions

of n via the correspondence (ri) maps to the partition of n into r1 1’s, r2 2’s and so on. You can recover

(ri) from a partition by counting the number of instances of i in a partition and setting ri equal to that.
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Problem 6-E Show that the number of r-cells in Gn(Rn+k) is equal to the number of r-cells in Gk(Rn+k).

Or show that they are isomorphic as cell complexes.

Solution 6-E By Corollary 6.7 it’s sufficient to show that the number of partitions of r into ≤ n integers

each ≤ k if the same as the number of partitions of r into ≤ k integers each ≤ n. This follows immediately

from the fact that each such partition corresponds to an n × k Young tableaux: a stack of ≤ n rows of

boxes, with rows of non-increasing in lengths each ≤ k and a total of r boxes. Transposing this stack

(swapping rows and columns) makes a Young tableaux with n and k switched, and this operation is

obviously invertible. This establishes the desired bijection.

The proof of the latter statement is much more involved. We have already shown that the map

ρ : Gn(Rn+k) → Gk(Rn+k) which maps an n-plane to the perpendicular k-plane is a diffeomorphism. We

will now show that it is also a cell map. Let R0 ⊂ R1 ⊂ R2 ⊂ . . . be the sequence of spaces with which the

cell structure on Gn(Rn+k) is constructed. On Gk(Rn+k), impose the cell-structure using the perpendicular

sequence (Rn+k)⊥ ⊂ (Rn+k−1)⊥ ⊂ · · · ⊂ (R0)⊥. We will show that ρ sends a cell e(σ) ⊂ Gn(Rn+k) of

dimension d(σ) = r corresponding to a sequence σ = (σi) to a dual cell e(σ∗) ⊂ Gk(Rn+k) with d(σ∗) = r

as well. The correspondence σ → σ∗ will be bijective by construction so this will show that this map

carries the cells of Gn(Rn+k) diffeomorphically onto those of Gk(Rn+k).

To see this cell construction, observe the following. If dim(X ∩ Rm) = j, then dim(X⊥ ∩ (Rm)⊥) =

k + j − m. This implies that dim(X ∩ Rm) = dim(X ∩ Rm+1) if and only if dim(X⊥ ∩ (Rm)⊥) =

dim(X⊥∩ (Rm+1)⊥)+1. Thus, the sequence of spaces X⊥∩ (Rm)⊥ decrease in index at every index m = σ′i
where σ′i is the “complimentary sequence” to σi, i.e the sequence of length k such that {σi} ∪ {σ̃i} =

{1, . . . , n + k}. If we reverse this sequence of spaces so that the (Rm)⊥ ascend in dimension, then the

resulting sequence jumps dimension at σ∗i = n+ k + 1− σ̃k+1−i. Note here that we will also use below the

sequence σ̃∗i = n+ k + 1− σn+1−i.

So ρ maps e(σ) into e(σ∗). Note that this process is reversible, i.e taking (X⊥)⊥ and (σ∗)∗ yields

again σ. Now we just have to argue that d(σ∗) = r. Once we have done so, the fact that ρ is surjective

and invertible will imply that ρ must map e(σ) diffeomorphically onto e(σ∗). Using all of the previous

discussion, we see that:

n∑
i=1

σi − i =
n∑
i=1

σi −
n(n+ 1)

2
= d(σ);

n∑
i=1

σi =
n(n+ 1)

2
+ d(σ)

k∑
i=1

σ∗i +
n∑
i=1

σ̃∗i =
(n+ k)(n+ k + 1)

2
;

n∑
i=1

σ̃∗i = n(n+ k + 1)−
n∑
i=1

σi = n(n+ k + 1)− n(n+ 1)

2
− d(σ)

d(σ∗) =
k∑
i=1

σ∗i −
k(k + 1)

2
=

(n+ k)(n+ k + 1)

2
− n(n+ k + 1) +

n(n+ 1)

2
+ d(σ)− k(k + 1)

2

=
n(n+ 1)

2
+ nk +

k(k + 1)

2
− n(n+ k + 1) +

n(n+ 1)

2
+ d(σ)− k(k + 1)

2
= d(σ)

Improving this, we can even argue that σ∗ is the Schubert symbol corresponding to the conjugate

partition of σ. To do this, observe that there (n+k+1−σi)−(n+k+1−σi+1)+1 = (σi+1−(i+1))−(σi−i)
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is just one more than the number of blocks by which the ith row and the i + 1th row of the Schubert

cell’s Young diagram differ. Thus the sequence of integers greater than (n + k + 1 − σi+1) and less than

(n + k + 1 − σi) that is in σ∗ will correspond to a series of rows in the Young tableaux of σ∗ of constant

length equal to the number of missing gaps of numbers between 1 and n+k in the sequence n+k+1−σk−i.
But every But every such gap corresponds to a row to the Young tableaux of σ of larger length than the

one below it, thus an increase in the length of the rows of the conjugate. So starting at the beginning of the

sequence σ∗, this reasoning implies that the resulting constructed sequence will reproduce the conjugate

of σ.

Problem 7-A Identify explicitly the cocycle in Cr(Gn) ' Hr(Gn) which corresponds to the Stiefel-

Whitney class wr(γ
n).

Solution 7-A First recall that Hk(Gn(R∞)) ' Hk(Gn(Rn+k)) cell-wise via the inclusion Gn(Rn+k) →
Gn(R∞). So it suffices to compute wk(γ

n(Rn+k)). Furthermore, recall that we have a morphism f :

ε1 ⊕ γn(Rm) → γn+1(Rm+1) which takes a Schubert cell e(σ) corresponding to a partition σ to the cell

corresponding to the same partition. f also satisfies f ∗wi(γ
n+1(Rm+1)) = wi(ε

1 ⊕ γn(Rm)) = wi(γ
n(Rm))

by naturality. By iterative composition we can get morphisms fj : εj ⊕ γn(Rm) → γn+j(Rm+j) such that

f ∗j wi(γ
n+j(Rm+j)) = wi(γ

n(Rm)) and such that e(σ) is send to e(σ) if σ is a partition.

Now observe that f ∗j wk(γ
n(Rn+k)) = wk(γ

n−j(Rn+k−j)) = 0 if k > n − j by the dimensionality axiom

of S-W classes. But the cells in the image of Gn−j(Rn+k−j) → Gn(Rn+k) are precisely the cells e(σ) with

σ a partition of k into ≤ n − j < k integers each ≤ k. This implies that wk(γ
n(Rn+k)) is 0 on all k-cells

e(σ) with partitions σ into fewer than k integers. But there is only one partition of k that doesn’t satisfy

this property, the cell e(1, . . . , 1) for the partition of k into k 1’s. So in order to be non-zero, wk(γ
n(Rn+k))

must be a non-zero multiple of e(1, . . . , 1)∗, and there is only one such multiple because we are in Z/2
homology. So wk(γ

n(R∞)) = e(1, . . . , 1)∗, the dual cell corresponding to the partition of k into k 1’s.

Problem 7-B Show that the cohomology algebra H∗(Gn(Rn+k)) over Z/2 is generated by the Stiefel-

Whitney classes w1, . . . , wn of γn and the dual classes w̄1, . . . , w̄k subject only to the n+k defining relations

ww̄ = 1.

Solution 7-B

Problem 7-C Let ξm and ηn be vector bundles over a paracompact base space. Show that the Stiefel-

Whitney classes of the tensor product ξm⊗ ηm can be computed as follows. If the fiber dimensions m and

n are both 1, then w1(ξ1⊗ η1) = w1(ξ1) +w1(η1). More generally there is a universal formula of the form:

w(ξm ⊗ ηn) = pm,n(w1(ξm), . . . , wm(ξm), w1(ηn), . . . , wn(ηn))
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Here pm,n is a polynomial in the elementary symmetric polynomials σ1, . . . , σm in the variables t1, . . . , tm
and σ′1, . . . , σ

′
n in the variables t′1, . . . , t

′
n defined as:

pm,n(σ1, . . . , σm, σ
′
1, . . . , σ

′
n) =

m,n∏
i,j=1,1

(1 + ti + t′j)

Solution 7-C First let ξm and ηn be any pair of bundles over B. Consider the bundles p∗mγ
m, p∗nγ

n and

p∗mγ
m⊗p∗nγn over GmR∞×GnR∞. By universality we have bundle maps f : ξm → γm, g : ηn → γn, and to

get maps (which we will also call f and g) p∗mγ
m and p∗nγ

n we define them by (b, v) 7→ (f̄(b)× ḡ(b), f(v))

and (b, v) 7→ (f̄(b)× ḡ(b), g(v))). We also get a map f ⊗ g : ξm⊗ ηn → p∗mγ
m⊗ p∗nγn which is f̄ × ḡ on the

fibers.

Now observe that H∗(Gm × Gn,Z/2) = H∗(Gm,Z/2) ⊗ H∗(Gn,Z/2) by the Kunneth formula. In

particular, the Stiefel Whitney classes wi(γ
m)×1 and 1×wi(γn) of p∗mγ

m and p∗nγ
n generate the cohomology

ring of Gm × Gn, so there is a finite polynomial pm,n in wi(γ
m) × 1 and 1 × wi(γ

n) which is equal to

w(p∗mγ
m ⊗ p∗nγn). But then observe that:

w(ξm ⊗ ηn) = (f × g)∗w(p∗mγ
m ⊗ p∗nγn) = (f × g)∗pm,n(wi(γ

m)× 1, 1× wi(γn))

= pm,n(f ∗wi(γ
m), g∗wi(γ

n)) = pm,n(wi(ξ
m), wi(η

n))

Thus there is such a polynomial relation between the S-W classes of ξm ⊗ ηn, ξm and ηn.

Furthermore, observe that this universal polynomial relation must be unique. Otherwise, we would have

two polynomials pm,n and qm,n with pm,n(wi(γ
m), wi(γ

n)) − qm,n(wi(γ
m), wi(γ

n)) = 0. This would imply

a polynomial relation between the wi(γ
m), wi(γ

n), which would contradict the fact that H∗(Gn,Z/2) ⊗
H∗(Gm,Z/2) is the free Z/2 polynomial ring generated over these variables (since it it the tensor product

of the free polynomial rings over the wi(γ
m) and wi(γ

n) respectively). Note that this uniqueness argument

also works for the polynomial over p∗m(γ1)m, p∗n(γ1)n and p∗m(γ1)m ⊗ p∗n(γ1)n over (P∞)m+n, since the

cohomology ring in that case is a subring of the free polynomial ring, thus without non-trivial relations.

Thus it suffices for us to find the formula when ξm = ⊕m1 ξ1
i and ηn = ⊕n1η1

j are Whitney sums of line

bundles. Then as a special case we will have the same relation for the tensor product of p∗m(γ1)m, p∗n(γ1)n

(which are Whitney sums) and then by the uniqueness argument we will know that this must correspond

to the polynomial for the universal bundles. For Whitney sums of line bundles, if we assume the m = n = 1

case, then we see that:

w((⊕m1 ξ1
i )⊗ (⊕n1η1

i )) =

m,n∏
i,j=1,1

w(ξ1
i ⊗ η1

j ) =

m,n∏
i,j=1,1

(1 + w1(ξ1
i ) + w1(η1

j ))

Since w(⊕m1 ξ1
i ) =

∏
i(1 + w1(ξ1

i ), (and thus each wj(⊕m1 ξ1
i ) is an elementary symmetric polynomial in the

w1(ξ1
i )), this certainly corresponds to the polynomial relation desired.

Finally, consider the m = n = 1 case. Then p1,1(x, y) is a linear, symmetric polynomial with p1,1(x, 0) =

x. So p1,1(x, y) = x+ y.
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Problem 8-A It follows from 7.1 that the cohomology class Sqkwm(ξ) can be expressed as a polynomial

in w1(ξ), . . . , wm+k(ξ). Prove Wu’s explicit formula Sqk(wm) =
∑k

i=0

(
k−m
i

)
wk−iwm+i.

Solution 8-A Observe that if this were true for (γ1(R∞))n then it would be true for γn(R∞) since the

map f : (RP∞)n → Gn(R∞) induces an algebra isomorphism on cohomology, is covered by a bundle map

(γ1)n → γn, and thus satisfies f ∗Sqkwm = Sqkf ∗wm = Sqkwm. Then by the universality of γn(R∞) it must

be true for any n-bundle. So it suffices to prove that if the formula holds for ξ, then it holds for γ1 × ξ.
Then by induction we have the formula for (γ1)n.

To show this, observe that:

Sqkwm(ξ× γ1) = Sqk(wm(ξ)× 1 +wm−1(ξ)×w1(γ1)) =
∑
i+j=k

Sqiwm(ξ)× Sqj(1) + Sqiwm−1(ξ)× Sqjw1(γ1)

= Sqkwm(ξ)× 1 + Sqk−1wm(ξ)× (w1(γ1) ∪ w1(γ1)) + Sqkwm−1(ξ)× w1(γ1)

=
k∑
i=0

(
k −m
i

)(
(wk−i(ξ) ∪ wm+i(ξ))× 1 + (wk−i−1(ξ) ∪ wm+i−1(ξ)) ∪ (w1(γ1) ∪ w1(γ1))

)
+

k∑
i=0

(
k −m+ 1

i

)
(wk−i(ξ) ∪ wm+i−1(ξ))× w1(γ1)

Now observe that due to the identity
(
k−m+1

i

)
=
(
k−m
i−1

)
+
(
k−m
i

)
we have:

k∑
i=0

(
k −m+ 1

i

)
(wk−i(ξ)∪wm+i−1(ξ))×w1(γ1) =

k∑
i=0

(

(
k −m
i− 1

)
+

(
k −m
i

)
)(wk−i(ξ)∪wm+i−1(ξ))×w1(γ1)

=
k∑
i=0

(
k −m
i

)
(wk−i(ξ) ∪ wm+i(ξ))× w1(γ1) +

k∑
i=0

(
k −m
i

)
(wk−i−1(ξ) ∪ wm+i(ξ))× w1(γ1)

Therefore, plugging this into the first manipulation we have:

Sqkwm(ξ × γ1) =
k∑
i=0

(
k −m
i

)
(wk−i(ξ)× 1 + wk−i−1(ξ)× w1(γ1)) ∪ (wm+i(ξ)× 1 + wm+i−1(ξ)× w1(γ1))

=
k∑
i=0

(
k −m
i

)
wk−i(ξ × γ1) ∪ wm+i(ξ × γ1)

This verifies the formula in our reduced case.

Problem 8-B If w(ξ) 6= 1, show that the smallest n > 0 with wn(ξ) 6= 0 is a power of 2.

Solution 8-B Assume that 2rj is the smallest positive non-zero integer with w2rj(ξ) 6= 0. Assume for

contradiction j is odd and not equal to 1, and let k = 2r,m = 2r(j − 1). Then by the Wu formula and the
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fact that wi(ξ) = 0 for i < m+ k we have:

0 = Sq2rw2r(j−1)(ξ) =

(
2r(2− j)

2r

)
wm+k(ξ)

But since j 6= 1, 2r(2− j) is odd and non-zero. Thus
(

2r(2−j)
2r

)
6= 0 ∈ Z/2 and this is a contradiction.

Problem 9-A Show that γn ⊕ γn is an orientable vector bundle with w2n(γn ⊕ γn) 6= 0 and hence

e(γn ⊕ γn) 6= 0. Show that if n is odd then 2e(γn ⊕ γn) = 0.

Solution 9-A A bundle ξ is orientable if and only if w1(ξ) = 0. But w1(γn ⊕ γn) = w1(γn) ∪ 1 + 1 ∪
w1(γn) = 2w1(γn) = 0. So γn ⊕ γn is orientable. Furthermore, w2n(γn ⊕ γn) =

∑
i+j=2nwi(γ

n) ∪wj(γn) =

wn(γn) ∪ wn(γn). The latter is not 0 since wn(γn) 6= 0. If b ∈ Hn(GnR∞,Z/2) satisfies 〈wn(γn), b〉 6= 0,

then:

〈w2n(γn ⊕ γn), b〉 = 〈wn(γn)× wn(γn), b× b〉 = ±〈wn(γn), b〉2 6= 0

Therefore w2n(γn ⊕ γn) 6= 0 and e(γn ⊕ γn) 6= 0 because e(γn ⊕ γn) mod 2 = w2n(γn ⊕ γn) 6= 0. To see

then that 2e(γn ⊕ γn) = 0 we just apply the reasoning on p. 101.

Problem 9-B Show that the restriction of the tautological bundle ξ2n over GnC∞ to the subspace GnR∞

is isomorphic to γn ⊕ γn and hence that e(ξ2n) 6= 0.

Solution 9-B . It’s clear that we have the inclusion GnR∞ ⊂ GnC∞ via the inclusion V n
o (Rm) ⊂ V n

o (Cm)

and the fact that the quotient map qC : V n
o (Cm)→ GnCm is compatible with the quotient qR : Vo(Rm)→

GnRm, since two real frames generate the same n-plane in Rm if and only if their complexifications generate

the same n-plane in Cm. Furthermore, observe that the inclusion i : Rm ⊂ Cm induces an inclusion

γn(Rm) ⊂ ξ2n(Cm) via their definitions as sub-bundles of the trivial real and complex m-bundles over

Gn(Rm) and Gn(Cm) respectively. i sends the fiber of γn(Rm) to the real sub-space of the fiber of ξ2n(Cm).

The perpendicular bundle has fiber equal to the imaginary subspace of the fiber of ξ2n(Cm). But we

can also construct i to send the fiber of γn(Rm) to the imaginary subspace of Cm via the composition

Rm i−→ Cm ·
√
−1−−−→ Cm, and this induces an isomorphism between (γn(Rm))⊥ ⊂ ξ2n(Cm) and γn. So we have

ξ2n(Cm)|Gn(Rm) ' (γn(Rm))⊥ ⊕ γn(Rm) ' γn(Rm)⊕ γn(Rm) for all m, and by taking a direct limit we get

ξ2n ' γn ⊕ γn as desired. Problem 9-A yields the last conclusion.

Problem 9-C Let τ be the tangent bundle of the n-sphere and let A ⊂ Sn × Sn be the anti-diagonal,

consisting of all pairs of antipodal unit vectors. Using stereographic projection, show that the total space

E(τ) of τ is canonically diffeomorphic to Sn × Sn − A. Hence using excision and homotopy show that:

H∗(E,E0) ' H∗(Sn × Sn, Sn × Sn −D) ' H∗(Sn × Sn, A) ⊂ H∗(Sn × Sn)

Here D is the diagonal of Sn×Sn. Now suppose that n is even. Show that the Euler class e(τ) = φ−1(u∪u)

is twice a generator of Hn(Sn,Z). As a corollary, show that τ possesses no non-trivial sub-bundles.
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Solution 9-C The tangent bundle τ is isomorphic to the sub-bundle (νSn)⊥ ⊂ εn+1 of the trivial bundle

via the embedding of Sn into Rn+1. We can define a map of ψ : Sn × Sn − A → εn as so. Given

(p, q) ∈ Sn × Sn − A we can write a matrix Mp,q =

[
Πp

Π⊥p+q

]
and a vector vp,q =

[
1

Π⊥p+qp

]
. Then define

the map ψ(p, q) = (p,M−1
p,q vp,q). This map is defined to be equal to the stereographic projection on each

fiber, i.e for fixed p. Furthermore this matrix expression shows that the map is clearly smooth, injective

and surjective onto the tangent bundle τ ⊂ εn+1 (easily checkable by looking at the map fiber-wise and

noting that it is just the usual stereographic projection). The smooth inverse map can likewise be defined

in terms of a smoothly varying matrix expression to show that the map is a diffeomorphism.

Thus we have:

H∗(E,E0)
ψ∗

' H∗(Sn × Sn − A, Sn × Sn − (A ∪D)) '

H∗(Sn × Sn, Sn × Sn −D) ' H∗(Sn × Sn, A) ⊂ H∗(Sn × Sn)

The first isomorphism is induced by ψ, the second is by excision of A, the third is by the fact that

(Sn × Sn, A) ⊂ (Sn × Sn, Sn × Sn − D) is a homotopy equivalence (Sn − D retracts onto A). [INSERT

PROOF THAT e(τ) is twice a generator of Hn(Sn,Z).

Now suppose for the sake of contradiction that τ = ξ ⊕ ξ′. Then w1(ξ) = w1(ξ′) = 0 because Sn has

no first homology. So they are orientable and e(τ) = ±e(ξ) ∪ e(ξ′). But Sn has no cohomology groups of

degree less than n except for H0(Sn,Z), so these must vanish, even though e(τ) does not. So we have a

contradiction.

Problem 11-A Prove Lemma 4.3 (that is compute the mod 2 cohomology of RP n) by induction on n,

using the Duality Theorem and the cell structure of 6.5.

Solution 11-A We will abbreviate RP n as P n. P 1 is evidently the circle and thus has cohomology

H0(P 1) = H1(P 1) = Z/2 and 0 for other i. Now by induction suppose that n ≥ 2, H i(P n) = Z/2 for

i ≤ n and 0 for other i. Then we have the long-exact sequence of the pair (P n+1, P n):

· · · → H i(P n+1, P n)→ H i(P n+1)→ H i(P n)→ H i+1(P n+1, P n)→ . . .

Using the cell structure of 6.5 we know that the relative cochain groups Ci(P n+1, P n) is 0 for i < n. In

particular, n+1
2
< n so H i(P n+1) ' H i(P n) = Z/2 for such i. But then by Poincare duality we can conclude

that H i((P n+1) = Z/2 for all i ≤ n+ 1 and 0 otherwise (by dimensionality).

Problem 11-B (More Poincare Duality) For M compact, using field coefficients, show that u′′/ : Hn−k →
Hk(M) is an isomorphism. Using the cap product operation of Appendix A, show that the invest isomor-

phism is given by ∪µ : Hk(M)→ Hn−k(M) multiplied by the sign (−1)kn. Note: I believe that M/S means

(−1)k(n−k) here.

Solution 11-B Assume that all (co)homology is over a field. We utilize the formula u′′ =
∑

i bi × b
#
i

for some homogeneous basis bi of H∗(M). Assume bi ∈ Hk(M). We know that Hn−k(M) is canonically
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isomorphic to the dual of Hn−k(M). Thus we can take (b#
i )v to be the dual basis element of b#

i in Hn−k(M).

By the linearity of the map β 7→ u′′/β and dimension counting from 11.10, it suffices here to show that a

basis element (b#
i )v ∈ Hn−k(M) map to independent elements of Hn(M) under u′′/. To see that, observe:

u′′/(b#
i )v =

∑
j

bj〈b#
j , (b

#
i )v〉 =

∑
j

bjδij = bi ∈ Hn(M)

Now we verify the inverse map. By the reasoning above, it suffices to check that (−1)(n−k)kbi∩µ = (b#
i )v,

or equivalently that (−1)k(n−k)〈b#
j , bi ∩ µ〉 = δij. But observe that by the definition of the cap product

we have 〈a, b ∩ µ〉 = 〈a ∪ b, µ〉. So (−1)k(n−k)〈b#
j , bi ∩ µ〉 = 〈bi ∪ b#

j , µ〉. The last expression is δij by b#
j ’s

definition.

Problem 11-C Let M = Mn and A = Ap be compact oriented manifolds with smooth embedding

i : M → A. Let k = p − n. Show that Poincare duality isomorphism ∩µA : Hk(A) → Hn(A) maps the

cohomology class u′|A “dual” to M to the homology class (−1)nki∗(µM).

Solution 11-C

Problem 11-D Prove that all Stiefel-Whitney numbers of a 3-manifold are 0.

Solution 11-D Let w[τ ] = Sq(v) be the total Stiefel-Whitney class of the tangent bundle τ of a 3-

fold M . The only partitions of 3 are (1, 1, 1), (1, 2) and (3). So the only Stiefel-Whitney numbers are

〈w3
1[τ ], µ〉, 〈w1[τ ]w2[τ ], µ〉 and 〈w3[τ ], µ〉. Now observe that v2, v3 = 0 since 3 > 0, 2 > 1. Thus using

the Wu formula, w3[τ ] = 0, w2[τ ] = v1 ∪ v1 and w1[τ ] = v1. Therefore it suffices to prove that 〈v3
1, µ〉 =

〈Sq1(v1 ∪ v1), µ〉 = 0. But Sq1(v1 ∪ v1) = Sq0(v1) ∪ Sq1(v1) + Sq1(v1) ∪ Sq0(v1) = 2(v1 ∪ v1 ∪ v1) = 0. So

the last expression vanishes.

Problem 11-E Prove the following version of Wu’s formula. Let S̄q : H∗(M)→ H∗(M) be the inverse

of the ring automorphism Sq. Prove that w̄ is determined by the formula 〈S̄q(x), µ〉 = 〈w̄ ∪ x, µ〉. Show

that w̄n = 0. If n is not a power of 2, show that w̄n−1 = 0.

Solution 11-E Observe that w̄ ∪ Sq(v) = w̄ ∪ w = 1 can be written as S̄q(w̄) ∪ v = 1. Thus if we set

y = Sq(x), we have:

〈S̄q(y), µ〉 = 〈S̄qSq(x), µ〉 = 〈x, µ〉 = 〈v ∪ S̄q(w) ∪ x, µ〉 = 〈Sq(S̄q(w) ∪ x), µ〉 = 〈w̄ ∪ y, µ〉

To see that w̄n = 0, observe that for any x ∈ H0(X) we have Sq(x) = Sq0(x) = x, and thus S̄q(x) = x.

Therefore 0 = 〈x, µ〉 = 〈S̄q(x), µ〉 = 〈w̄n ∪ x, µ〉. But now note that µ breaks into a direct sum of

fundamental classes of X’s connected components Xi, each of which generated Hn(Xi). Thus µ = ⊕k1µi
and H0(X) likewise breaks into a direct sum of H0(Xi) ' Z/2. If w̄n were not 0, then in its direct sum
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decomposition w̄n = ⊕iw̄in ∈ Hn(Xi) we would have w̄in = µvi (the dual of µvi ) for some i. Then if we took

the element 1i ∈ H0(Xi) ⊂ H0(X), we see that 〈w̄n ∪ 1i, µ〉 = 〈µi, µi〉 6= 0, a contradiction. So w̄n = 0.

Finally, if n is even then w̄n−1

Problem 11-F Defining Steenrod operations Sqi : Hk(X) → Hk−i(X) on mod 2 cohomology by the

identity 〈x, Sqi(β)〉 = 〈S̄qi(x), β〉, show that Sq(a∩β) = Sq(a)∩Sq(β) and that Sq(u′′/β) = Sq(u′′)/Sq(β).

Prove the formulae Sq(µ) = w̄ ∩ µ and S̄q(µ) = v ∩ µ.

Solution 11-F For the first identity, observe the following manipulation:

〈x, Sq(a) ∩ Sq(β)〉 = 〈x ∪ Sq(a), Sq(β)〉 = 〈S̄q(x ∪ Sq(a)), β〉 =

〈S̄q(x) ∪ a, β〉 = 〈S̄q(x), a ∩ β〉 = 〈x, Sq(a ∩ β)〉

Since this manipulation is valid for any x ∈ H∗(X), we must have that Sq(a) ∩ Sq(β) = Sq(a ∩ β). For

the second identity, observe that we can use the formula u′′ =
∑

i(−1)dimbibi × b#
i as so:

Sq(u′′/β) =
∑
i

(−1)dimbiSq(bi)〈b#
i , β〉 =

∑
i

(−1)dimbiSq(bi)〈Sq(b#
i ), Sq(β)〉

=
∑
i

(−1)dimbi [Sq(bi)× Sq(b#
i )]/Sq(β)〉 = Sq(u′′)/Sq(β)

The last formulae Sq(µ) = w̄ ∩ µ and S̄q(µ) = v ∩ µ follow immediately from the definition of v on p. 132

and 11-E.

Problem 12-A Prove that a vector bundle ξ over a CW-complex is orientable if and only if w1(ξ) = 0.

Solution 12-A The forward direction is done on p. 146. Conversely, an orientation on ξ is evidently

equivalent to a global section of the Z/2 bundle of connected components of V nξ (two n-frames are in the

same component if they are related by an orientation preserving transformation), which is just a global

section of {π0V
nξ}. But the existence of such a section is precisely measured by the vanishing of all of the

obstruction classes H i(B, {πi−1(E)}) where E → B is the Z/2 fiber bundle of components of V nξ. The

only non-zero obstruction is just H1(B, {π0V
nξ}) = o1(ξ) = w1(ξ) = 0. The fact that w1 = o1 follows

from the discussion on p.143.

Problem 12-B Using the Wu formula 11.14 and the fact that π2V2(R3) ' π2SO(3) = 0, prove Stiefel’s

theorem that every compact orientable 3-manifold is parallelizable.

Solution 12-B Let M be an orientable 3-fold with tangent bundle τ . Via the computations of w(τ)

given in Solution 11-D and the assumption that w1(τ) = 0 (via the orientability), we know that w(τ) = 1.

Thus oi(τ) = 0 by the results of p. 143, since everything is determined by wi(τ) in this case. Now observe
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that τ is parallelizable if and only if we can find a global section of the Stiefel bundle V3τ . This occurs if

and only if all of the obstructions oi(V3τ) ∈ H i(M ; {πi−1V3τ}) all vanish.

Now observe that V3R3 deformation retracts to the orthogonal Stiefel manifold V o
3 R3 via a Graham-

Schmidt process. This, in turn, is simply a Z/2 bundle over V o
2 R3 (since every orthogonal n− 1-frame has

only two possible extensions to an n-frame by adding the unique (up to sign) perpendicular unit vector).

V o
2 R3 is, in turn, a deformation retract of V2R3. This implies that πiV3τ) ' πiV2τ for i > 0 via the

fiber-wise inclusion taking a 2-frame to the unique oriented 3-frame extension of the 2-frame by a unit

vector. Thus the obstructions oi(V3τ) = oi(V2τ) via this isomorphism for i > 1.

With this information, we can show that all of the obstructions vanish. First, via the discussion on

p. 140 we know that we can start with i = 1. By our previous discussion, the obstruction to extending

a section over the 0-cells in M to a section over the 1-cells is o1(V3τ) = o1(τ) = 0 ∈ H1(M ; {π0V3τ}).
By the homotopy group isomorphism given above, we also have o2(V3τ) = o2(V2τ) = o2(τ) = w2(τ) = 0,

via the string of isomorphisms and arguments given above. Finally, H3(M ; {π2V3τ}) = H3(M ; 0) since

π2V3τ = π2V2τ = π2SO(3) = 0. The higher obstructions vanish by the dimension of M . Thus all

obstructions vanish, a global section exists and τ is trivial.

Problem 12-C Use Corollary 12.3 to give another proof that H∗(P n;Z/2) is as described in Section 4.3.

Solution 12-C We have a long exact sequence · · · → H i−1(P n) → H i(P n) → H i(Sn) → H i(P n) →
H i+1(P n)→ . . . . The initial part of the sequence reads 0→ H0(P n)→ H0(Sn)→ H0(P n)→ H1(P n)→
. . . . Since H0(Sn) ' H0(P n) ' Z/2, since both spaces are connected, and the second map in 0 →
H0(P n)→ H0(Sn) is injective, we can conclude that the first map in H0(Sn)→ H0(P n)→ H1(P n)→ . . .

is 0 and thus that H0(P n) ' H1(P n). By the same reasoning, and using the fact that H i(Sn) = 0

for all 0 < i < n, we can conclude that H i(P n) ' H i+1(P n) for i + 1 < n. Furthermore H i(P n) = 0

for i > n obviously, by dimensionality. To get Hn(P n) just observe the last part of the exact sequence

Hn−1(P n−1) → Hn(P n) → Hn(Sn) → Hn(P n) → Hn+1(P n) = 0. Since Hn(Sn) = Z/2, and exactness at

Hn(P n) implies Hn(Sn)→ Hn(P n) is surjective, Hn(P n) = Z/2 as well. Exact sequences are crazy!

Problem 12-D Show that G̃n(Rn+k) is a smooth, compact, orientable manifold of dimension nk. Show

that the correspondence which maps a plane with oriented basis b1, . . . , bn to ∧ibi/|∧i bi|) embeds G̃n(Rn+k)

smoothly in ∧nRn+k).

Solution 12-D We can boot strap on the fact that we already know that Gn(Rn+k) is a manifold. In

particular, we have the exact sequence of Lie groups 0→ SOn → On → Z/2→ 0. Via the quotient space

construction of Gk(Rn+k) and G̃n(Rn+k), we thus have the quotient map V o
k Rn+k q−→ Gn(Rn+k) factorizing

as V o
k Rn+k qo−→ G̃n(Rn+k)

q̃−→ Gn(Rn+k) where qo is the quotient by the SOn group action and q̃ is the

quotient by the residual Z/2 action.

The q̃ map is given by a free finite group action of Z/2, so the map is a topological double cover map.

Hausdorff-ness is preserved; given 2 points x 6= y ∈ G̃n(Rn+k), if q̃(x) = q̃(y), then any simply connected

open set U of q(x) can be lifted to a disconnected open set q̃−1(U) with two components containing x and
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y respectively. If q(x) 6= q(y), it suffices to take disjoint neighborhoods of q(x) and q(y) then lift them.

Compactness of G̃n(Rn+k) is given by the fact that it is the quotient of a compact space. It’s smooth

structure can be given by taking any atlas of simply connected opens Uα on Gn(Rn+k) and lifting it to

q−1Uα (and splitting each inverse image into its two components). Then each open in the resulting atlas

is homeomorphic to an open in Rnk and the transition functions are smooth since any intersection of two

such neighborhoods is homeomorphic to its image intersection in Gn(Rn+k). The dimension of G̃n(Rnk)

then follows from the local homeomorphism property of the double cover.

To see orientability, observe that via the pullback through q̃ we have the isomorphism τ ' Hom(γ̃n, (γ̃n)⊥)

' γ̃n⊗ (γ̃n)⊥. Via the tensor product formula for w(γ̃n⊗ (γ̃n)⊥), the fact that w((γ̃n)⊥) = w̄(γ̃n), the fact

that w̄1 = w1 in general and the fact that w1(γ̃n) = 0 by the results of this chapter, we can conclude that

w(γ̃n ⊗ (γ̃n)⊥) is a polynomial in cohomology classes of degree 2 and higher, so it can’t have a non-zero

w1 term, so Gn(Rn+k) is orientable. We could also just argue directly from the definition of G̃n(Rn+k) to

give it a natural orientation, but this is kind of a neat argument.

At last, to see that the map G̃n(Rn+k) → ∧nRn+k defined above is indeed a smooth embedding, we

observe the following. First, we observe that it is smooth n VnRn+k since it is a composition of smooth

well-defined functions. The wedge product is polynomial in bi and the norm is smooth away from 0.

Next observe that this map is equivariant under the GLon(n) (oriented general linear) action. Indeed, an

oriented linear recombination M of the bi changed both the top and bottom of the quotient expression by

a multiplicative factor of | detM | = detM (since M is oriented). Finally, injectivity is provided by the fact

that if ∧ibi = λ∧i ci for non-zero λ then cj ∧ (∧ibi) = 0 for all j, so all cj are in the span of bi implying that

their span is the same plane. Furthermore, if λ > 0 then the bases bi and ci are related by an orientation

preserving transformation, because otherwise we would have ∧ibi = detM ∧i ci for detM < 0.

Problem 13-A Show that a complex structure J : E(ξ) → E(ξ) always satisfies the local triviality

condition.

Solution 13-A Observe that a 2n × 2n matrix J satisfying J2 = −Id is conjugate to the usual J0 =(
0 Id

−Id 0

)
via a real change of coordinates. Indeed, since the characteristic polynomial of both J and

J0 are both real with eigenvalues i and −i (since J2 = −1 implies that J has eigenvalues ±i) the eigenvalues

of both must be ±i in conjugate pairs (thus, n i’s and n −i’s). If you then examine the complex Jordan

normal form of both matrices, you see that the condition J2 = J2
0 = −Id implies that the Jordan normal

forms are fully diagonal, and thus complex J is diagonalizable as is J0, and they have the same Jordan

normal form. Thus they are complex conjugate, and therefore real conjugate (since conjugacy between

two real matrices is the same taken over R or C).

Thus there is a change of coordinates sending J to J0. Now suppose that we are given a complex

structure J on a 2n-plane bundle ξ. At any point p we can pick a neighborhood U with ξ|U ' ε2n and

E|U ' U × R2n i.e with trivial restriction. Thus near the point p we can treat J as a field of matrices

Jp : R2n → R2n. We know that at each fiber ξp we can pick a change of coordinates Tp so that TpJpT
−1
p = J0.

Furthermore, such a choice can be made smoothly, since the 2d “eigenspaces” on which Jp takes the form
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(
0 1

−1 0

)
vary smoothly with p. Such a smooth field of coordinate transformations Tp thus yields our

desired trivialization.

Problem 13-B If M is a complex manifold, show that DM is complex. Similar, show that if f : M → N

is holomorphic then so is Df : DM → DN .

Solution 13-B M is complex with complex structure J if there exists a local trivialization φ : U →
V ⊂ Cn around any point p such that J0Dφ = DφJ . Since D(DM) = H(DM) ⊕ V (DM), a horizontal

and vertical component (the kernel and coimage of the bundle projection D(DM) → π∗DM). There

is a natural bundle isomorphism v : π∗DM → V (DM) given by vY (X)f = d
dt t=0

f(x, Y + tX) and a

natural isomorphism H(DM) → π∗DM given by the inverse of π∗ : H(DM) → DM . Thus D(DM) '
π∗DM ⊕ π∗DM via the two natural isomorphisms listed above and we can define a complex structure on

J as J̃ = (π∗)−1Jπ∗ ⊕ vJv−1. In coordinates (x1, . . . , x2n, ξ1, . . . , ξ2n) on a double tangent fiber this is just

expressing J̃ as J ⊕ J .

Now, in the same coordinates we see that the map Dφ : DU → DV splits as (p, ν) 7→ (φ(p), Dφpν) and

has differential D(Dφ) =

(
Dφp 0

D2φpν Dφp

)
. We can verify J̃0D(Dφ) = D(Dφ)J0 by observing:

(
J0 0

0 J0

)(
Dφp 0

D2φpν Dφp

)
=

(
J0Dφp 0

J0D
2φpν J0Dφp

)
=

(
Dφp 0

D2φpν Dφp

)(
J 0

0 J

)

Problem 13-C If M is a compact complex manifold, show that every holomorphic map f : M → C is

constant on connected components.

Solution 13-C On each component Mi of M , f takes a maximum modulus, say f(pi) at some point pi.

We show that the set of points in Mi with f(p) = f(pi) is open, closed, and non-empty. It is non-empty by

construction. It is closed because f is continuous. It is open by the maximum modulus principle. Any p

with f(p) = f(pi) in Mi has a neighborhood U biholomorphic to U ⊂ C. Then f is a holomorphic function

obtaining a maximum in the interior of its domain, making it constant. An open and closed component of

a connected manifold is the whole thing. So f is constant on each Mi. This can be seen as a consequence

of de Rham cohomology as well.

Problem 13-D Show that the projective space CP n can be given the structure of a complex manifold.

More generally show that the space Gk(Cn) is a complex manifold of complex dimension k(n− k).

Solution 13-D It suffices to illustrate coordinate charts with holomorphic transition maps. This is a very

standard exercise in algebraic geometry. In particular, you can put projective coordinates [x0, . . . , xn] on

CP n (where [x0, . . . , xn] = λ[x0, . . . , xn] for all λ 6= 0) then use as charts the open sets Ui with [x0, . . . , xn]

all satisfying xi 6= 0 and chart maps [x0, . . . , xn] 7→ 1
xi

(x0, . . . , xi−1, xi+1, . . . , xn). The transition maps are

easily seen to be non-singular rational functions, so they are holomorphic.
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More generally, one can use exactly the same approach as in Problem 5-A (see the solution above).

The same coordinate patches and transition functions work again when defined over C because all of

the smooth transition functions in the end were rational and non-singular, so their complex counterparts

are holomorphic. The complex dimension counting also gives k(n − k) as desired because the matrix

coordinate patches give a local bihilomorphism to the space of k× (n− k) matrices over C. Hausdorffness

and compactness come directly from the quotient description of the Grassmanian as VkCn/GLk(C) via the

same arguments as in Section 5.

Problem 13-E Show that γ1
n does not possess any non-zero global holomorphic sections. Show however

that the dual HomC(γ1
n,C) contains atleast n+ 1 independent holomorphic sections.

Solution 13-E We characterize the tautological bundle γ1
n as the sub-bundle of εn via:

{([x0, . . . , xn], (v0, . . . , vn)) ∈ CP n × Cn+1|(v0, . . . , vn) = λ(x0, . . . , xn), λ ∈ C}

Local trivializations are given over the Ui charts mentioned above via:

φi : γ1
n|Ui → Vi × C; ([x0, . . . , xn], (v0, . . . , vn)) 7→ (

1

xi
(x0, . . . , xi−1, xi+1, . . . , xn), vi)

Note that φ−ii is given by:

((x̂0, . . . , x̂i−1, x̂i+1, . . . , x̂n), v̂i) 7→ ([x̂0, . . . , x̂i−1, 1, x̂i+1, . . . , x̂n], v̂i(x̂0, . . . , x̂i−1, 1, x̂i+1, . . . , x̂n))

Therefore the transition functions are:

((x̂0, . . . , x̂i−1, x̂i+1, . . . , x̂n), v̂i) 7→ (
1

x̂j
(x̂0, . . . , x̂i−1, 1, x̂i+1, . . . , x̂j−1, x̂j+1, . . . , x̂n), v̂ix̂j)

However, in order for a section v : CP n → γ1
n to be holomorphic, it must be non-singular in each coordinate

patch. If we assume that v̂i is the a holomorphic function of x̂k for k 6= i, then under the transition function

change of coordinates φjφ
−1
i , v̂i becomes 1

x̂j
v̂i(x̂0/x̂j, . . . , 1/x̂j, . . . , x̂n/x̂j). In particular, such a function is

not holomorphic if v̂i is holomorphic (which is obvious from a Taylor expansion).

The dual picture is much less bad. By duality, the transition functions for Hom(γ1
n,C) must be:

((x̂0, . . . , x̂i−1, x̂i+1, . . . , x̂n), v̂i) 7→ (
1

x̂j
(x̂0, . . . , x̂i−1, 1, x̂i+1, . . . , x̂j−1, x̂j+1, . . . , x̂n),

v̂i
x̂j

)

So in particular, a holomorphic v̂i transforms to x̂j v̂i(x̂0/x̂j, . . . , 1/x̂j, . . . , x̂j−1/x̂j, x̂j+1/x̂j, . . . , x̂n/x̂j).

Thus we can define sections si as 1 on Ui and x̂i everywhere else. It’s easy to check that this defini-

tion is consistent using the transition law given above. Each of these n+ 1 defined sections is holomorphic

on the charts and independent since they are all polynomially independent on each chart.
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Problem 13-F Show that the complexification Hom(τM ,R)⊗ C ' HomR(τM ,C) is a complex 2n-plane

bundle which splits canonically as a Whitney sum HomC(τM ,C) ⊕ HomC(τM ,C). If U is an open set

with coordinate functions z1, . . . , zn : U → C show that the total differentials dzi and dz̄i for bases for

HomC(τM ,C) and HomC(τM ,C) respectively. Writing df = ∂f + ∂̄f =
∑

i
∂f
∂zi
dzi + ∂f

∂z̄i
dz̄i, show that

∂f
∂z̄j

= 1
2
( ∂f
∂xj

+ i ∂f
∂yj

). Show that the Cauchy Riemann equations are ∂f
∂z̄j

= 0.

Solution 13-F Since J : τM → τM obeys J2 = −Id, J induces a bundle map J∗ : HomR(τM ,C) →
HomR(τM ,C) which likewise has J2

∗ = −Id. Since each fiber of HomR(τM ,C) is a complex vector-space,

the discussion given in 13-A shows that it must split into a Whitney sum of a 2n-dimensional i-eigenspace

HomC(τM ,C) and a 2n-dimensional −i-eigenspace HomC(τM ,C). The covectors in these spaces satisfy

f(Jv) = if(v) and f̄(Jv) = −if(v) respectively. Furthermore, they have natural complex structures

induced by J , that is J∗f = fJ = if and J∗f̄ = −f̄J = if̄ which are compatible with multiplication by

i. So HomC(τM ,C) and ¯HomC(τM ,C) are n dimensional complex vector bundles with structure J∗ (which

are conjugate).

If zi are coordinate functions z : U → Cn, then by definition we have iDz = DzJ which coordinate-wise

reads idzi = dziJ . dzi ∈ HomR(τM ,C) automatically, so these are local sections of HomC(τM ,C). Since Dz

is non-degenertae, they are independent. So dzi is a basis of HomC(τM ,C) at each fiber. z̄ is a holomorphic

function to C̄ so −iD = DzJ and by all the same arguments dz̄i are a basis of HomC(τM ,C).

For the last part, observe that ∂f
∂zi

(dxi + idyi) + ∂f
∂z̄i

(dxi− idyi) = ∂f
∂xi
dxi + ∂f

∂yi
dyi implies ∂f

∂xi
= ∂f

∂zi
+ ∂f

∂z̄i

and ∂f
∂yi

= i ∂f
∂zi
− i ∂f

∂z̄i
. Solving this linear system gives the above formula for ∂f

∂z̄i
. Plugging in f = u + iv

we see that ∂f
∂z̄i

= 0 is ∂u
∂xj

+ i ∂v
∂xj

+ i ∂u
∂yj
− ∂v

∂yj
= 0 which is precisely the Cauchy Riemann equations if we

separate the real and imaginary parts.

Problem 13-G Show that the complex vector space spanned by the differential operators ∂
∂zi

at z is

canonically isomorphic to the tangent space DUz.

Solution 13-G

Problem 14-A Use Lemma 14.9 to give another proof that the tangent bundle of CP 1 is not isomorphic

to its conjugate bundle.

Solution 14-A An isomorphism φ : τ → τ̄ would yield −c1(τ) = c1(τ̄) = φ̄∗c1(τ̄) = c1(τ) (since the

bundle map would be the identity on the underlying manifold). But since c1 is an integer cohomology

class in CP 1 (which has H∗(CP 1) ' Z[c1]) this isn’t possible unless c1(τ) = 0. However, we know that

c1(τ) = e(τ) and 〈e(τ), [CP 1]〉 = χ(CP 1) 6= 0. So indeed this isn’t possible.

Problem 14-B Using Property 9.5, prove inductively that the coefficient homomorphism H i(B,Z) →
H i(B,Z/2) maps the total Chern class c(ω) to the total Stiefel Whitney class w(ωR). In particular show

that the odd Stiefel-Whitney classes of ωR.
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Solution 14-B We proceed by induction. This is clearly true for n = 1 (a complex line bundle) by 9.5

and the fact that c1(ξ) = e(ξ) and c0(ξ) = 1. Now induction. If ξ is a complex n-bundle, then by the same

argument as in the line case, cn(ξ) mod 2 = e(ξ). Now consider the map ρ̄ : E0 → B. This is covered by

a bundle map ρ : ξ0⊕ ε1 = ρ̄∗ξ → ξ. Indeed, since ξ0 is composed of pairs (x, v) with x · v = 0 ∈ ξπ(x) (with

a Hermitian metric), its complement (ξ0)⊥ ⊂ π∗ξ can be identified as the line bundle (x, λx). This bundle

clearly admits a global section, which is (x, x), so it is trivial.

Thus we have ρ̄∗wi(ξ) = wi(ξ0⊕ε1) = wi(ξ0) and by the construction of the Chern classes ρ̄∗ci(ξ) = ci(ξ0)

for i < n. Furthermore, the map ρ̄∗ : H i(B)→ H i(E0) is an isomorphism for i < n (with either Z or Z/2)

using, for instance, the Gysin sequence. So we have by our induction hypothesis:

w2i(ξ) = (ρ̄∗)−1w2i(ξ0) = (ρ̄∗)−1ci(ξ0) mod 2 = ci(ξ) mod 2

For odd i < n, the Stiefel Whitney classes wi(ξ0) of ξ0 are 0, thus so are wi(ξ). Thus w(ξ) = c(ξ) mod 2

for an n-bundle and our induction is complete.

Problem 14-C Let Vn−q(Cn) denote the complex Stiefel manifold consisting of all complex (n−q)-frames

in Cn, where 0 ≤ q < n. According to [Steerod], this manifold is 2q-connected and π2q+1Vn−q(Cn) ' Z.

Given a complex n-plane bundle ω over a CW-complex B with typical fiver F , construct an associated

bundle Vn−q(ω) over B with typical fiber Vn−q(F ). Show that the primary obstruction to the existence of

a cross-section of Vn−q(ω) is a cohomology class in H2q+2(B, {π2q+1Vn−q(F )) which can be identified with

the Chern class cq+1(ω).

Solution 14-C It’s very surprising to me that Milnor is asking the reader to prove this given that he

hasn’t really discussed obstruction theory enough. I’ll get back to this when I look at Steenrod.

Problem 14-D In analogy with Section 6, construct a cell subdivision for the complex Grassman man-

ifold Gn(C∞) with one cell of dimension 2k corresponding to each partition of k integers into at most n

integers. Show that the Chern class ck(γ
n) corresponds to the coccyx which assigns ±1 to the Schubert

cell indexed by the partition 1, . . . , 1 of k and zero to all the other cells.

Solution 14-D Let’s start by defining these cells. Consider C∞ with the natural flag C0 ⊂ C1 ⊂ C2 ⊂
. . . . Given any X ∈ Gn(C∞) we can define the Schubert symbol σ = (σ1, . . . , σn) exactly as in the real

case, with dim(X ∩ Cσi−1) + 1 = dim(X ∩ Cσi). Here we mean complex dimension, of course. The cell

e(σ) is then defined as the set of all X with Schubert symbol σ. We now show that each of these cells is

in fact homeomorphic to a ball of dimension 2
∑

i σi− i. To see this, we can re-perform proofs of Lemmas

6.2 and 6.3 on p. 76-79 in this context.

Lemma 6.2C: Each n-plane X ∈ e(σ) has a unique orthonormal basis in (x1, . . . , xn) ∈
∏n

i=1H(σi)

where H(k) = {v ∈ Ck − Ck−1|vk ∈ R+}.

Proof: By the definition of σi we see that the set of unit vectors in X ∩ H(σ1) is of the form S =

{λe|e ∈ H(σ1) ∩X,λ ∈ C, |λ| = |e| = 1}. There is a unique element in this set with real first component,
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i.e
ēσ1
|eσ1 |

e (not that this is well-defined always because eσ1 6= 0). This must be xσ1 . Inductively, we see that

the condition that 〈xi, xj〉 = 0 for all i < j, xj ∈ H(σj) ∩X and |xj| = 1 again restricts xj to a set of the

form S. Then the same argument shows that the condition on the first component uniquely determines

xj. �

Now let e′(σ) = V 0
n (C∞) ∩

∏n
i=1H(σi) and ē′(σ) be its closure V o

n (C∞) ∩
∏n

i=1 H̄(σi).

Lemma 6.3C: ē′(σ) is topologically a closed cell of dimension d(σ) = 2
∑

i σi − i. Furthermore, q :

V o
n (C∞)→ Gn(C∞) maps e′(σ) onto e(σ) homomorphically.

Proof: As with the proof of 6.3R in the book, we will prove that ē′(σ) is a closed cell of the right

dimension with induction on n. If n = 1, then ē′(σ) is the set of all vectors x1 = (x11, . . . , x1σ1 , 0, 0, . . . )

with |x|2 = 1 and x1σ1 ∈ R+ ∪ 0. This is equivalent to the upper half sphere in 2σ1 − 1 dimensions, which

is 2σ1 − 2 dimensional. So our base case is covered.

Now the induction. Let bi be the standard basis of C∞, and observe that bi ∈ Hσi obviously. Consider

the cell σ = (σ1, . . . , σn+1). By the induction assumption we know that σ′ = (σ1, . . . , σn) is a 2
∑n

i=1 σi− i
dimensional closed cell. Now let D be defined by:

D := {v ∈ H̄σn||v|2 = 1, vσn ∈ R+ ∪ 0, 〈bi, v〉 = 0 for 1 ≤ i ≤ n}

Evidently, by the argument from before and the dimensional restriction of the 〈bi, v〉 conditions, D is

2(σn+1 − 1)− 2n dimensional.

We will now construct a homeomorphism ē′(σ′)×D → ē′(σ). For this, observe that the map (u, v, x) 7→
T (u, v)x is still well-defined, with all of the properties that it had before. In particular, the formula on p.

77 still makes sense, Property 1 (continuity) holds and Property 2 holds in the form T (u, v)x ≡ x mod Ck

if u, v ∈ Ck. We can thus define T (x1, . . . , xn) as the map T (bn, xn) ◦ T (bn−1, xn−1) ◦ · · · ◦ T (b1, x1). All of

the properties of this T are as stated on p. 77 (they’re all algebraic orthogonality properties, so they work

over C as well). So we can define our homeomorphism analogously:

f((x1, . . . , xn), u) = (x1, . . . , xn, T (x1, . . . , xn)u)

And we again have 〈xi, Tu〉 = 〈Tbi, Tu〉 = 〈bi, u〉 = 0, |Tu| = |u| = 1 and Tu = u mod Cσn implying

[Tu]σn ∈ R+ ∪ 0 and so f((x1, . . . , xn), u) ∈ ē′(σ). The inverse is of course given by (x1, . . . , xn+1) 7→
(x1, . . . , xn, T

−1(x1, . . . , xn)xn+1) which has formula as on p. 78. As before, a similar induction argument

would cover the case where we replace ē′(σ′) and ē′(σ) with their unbarred interior counterparts and D

with its interior. We simply replace every R+ ∪ 0 with R+. The same dimension counting and elementary

topology arguments used on the bottom of p. 78 and top of p. 79 suffice to show that q is a homeomorphism

(our argument for 6.2C showed that it was bijective). �

The result described in this problem now follows exactly from the counting argument used in the real

case to finish up Section 6. To calculate the explicit representative of ci(γ
n) as a cocycle, we can replicate

the arguments of Problems 6-B, 6-C and 7-A. We won’t even repeat the arguments for 6-B and 6-C,

because they are exactly the same. The fact that the inclusion map i∗ : Hp(Gn(C∞)) → Hp(Gn(Cn+k))

is an isomorphism for p < k follows from a counting argument on the cells, as before. Furthermore, the

map X 7→ C ⊕X gives an embedding Gn(Cm) → Gn+1(Cm+1) covered by a bundle map ε1 ⊕ γn(Cm) →
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γn+1(Cm+1) and the fact that r-cells map to r-cells corresponding to the same partition is an algebraic fact

that doesn’t correspond to working over C or R.

Last, we come to the repetition of 7-A. Here we will literally repeat the argument given in Solution

7-A above. By the isomorphism Hk(Gn(C∞)) ' Hk(Gn(Cn+k)) via the inclusion cell map, we may reduce

to the wk(γ
n(Cn+k)). Furthermore, the map f : ε1 ⊕ γn(Cm) → γn+1(Cm+1) takes any Schubert cell e(σ)

corresponding to a partition σ to the cell of the same partition (note that we are labelling by partitions

here). Iterative composition gives us a map fj : εj⊕γn(Cm)→ γn+j(Cm+j) which pulls back Chern classes,

so f ∗j ci(γ
n+j(Cm+j)) = ci(γ

n(Cm)).

But now observe that f ∗j ck(γ
n(Cn+k)) = ck(γ

n−j(Cn+k−j)) = 0 if k > n− j by dimensionality. But the

cells in the image of the map Gn−j(Cn+k−j)→ Gn(Cn+k) are the cells corresponding to partition of k into

≤ n − j < k integers each ≤ k, so ck(γ
n(Cn+k)) must vanish on all cells corresponding to partitions of σ

into fewer than k integers. There is only one cell that doesn’t satisfy this condition, the cell corresponding

to the partition of k into k 1’s. So ck(γ
n) is some multiple of the cocycle dual to this cell.

By algebraic independence, we must have ck(γ
n) = ±1(1, . . . , 1)∗. We reason as so. If it were not, then

we would still have p(c1, . . . , cn) = (1, . . . , 1)∗ (with k 1’s) for some polynomial p with integer coefficients.

If p contains a non-trivial dependence on cj for j 6= k, this would give a non-trivial relation between the ci
which cannot happen. So this must be of the form λc1 = (1, . . . , 1)∗ But for integer λ that’s only possible

if λ = ±1. This concludes the proof.

Problem 14-E In analogy with the construction of Chern classes, show that it is possible to define the

Stiefel-Whitney classes of a real n-plane bundle inductively by the formula wi(ξ) = π∗0wi(ξ0) for i < n.

Here the top Stiefel-Whitney class wn(ξ) must be constructed by the procedure of Section 9, as a mod 2

analogy of the Euler class.

Solution 14-E First we define the Z/2 analogue of the Euler class of an n-plane bundle ξ with total

space E, which we will denote as f(ξ), as the image of the Thom class u ∈ Hn(E,E0;Z/2) (which is defined

without the orientation in the Z/2 case) via the maps H∗(E,E0;Z/2)
i∗−→ H∗(E;Z/2)

(π∗)−1

−−−−→ H∗(B;Z/2)

taking u 7→ u|E 7→ (π∗)−1(u|E) =: f(ξ). Then we can define the Stiefel-Whitney classes recursively as

wn(ξ) = f(ξ) and wi(ξ) = (π∗0)−1(wi(ξ
⊥)) if i < n. Here ξ⊥ is defined as the perpendicular sub-bundle in

π∗0ξ ' ε1 ⊕ ξ⊥ to the trivial bundle given by pairs (x, λx) in π∗ξ.

To show that this is well-defined, we use the following fibration long exact sequence for cohomology

(with Z/2 coefficients implicit). Assume without loss of generality that B is path connected. Then we

have:

0→ H0(B)→ H0(E0)→ · · · → H i(B)
π∗
0−→ H i(E0)

res∗−−→ H i(F0)→ · · · → Hn−1(E0)→ Hn−1(F0)→ Hn(B)

This shows that π∗0 is an isomorphism H i(B,Z/2) → H i(E0,Z/2) for i < n − 1, so the S-W classes are

well-defined for this range of i (assuming inductively that they are well-defined for ξ⊥). For i = n − 1

(the only other case) the exact sequence above shows that Hn−1(B,Z/2) → Hn−1(E0,Z/2) is injective.

To show that f(ξ⊥) = wn−1(ξ⊥) is in the image of π∗0, it suffices by exactness to show that the restriction

morphism Hn−1(E0)→ Hn−1(F0) sends f(ξ⊥) to 0. But note that the inclusion i : F0 → E0 is homotopy
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equivalent to the inclusion Sn−1 → E0 at a fiber, and that this inclusion is covered by a bundle map

εn = ε1 ⊕ τ(Sn−1)→ π∗0ξ ' ε1 ⊕ ξ⊥ which is compatible with the direct sum decomposition. In particular,

by the naturally of the image of f(ξ⊥) under the restriction map is precisely f(τ(Sn−1) (under the homotopy

equivalence F0 ' Sn−1).

So it suffices to show that this vanishes. But Hn(Sn−1) is 1-dimensional so it suffices to show that

〈f(τ(Sn−1)), [M ]〉 ∈ Z/2 is 0. And since τ is orientable, f(τ) = e(τ) mod 2 and 〈f(τ(Sn−1)), [M ]〉 =

〈e(τ), [M ]〉 mod 2 = χ(M) mod 2. Now simply appreciate that χ(Sn−1) is either 0 or 2. So the latter

expression vanishes. Thus π∗0 has wn−1(ξ⊥) in its image and our definition gives a well-defined set of

cohomology classes.

Now we prove the axioms of S-W classes using the above formulation.

(1) w0(ξ) = 1 is clear from the definition (since each (π∗0) is a ring map so 1 goes to 1 in H0). Also by

construction wi(ξ) = 0 for i > n when ξ is an n-plane bundle.

(2) Naturality: If f̄ : X → Y is covered by a bundle map f : ξ → η then f̄ ∗wi(η) = wi(ξ). Proof:

Induction on n, as in Lemma 14.2. The unoriented Euler class is natural (discussed in Sections 6 and 9) so

f ∗wn(η) = wn(ξ). Furthermore, by the induction hypothesis f0 : E0 → E ′0 (which is covered by an induced

map f0 : ξ⊥ → η⊥ with the correct choice of metric on both sides, or by the metric-less description of ξ⊥

and η⊥) so f ∗0wi(η
⊥) = wi(ξ). Then since f0π

′
0 = π0f̄ (where π0 and π′0 are the projections for ξ and η

respectively) we have that f̄ ∗wi(η) = (π∗0)−1f ∗0 (π′0)∗wi(η) = wi(ξ).

(3) Whitney Product Theorem: This follows from the exact same argument as in the proof of the sum

formula for Chern classes on p. 164-167 in the book, and indeed as in the tensor product formula argument

in Problem 7-C. Namely, by using the fact that the Whitney sum of two bundles ξm and ηn can always be

mapped into the bundle π∗1γ
m⊕π∗2γn over Gm×Gn and the fact that H∗(Gm×Gn) = H∗(Gm)⊗H∗(Gn) =

Z/2[w1(γm)× 1, . . . , wm(γm)× 1, w1(γn), . . . , 1× wn(γn)], we know that:

w(π∗1γ
m ⊕ π∗2γn) = pm,n(w1(γm)× 1, . . . , wm(γm)× 1, w1(γn), . . . , 1× wn(γn))

To prove the sum formula it thus suffices to prove it for the bundles π∗1γ
m and π∗2γ

n. This can be done

inductively (as for the Chern classes), precisely as in p. 166 and 167. The only difference if that you have

to prove the triviality of the mod 2 Euler class for a bundle ξ ⊕ ε1, for which the proof on p. 97 goes

through completely unchanged with Z/2 coefficients.

(4) For the last part, just observe that φ−1(u ∪ u) = (π∗0)−1(u|E) (that is, without referring to u ∪ u
as Sqnu, the formulae agree). Thus the proof of w1(γ1

1) 6= 0 on p. 93 is the same. Namely, if E is

the total space of γ1
1 (the Mobius strip), we argue by excision that H∗(P 2, D2) ' H∗(E,E0) and since

H1(P 2, D2) ' H1(P 2) via the restriction H∗(P 2, D2) → H∗(P 2) we have a map H∗(E,E0) → H∗(P 2)

sending the fundamental class u to the non-zero generator of H∗(P 2). a ∪ a 6= 0 by any of our proofs of

the cohomology of P n, so this proves that φ−1(u ∪ u) = w1(γ1
1) 6= 0 (since φ is an isomorphism).

Problem 15-A Using Problem 14-B prove that the mod 2 reduction of the Pontrjagin class pi(ξ) is equal

to the square of the Stiefel-Whitney class w2i(ξ).
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Solution 15-A This is a quick calculation.

pi(ξ) mod 2 = c2i(ξ ⊗ C) mod 2 = w4i(ξ ⊕ ξ) =
∑

k+j=4i

wj(ξ) ∪ wk(ξ) = w2i(ξ)
2

The last equality is because every other cup product in the sum expression appears twice, and thus cancels

mod 2.

Problem 15-B Show that H∗(Gn(R∞)) is a polynomial ring over Λ generated by the Pontrjagin classes

p1(γn), . . . , pbn/2c(γ
n). More generally, for any 2-fold covering space X̃ → X with covering transformation

t : X̃ → X̃, show that H∗(X,Λ) can be identified with the fixed point set of the involution t∗ of H∗(X̃,Λ).

Solution 15-B We prove a more general statement, for any covering space X̃ → X with finite deck

transformation group G. In such a situation, any map k simplex σ : ∆k → B has exactly |G| lifts

σf : ∆k → X̃ to the cover π : X̃ → X of B with the property that πσg = σ. These lifts are exchanged by

the action of g ∈ G on the fibers. By examining the construction of the boundary map ∂ and the action

of G on the simplices, it is clear that g∂σ = ∂gσ.

By the above reasoning, we thus have a chain map π∗ : C∗(X̃,Λ)→ C∗(X,Λ) given by taking a simplex

σ to π ◦ σ. This map can also be viewed as the map σ 7→ [σ] where [σ] is the G orbit of σ (that is, we

can view this as a free-module quotient map). The dual map of cottons π∗ : C∗(X,Λ)→ C∗(X̃,Λ) sends a

cochain s to the cochain s ◦ π. This map is an injection because if s(σ) 6= t(σ) then s(σf ) 6= t(σf ) for σ a

chain, σf any lift and s, t cottons. Any cochain in the image of π∗ is clearly invariant under the pullback

action of the deck transformations G (that is, s ◦ π = s ◦ π ◦ g for any g ∈ G) and any G-invariant cochain

t ∈ C∗(X̃,Λ) is the image of the cochain t′ defined as t′(σ) = t′(σf ) for any chain σ and any lift σf of σ.

This is well-defined precisely due to the G invariance of t. Thus the image of π∗ is exactly the G invariant

cottons.

Now, since the G action is a cochain endomorphism (by g∂σ = ∂gσ on the chain level, and thus also for

the cottons), the map C∗(X,Λ)→ C∗(X̃,Λ) descends to the cohomology as a map H∗(X,Λ)→ H∗(X̃,Λ).

Now we observe the following. First, if [a] ∈ H i(X̃,Λ) is a cohomology class with g[a] = [a] for all g ∈ G,

then 1
|G|
∑

g∈G ga is a G-invariant representative of [a]. Thus the image of H∗(X,Λ) in H∗(X̃,Λ) contains

and is contained in the submodule of G invariant elements of H∗(X̃,Λ), so they are equal. Now we just

have to prove that H∗(X,Λ)→ H∗(X̃,Λ) remains injective. For this, we use the same trick. In particular,

suppose that a and b are two G invariant, closed cochains with [a] = [b] in H∗(X̃,Λ). Then we want to

show that this implies that [a] = [b] in H∗(X,Λ). To show this, it suffices to show that a − b = ∂c for

a, b invariant under G and any c implies we can choose c to be invariant. Indeed, this setup implies that

g∂c = ∂c, so setting c′ = 1
|G|
∑

g∈G gc we have:

a− b = ∂c =
1

|G|
∑
g∈G

g∂c = ∂

(
1

|G|
∑
g∈G

gc

)
= ∂c′

So the map H∗(X,Λ)→ H∗(X̃,Λ) is injective with image equal to the G invariant classes. Thus the first

part of this problem is done.
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As an application, we observe that under the assumption that Λ contains 1/2, we have thatH∗(G̃n(R∞); Λ)

is freely generated by pi(γ̃
n) for i ∈ {1, . . . , bn/2c} when n is odd and additionally e(γ̃n) when n is

even. The naturality of characteristic classes implies that π∗pi(γ
n) = pi(γ̃

n) and π∗e(γn) = e(γ̃n) with

π : G̃n(R∞)→ Gn(R∞) the double cover map (which is covered by a map of the tautological bundles). But

since this map is injective (by the above argument) and H∗(G̃n(R∞),Λ) is generated by the Pontrjagin

classes, this implies that H∗(Gn(R∞),Λ) is also a free polynomial ring over its Pontrjagin classes.

Problem 15-C

Problem 16-A Substituting −ti for x in the identity
∏n

i=1(x + ti) =
∑n

i=0 x
iσn−i and then summing

over i, prove Newton’s formula:
n∑
i=0

(−1)n−iσn−isi = 0

(Here I’m adopting the convention that s0 = n and σ0 = 1). This formula can be used inductively to

compute the polynomial sn(σ1, . . . , σn). Alternatively, taking the logarithm of both sides of the identity∏n
i=1(1 + ti) = 1 +

∑n
i=1 σn, prove Girard’s formula:

(−1)k
sk
k

=
∑

∑
j jij=k

(−1)
∑
j ij

(−1 +
∑

j ij)!∏
j ij!

∏
j

σ
ij
j

Solution 16-A The first part is almost immediate. Namely, sk(t1, . . . , tn) =
∑

i t
k
i . Thus:

n∑
i=0

(−1)n−iσn−isi = (−1)n
n∑
j=1

(
n∑
i=0

(−tj)iσn−i

)
= (−1)n

n∑
j=1

n∏
i=1

(ti − tj) = 0

The last term vanishes because in every summand
∏

j(ti − tj) obviously contains tj − tj = 0. Proving

Girard’s formula, we see that:

∑
k

(−1)k+1

k
sk =

∑
i

∑
k

(−1)k+1

k
tki = log(

∏
i

(1 + ti)) = log(1 +
∑
i

σi) =
∑
m

(−1)m+1

m
(
∑
i

σi)
m

Since sk is a homogeneous degree k polynomial, it must be equal to the sum of the homogeneous order k

components in the Taylor expansion on the right. These are precisely the terms in (
∑

i σi)
m of the form∏n

i=1 σ
ji
i with

∑
i ji = m and

∑
i iji = k. Now observe that the coefficient of this term in (

∑
i σi)

m is m!∏
i ji!

,

the number of ways of dividing a set of m objects into n sets of size ji for i ∈ {1, . . . , n}. This is easy to

prove combinatorially. Thus we have the following expression:

(−1)k+1

k
sk =

∑
∑
i iji=k

(−1)
∑
i ji+1∑

i ji

(
∑

i ji)!∏
i ji!

∏
i

σjii

And we have verified our formula.
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Problem 16-B The Chern character ch(ω) of a complex n-plane bundle ω is defined to be the formal

sum:

n+
∞∑
k=1

sk(c(ω))/k! ∈ H
∏

(B;Q)

Show that the Chern character is characterized by additivity:

ch(ω ⊕ ω′) = ch(ω) + ch(ω′)

together with the property that ch(η1) is equal to the formal power series exp(c1(η1)) for any line bundle

η1. Show that the Chern character is also multiplicative:

ch(ω ⊗ ω′) = ch(ω)ch(ω′)

Solution 16-B Additivity is proven in Corollary 16.3. That is, since sk(c(ω⊕ω′)) = sk(c(ω))+sk(c(ω
′)),

and dim(ω ⊕ ω′) = dim(ω) + dim(ω′), we have:

ch(ω ⊕ ω′) = m+ n+
∞∑
k=1

sk(c(ω ⊕ ω′))/k! = m+ n+
∞∑
k=1

(sk(c(ω)) + sk(c(ω
′)))/k! = ch(ω) + ch(ω′)

Now observe that sk(x) = xk = σ1(x)k over a one variable polynomial ring. So ch(η1) = 1 +
∑∞

k=1
c(η1)k

k!
=

exp(c1(η1)).

Finally, we prove the product formula. As in Problem 7-C, by considering the universal model

Gm(C∞)×Gn(C∞) with the universal tensor product bundle π∗1γ
m⊗π∗2γn and noting that H∗(Gm(C∞)×

Gn(C∞);Z) ' H∗(Gm(C∞)) ⊗ H∗(Gn(C∞);Z) canonically2 we can argue that a universal formula for

sk(c(γ
m
1 )⊗ c(γn2 )) in terms of si(c(γ

m
1 )) and sj(c(γ

n
2 )) exists and that it is unique (otherwise there would be

non-trivial relations between the Chern classes ofGn(C∞)). Furthermore, via the isomorphismH∗((CP∞)n) '
H∗(Gn(C∞)) we can argue that this universal relation must be equal to whatever unique relation exists

for Whitney sums of line bundles (for which (γ1)n over (CP∞)n is the universal model).

If ξm = ⊕iξ1
i and ηn = ⊕jη1

j then assuming c1(ξi ⊗ ηj) = c1(ξi) + c1(ηj) (as in the S-W case) we have:

ch(ξm ⊗ ηn) =
∑
i,j

ch(ξi ⊗ ηj) =
∑
i,j

exp(c1(ξi ⊗ ηj)) =
∑
i,j

exp(c1(ξi) + c1(ηj))

=
∑
i,j

exp(c1(ξi)) exp(c1(ηj)) =
∑
i,j

ch(ξi)ch(ηj) = ch(ξm)ch(ηn)

This gives a universal relation as mentioned above, so this formula must hold in general. Thus we merely

have to prove the formula c1(ξi⊗ηj) = c1(ξi)+c1(ηj). We already know that c1(ξ⊗η) = p1,1(ξ, η). p1,1(x, y)

must be linear and symmetric, so it must be of the form c(x+ y). Furthermore, when y = 0 we must have

p1,1(x, 0) = x because c1(ξ ⊗ ε1) = p1,1(c1(ξ), 0) = c1(ξ). Thus p1,1(x, y) = x+ y.

2There is no torsion here because the complex projective space cohomology vanishes in odd dimensions.
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Problem 16-C If 2i1, . . . , 2ir is a partition of 2k into even integers, show that the 4k-dimensional charac-

teristic class s2i1,...,2ir(c(ω)) of a complex vector bundle is equal to the characteristic class si1,...,i2(p(ωR)) of

its underlying real vector bundle. As examples, show that the 4k-dimensional class s2,...,2(c(ω)) is equal to

pk(ωR) and show that the characteristic number s2n(c)[K2n] of a complex manifold is equal to sn(p)[K2n].

Solution 16-C For partition I = i1, . . . , ir abbreviate 2i1, . . . , 2ir as 2I, for the tuple ~t = (t1, . . . , tr)

abbreviate (t21, . . . , t
2
r) as ~t2 and abbreviate the tuple (σ1(t1, . . . , tn), . . . , σn(t1, . . . , tn)) as σ(~t). Observe

that sI and s2I correspond to the polynomials
∑

σ∈Σr

∏
j t
ij
σ(j) and

∑
σ∈Σr

∏
j t

2ij
σ(j) respectively. In other

words, s2I(~t) = sI(~t
2) and thus s2I(σ(~t)) = sI(σ(~t2)). Now because σi(~t

2) is a symmetric polynomial, it

admits a polynomial expression σi(~t
2) = qi(σ(~t)) in terms of σ(~t). Thus s2I(σ) = sI(q(σ))

Now, if we prove that pi(ωR) = qi(c(ω)) then by the above reasoning, s2I(c(ω)) = sI(q(c(ω))) =

sI(p(ωR)). To see this, observe that by Corollary 15.5, we have
∑

i(−1)ipi(ωR) = (
∑

i(−1)ici(ω))(
∑

i ci(ω)).

Replacing ci(ω) with σi, we see that this expression reads:∑
i

(−1)ipi(ωR) = (
∑
i

(−1)iσi)(
∑
i

σi)) =
∏
j

(1− tj)
∏
j

(1 + tj)

=
∏
j

(1− t2j) =
∑
i

(−1)iσi(~t
2) =

∑
i

(−1)iqi(c(ω))

By counting degrees of the homogeneous summands, this produces the desired result. The applications

are trivial. For the first one, by the above, s2,...,2(c(ω)) = s1,...,1(p(ωR) and since s1,...,1 is by definition∑
σ∈Σn

∏k
j=1 tσ(j), which is evidently the kth symmetric polynomial, we have s2,...,2(c(ω)) = s1,...,1(p(ωR) =

pk(ωR). In the second application, we have s2n(c(ω)) = sn(p(ω)) so 〈s2n(c(ω)), [M ]〉 = 〈sn(c(ω)), [M ]〉 and

these are equal to the characteristic numbers by definition.

Problem 16-D If the complex manifold Kn is complex analytically embedded in Kn+1 with dual coho-

mology class u ∈ H2(Kn+1,Z) show that the total tangential Chern class c(Kn) is equal to the restriction

to Kn of c(Kn+1)/(1 + u). For any cohomology class x ∈ H2n(Kn+1,Z) show that the Kronecker index

〈x|Kn , µ2n〉 is equal to 〈xu, µ2n+2〉. Using these constructions, compute c(Kn) for a non-singular algebraic

hyper surface of degree d inCP n+1 and prove that the characteristic number sn[Kn] is equal to d(n+2−dn).

Solution 16-D First observe that by Theorem 11.3 we have u|Kn = e(ν) with e(ν) the Euler class of the

normal bundle of Kn. Since we have τn+1 = τn ⊕ ν1 for τn the tangent bundle of Kn, τn+1 the tangent

bundle of Kn+1 restricted to τn+1 and ν1 the normal bundle, we can write:

c(τn+1)|Kn = c(τn+1|Kn) = c(τn ⊕ ν1) = c(τn)c(ν1) = c(τ)(1 + e(ν1)) = c(τ)((1 + u)|Kn)

Dividing both sides by (1 + u)|Kn we get the first desired formula. The second formula is an application

of Problem 11-C. In particular, we have:

〈xu, µKn+1〉 = 〈x, u ∩ µKn+1〉 = 〈x, i∗µKn〉 = 〈x|Kn , µKn〉
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For an embedded hyper surface Kn in CP n+1 that is the 0-set of a homogeneous polynomial of degree d,

we have u = da, where a = c1((γ1)v), i.e the first Chern class of O(1) in the Picard group. To see this, we

observe that a homogeneous polynomial of degree d can be viewed as a section of the bundle ((γ1)v)⊗d.

The normal bundle is isomorphic to the restriction of this bundle to Kn, i.e the pullback of ((γ1)v)⊗d

via i : Kn → CP n+1. Thus by our tensor product and dual formulae for the Chern class, we see that

c1(ν) = i∗(−dc1(γ1)) = da|Kn . The more formal way to get this result is through adjunction. Now observe

that by the formulae above we have:

c(Kn) =
(1 + a)n+2

1 + da
|Kn

Furthermore, if we recall that sn(c(ω)) could be expressed in terms of the nth order term in the formal

power series of log(c(ω)), i.e log of the total Chern class, then we may observe the following identity (which

holds on the level of formal power series):

log(c(Kn)) = log(
(1 + a)n+2

1 + da
) = (n+ 2) log(1 + a)− log(1 + da)

But examining the nth coefficient of the latter expression we see that (−1)n

n
sn(c(Kn)) = (−1)n

n
((n + 2) −

dn)(a|Kn)n. Thus we have:

〈sn(c(Kn)), µKn〉 = d(n+ 2− dn)〈an+1, µCPn+1〉 = d(n+ 2− dn)

Problem 16-E Similarly, if Hm,n is a non-singular hyper-surface of degree (1, 1) in the product CPm ×
CP n of complex projective spaces with m,n ≥ 2, prove that the characteristic number sm+n−1[Hm,n] is

equal to −(m + n)!/m!n!. Using disjoint union of hyper-surfaces, prove that for each dimension n there

exists a complex manifold Kn with sn[Kn] = p if n + 1 is a power of the prime p, or with sn[Kn] = 1 if

n+ 1 is not a prime power.

Solution 16-E Using the fact that H∗(CPm×CP n;Z) ' H∗(CPm;Z)⊗H∗(CP n;Z) (in particular due

to the fact that the even cohomology groups vanish, thus so does the torsion in this tensor product) we

have:

H2(CPm × CP n;Z) ' H2(CPm)⊕H2(CP n)

Thus H2(CPm × CP n;Z) is the rank 2 Z module generated by am × 1 and 1 × an (with am and an
defined analogously to a as in 16-D). The degree (1, 1) assumption implies that the fundamental class

is am × 1 + 1 × an. This, in addition to the identity c(τ(CPm × CP n)) = c(π∗τ(CPm))c(π∗τ(CP n)) =

(1 + am × 1)m(1 + 1× an)n yields:

c(Hm,n) =
(1 + am × 1)m+1(1 + 1× an)n+1

1 + am × 1 + 1× an
|Hm,n

Now we calculate sm+n−1 as the m+ n− 1-th term in the expansion of log(c(Hm,n)):

log(c(Hm,n)) = (m+ 1) log(1 + am × 1) + (n+ 1) log(1 + 1× an)− log(1 + am × 1 + 1× an)
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The order m+ n− 1 part of this expansion is (after normalization):

sm+n−1(c(Hm,n)) = (m(am+n−1
m × 1) + (n+ 1)(1× am+n−1

n )− (am × 1 + 1× an)m+n−1)|Hm,n =

But observe that by dimensionality am+n−1
m = am+n−1

n = 0 so we just have sm+n−1(c(Hm,n)) = −(am × 1 +

1× an)m+n−1)|Hm,n . Then by the results of 16-D we have:

sm+n[Hm,n] = 〈sm+n−1(c(Hm,n))u, µCPm×CPn〉 = 〈−(am × 1 + 1× an)m+n, µCPm × µCPn〉

The terms in the binomial expansion of the expression −(am×1+1×an)m+n are of the form −
(
m+n
i

)
aim×ajn

for i+ j = m+ n. The only non-zero term of this form is − (m+n)!
m!n!

amm × ann. Then we have:

sm+n[Hm,n] = −(m+ n)!

m!n!
〈amm × ann, µCPm × µCPn〉 = −(m+ n)!

m!n!
〈amm, µCPm〉〈ann, µCPn〉 = −(m+ n)!

m!n!

Now observe that if we consider a degree (1, 1) hyper-surface Kn in CP n × CP 1 with n + 1 = pk a prime

power, we have sn[Kn] = − pk!
(pk−1)!

= −pk. Furthermore, if we take m = pk−1, and let Ln be a degree (1, 1)

hyper-surface in CPm×CPm, then sn[Lm] = − pk!
pk−1!(pk−pk−1)!

. The latter expression contains only one factor

of p in its prime factorization. Indeed, we observe that it is equal to pk·pk−1·...(pk−pk−1+1)
pk−1·····1 . Furthermore,

pk − pk−1 + j has the same number of factors of p in its prime factorization as j, if 0 < j < pk−1. In this

case j = qpl for some q coprime to p and l < k − 1, so pk − pk−1 + j = pl(pk−l − pk−l−1 + q) where the

pk−l − pk−l−1 + q = q 6= 0 mod p. Thus in pk·pk−1·...(pk−pk−1+1)
pk−1·····1 all of the p factors cancel except for the

factors coming from pk/pk−1, of which there is evidently one.

This all implies that the gcd of sn[Lm] and sn[Kn] is p. Thus by a Euclidean algorithm, there exists a

and b such that asn[Lm] + bsn[Kn] = p. Setting Mn = aKn + bLn where + is interpreted as disjoint union

and a negative a or b implies orientation reversal, we get our result.

If n+1 is not a power of p, then we get a similar result as so. Let n+1 =
∏

i p
ki
i and let mi = pkii . Then

by the same argument as above,
(n+1

p
ki
i

)
is coprime to pi. Indeed, in this case we have

(n+1

p
ki
i

)
=

n+1·n·...(n−pkii +1)

p
ki
i ·····1

,

and n − pkii + j having the same number of pi factors as j when 0 < j < pkii . This time, however, the pi
factors in the last part cancel as well, leaving the result pi free. Let Kn

i be a (1, 1) hyper-surface embedded

in CPmi × CP n−mi+1 and let Kn
0 be a (1, 1) hyper-surface embedded in CP n × CP 1. Then by these

arguments and the fact that
(
n+1
n

)
= n+ 1, we have that sn[Kn

0 ] = n+ 1 and sn[Kn
i ] is coprime to pi. Thus

by an iterated Euclidean algorithm we can find ai, i = 0, . . . , n, with sn[
∑

i aiK
n
i ] =

∑
i aisn[Kn

i ] = 1. This

produces the last part of this problem.

Problem 16-F

Problem 18-A As in the proof of 18.5, suppose that f has the origin as a regular value throughout

some compact K ′′ ⊂ W ⊂ Rm. If g is uniformly close to f and the derivatives ∂gi/∂xj are uniformly close

to ∂fi/∂xj, show that g has the origin as a regular value throughout K ′′.
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Solution 18-A First observe that the condition of being full rank is an open condition on m×n matrices.

Thus at each point p with Dfp full rank, there exists an εp > 0 such that Bεp(Dfp) contains only maximal

rank matrices. Relatedly, Df is uniformly continuous on K ′ so we can pick a uniform C > 0 with |p−q| < ε

implies |Dfp −Dfq| < Cε.

Now apply this to our situation. Consider the compact set S = K ′ ∩ f−1(0). By assumption all p ∈ S
have Dfp maximal rank. Thus let ε := minp∈S εp. If we define Uk = f−1(Rn − B̄1/k(0)) observe that

{Uk ∩K ′} ∩ {Bε/4C(f−1(0)) ∩K ′} is an open cover of K ′ which is compact. In particular, f−1(B1/k(0)) ⊂
Bε/4C(f−1(0)) for some large k.

Now pick δ = min(1/k, ε/4) with k as above and suppose that ‖f−g‖C1 < δ. Consider a q ∈ g−1(q)∩K ′.
Since |f(q)−g(q)| < 1/k we know that |f(q)| < 1/k. Thus by our choice of k, there exists a p ∈ f−1(0)∩K ′
with |q − p| < ε/4C. Then we see that for this p we have:

|Dgq −Dfp| < |Dgq −Dfq|+ |Dfq −Dfp| < δ + C|p− q| < δ + ε/4 < ε

Then by our definition of ε this implies that Dgq must be full rank. This proves the statement.

Problem 19-A Let {Tn} be the multiplicative sequence of polynomials belonging to the power series

f(t) = t/(1 − e−t). Then the Todd genus of a complex n-dimensional manifold is defined to be the

characteristic number 〈Tn(c1, . . . , cn), µ2n〉. Prove that T [CP n] = +1 and prove that {Tn} is the only

multiplicative sequence with this property.

Solution 19-A We recall that Kn = CP n has c(Kn) = (1+a)n+1 for a a certain generator of H1(Kn;Z).

Thus for the Todd class we have T [Kn] = an+1

(1−e−a)n+1 . Here Tn will be the nth order term in cohomology,

i.e the coefficient of an in the Tayloe series at 0. Thus T [Kn] = 〈Tn[Kn]an, µKn〉 = Tk[K
n] because

〈an, µ2n〉 = 0. To get this term we can do a contour integral about 0 as so:

T [Kn] =
1

2πi

∫
an+1

an+1(1− e−a)n+1
da =

1

2πi

∫
1 + u+ u2 + . . .

un+1
du = 1

Here we use the change of variables u = 1 − e−a which has du = e−ada = (1 − u)da thus da = 1
1−udu =

(1 + u + u2 + . . . )du. Now observe that this procedure will generally get the order an coefficient f
(n)
n of

f(a)n for any Taylor series f(a). But we see that f(a)n has Taylor expansion:

f(a)n = (
n∑
i=0

λia
i)n =

∞∑
i=0

(
∑

∑
ij=i

∏
j

λij)a
i

In particular, since λ0 = 1 we have λn = f
(n)
n − pn(λ1, . . . , λn) for some polynomials pn. Thus inductively,

we see that f
(n)
n = 1 for all n fixes λn and thus the Taylor expansion of f(a). Therefore f(a) is determined

by the property that T [Kn] = 1 for all n, and thus its corresponding multiplicative sequence is determined

as well.
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Problem 19-B If {Kn} is the multiplicative sequence belonging to f(t) =
∑

i λit
i, let us indicate the

dependence on the coefficients λi by setting Kn(x1, . . . , xn) = kn(λ1, . . . , λn, x1, . . . , xn) where kn is a

polynomial with integer coefficients. By considering the case where λ1, . . . , λn are elementary symmetric

polynomials in n indeterminates, prove the symmetry property kn(x1, . . . , xn, λ1, . . . , λn). In particular,

prove that the coefficients of xi1 , . . . , xir in the polynomial Kn(x1, . . . , xn) is equal to si1,...,ir(λ1, . . . , λn).

Solution 19-B Observe the following. Given f(a) =
∑

i λia
i define a multiplicative sequence K ′ by

K ′n(a) =
∑

I aIsI(λ1, . . . , λn) where I is a partition of n. If we show that this multiplicative sequence has

K ′(1 + a) = f(a) and is i fact multiplicative, the we will have established thatK ′ = K, where K is the

usual multiplicative sequence corresponding to f , in which case it will follow that the coefficient of aI in

the usual K is sI(λ1, . . . , λn).

First, we see that K ′(1 + a) = f(a) obviously. Indeed, the only non-zero aI is an1 , which corresponds

to s1,...,1(λ1, . . . , λn) = λn. So by our definition K ′(1 + a) =
∑

i a
is1,...,1(λ1, . . . , λn) =

∑
i λia

i = f(a). The

second part is also obvious once written down. Observe:

K(ab) =
∑
I

(ab)IsI =
∑
I

(ab)I
∑
GH=I

sGsH =
∑
I

∑
GH=I

aGbHsGsH

Problem 19-C Using Cauchy’s identity:

f(t)
d

dt
(
t

f(t)
) = 1− td log(f(t))

dt
= 1 +

∑
(−1)jsj(λ1, . . . , λj)t

j

prove that the coefficient of pn in the L-polynomial Ln(p1, . . . , pn) is equal to 22k(22k−1 − 1)Bk/(2k)! 6= 0.

Solution 19-C Observe that for the multiplicative sequence Ln we have f(t) =
√
t

tanh(t)
. Thus Cauchy’s

identity reads:

1 +
∑
j

(−1)jsj(λ1, . . . , λj)t
j =

√
t

tanh(
√
t)

d

dt
(
√
t tanh(t)) =

1

2
+

1

2
· 2

√
t

sinh(2
√
t)

Now applying the formula for the Taylor expansion of t
sinh(t)

discussed on p. 282 (which is trivial to derive

using the trigonometric identity 1
sinh(2t)

= 1
tanh(t)

− 1
tanh(2t)

in tandem with the Taylor expansion of t
tanh(t)

from p. 281) we find that:

1 +
∑
j

(−1)jsj(λ1, . . . , λj)t
j = 1 +

∞∑
i=1

(−1)i22i(22i−1 − 1)
Bi

(2i)!
ti

Matching terms, we find that sj(λ1, . . . , λn) = 22j(22j−1 − 1)
Bj

(2j)!
. Furthermore, by the formula derived in

19-B saying that the xI coefficient in Kn is sI(λ) implies that sn(λ) is the coefficient of xn in Kn. So we

have our result.
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Problem 20-A Let τ be the tangent bundle of the quaternion projective space HPm. Using the isomor-

phism τ ' HomH(γ, γ⊥) of real vector bundles show that τ ⊕ HomH(γ, γ) ' HomH(γ,Hm+1) and hence

that p(τ) = (1 + u)2m+2/(1 + 4u).

Solution 20-A We reproduce the reasoning of the real (S-W) and complex (Chern) cases. Since

HomH(·, ·) distributes over direct sum bilinearly for H vector spaces via a natural isomorphism on the

fiber level, we have the following string of isomorphisms:

τ ⊕ HomH(γ, γ) ' HomH(γ, γ⊥)⊕ HomH(γ, γ) ' HomH(γ, γ⊥ ⊕ γ) ' HomH(γ,Hm+1) ' ⊕m1 HomH(γ,H)
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