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Abstract. Two homogeneous pseudo–riemannian manifolds (G/H, ds2) and (G′/H ′, ds′2) belong
to the same real form family if their complexifications (GC/HC, ds

2
C) and (G′

C/H
′
C, ds

′2
C ) are isometric.

The point is that in many cases a particular space (G/H, ds2) has interesting properties, and those
properties hold for the spaces in its real form family. Here we prove that if (G/H, ds2) is a geodesic
orbit space with a reductive decomposition g = h⊕ m, then the same holds all the members of its
real form family. In particular our understanding of compact geodesic orbit riemannian manifolds
gives information on geodesic orbit pseudo–riemannian manifolds. We also prove similar results for
naturally reductive spaces, for commutative spaces, and in most cases for weakly symmetric spaces.
We end with a discussion of inclusions of these real form families, a discussion of D’Atri spaces,
and a number of open problems.

1. Introduction

Let (G/H, ds2) be a homogeneous pseudo–riemannian manifold. For convenience of exposition
we assume that M and G are connected. We have the complexification (GC/HC, ds

2
C) where ds2

is extended by complex bilinearity on every tangent space. (GC/HC, ds
2
C) is pseudo–riemannian of

signature (n, n) where n = dimM . The real form family of (G/H, ds2) consists of all pseudo–
riemannian manifolds (G′/H ′, ds′2) with the same (up to isometry) complexification (GC/HC, ds

2
C).

Following [13] we write {{(G/H, ds2)}} for the real form family of (G/H, ds2).

There is some ambiguity in the literature. In this paper (GC/HC, ds
2
C) does not belong to

{{(G/H, ds2)}}; we refer to (GC/HC, ds
2
C) as the crown of {{(G/H, ds2)}} and write (GC/HC, ds

2
C) =

cr{{(G/H, ds2)}}.
From now on, suppose that we have a reductive decomposition: g = h ⊕ m with Ad(H)m = m.

Then m represents the tangent space at o = 1H and 〈·, ·〉 denotes the inner product on m defined
by ds2.

If (G′/H ′, ds′2) ∈ {{(G/H, ds2)}} then {{(G/H, ds2)}} = {{(G′/H ′, ds′2)}}. In particular
(G/H, ds2) and (G′/H ′, ds′2) have isometric complexifications, (GC/HC, ds

2
C) ∼= (G′C/H

′
C, ds

′2
C ), i.e.

cr{{(G/H, ds2)}} ∼= cr{{(G′/H ′, ds′2)}}. Further, we have a reductive decomposition g′ = h′ ⊕m′

stable under an involutive isometry θ′ of G′ and an isomorphism f : G ∼= G′ such that f(H) = H ′

and f∗(ds′2) = ds2. One can exchange the rôles of (G/H, ds2) and (G′/H ′, ds′2) here. Thus, it is
an equivalence relation for (G/H, ds2) and (G′/H ′, ds′2) to belongs to the same real form family.
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A nonzero element η ∈ g is a geodesic vector (at o) if t 7→ exp(tη)o is a geodesic. A geodesic
t 7→ γ(t) is called homogeneous if it comes from a geodesic vector as above. (G/H, ds2) is a
geodesic orbit space or GO space if every geodesic on (G/H, ds2) is homogeneous.

Proposition 1.1. Geodesic Lemma Let (G/H, ds2) be a homogeneous pseudo–riemannian man-
ifold with a reductive decomposition g = h ⊕ m, [h,m] ⊂ m. Then (G/H, ds2) is a geodesic orbit
space if and only if

(1.2) given ξ ∈ m there exist α ∈ h and c ∈ R such that 〈[ξ + α, ζ]m, ξ〉 = c 〈ξ, ζ〉 for all ζ ∈ m.

Further, if 〈ξ, ξ〉 6= 0 in (1.2) then c = 0, so if c 6= 0 in (1.2) then the geodesic is null.

For the notion of homogeneous geodesic and the formula (1.2) characterizing geodesic vectors in
the riemannian case see [9]. The pseudo–riemannian case appeared in [4] and [10], but without a
proof. The correct mathematical formulation with the proof was given in [3].

We are going to study the structure of real form families of geodesic orbit spaces (in §3) using
the form of the Geodesic Lemma. Then we look at corresponding structural matters for naturally
reductive spaces (in §4), for commutative spaces (in §5), for weakly symmetric spaces (in §6), and
for D’Atri spaces (in $ 7), ending with a list of open problems.

2. The Moduli Spaces

The moduli spaces Ω and ΩC will allow us to carry the GO property between various spaces in
a real form family. Define real and complex polynomials

(2.1)
ϕ : m⊕ h⊕m⊕ R→ R by ϕ(ξ, α, ζ, c) = 〈[ξ + α, ζ]m, ξ〉 − c〈ξ, ζ〉 and

ϕC : mC ⊕ hC ⊕mC ⊕ C→ C by ϕC(ξ, α, ζ, c) = 〈[ξ + α, ζ]mC , ξ〉 − c〈ξ, ζ〉
where 〈·, ·〉 extends from m⊕m to mC⊕mC by complex bilinearity. Note that ϕC(ξ, α, ζ, c) is linear
in ζ, in α, and in c; and it is quadratic in ξ. Define subvarieties

(2.2)
Ω = {(ξ, α, c) ∈ (m⊕ h⊕ R) | ϕ(ξ, α, ζ, c) = 0 for every ζ ∈ m} and

ΩC = {(ξ, α, c) ∈ (mC ⊕ hC ⊕ C) | ϕC(ξ, α, ζ, c) = 0 for every ζ ∈ mC}.
As one might guess from the notation we have

Proposition 2.3. The real affine variety Ω = ΩC ∩ (m⊕ h⊕ m⊕ R), and it is a real form of the
complex affine variety ΩC. In other words ΩC is the complexification of Ω. In particular, if f is a
holomorphic function on ΩC and f |Ω ≡ 0, then f ≡ 0.

Proof. As ϕ and ϕC are linear in ζ we can replace the “every ζ” conditions in (2.2) by “{ζ1, . . . , ζ`}”
conditions, where {ζ1, . . . , ζ`} is a basis of m. In other words Ω is defined by the ` real polynomial
functions ϕj : (ξ, α, c) 7→ ϕ(ξ, α, ζj , c) on m⊕h⊕R, and ΩC is defined by the ` complex polynomial
functions ϕj;C : (ξ, α, c) 7→ ϕC(ξ, α, ζj , c) on mC ⊕ hC ⊕C . As ϕj = ϕj;C|(m⊕h⊕R) the Proposition is
immediate. �

3. Geodesic Orbit Spaces

We start by pinning down the moduli spaces Ω and ΩC for the geodesic orbit case. From the
definitions

Lemma 3.1. In the notation of (2.2), ξ + α is a geodesic vector for (G/H, ds2) if and only if
ξ+α ∈ Ω, and ξ+α is a geodesic vector for the crown cr{{(G/H, ds2)}} if and only if ξ+α ∈ ΩC.
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Thus we have a minor reformulation of the Geodesic Lemma (Proposition 1.1), as follows.

Proposition 3.2. In the notation of (2.2), (G/H, ds2) is a geodesic orbit space if and only if, for
every ξ ∈ m there is an α ∈ h with (ξ, α) ∈ Ω, and the crown cr{{(G/H, ds2)}} is a geodesic orbit
space if and only if, for every ξ ∈ mC there is an α ∈ hC with (ξ, α) ∈ ΩC.

Now we combine Propositions 2.3 and 3.2:

Theorem 3.3. In the notation of (2.2), (G/H, ds2) is a geodesic orbit space if and only if the
crown cr{{(G/H, ds2)}} is a geodesic orbit space. In particular, if (G′/H ′, ds′2) ∈ {{(G/H, ds2)}},
then (G/H, ds2) is a geodesic orbit space if and only if (G′/H ′, ds′2) is a geodesic orbit space.

Proof. Proposition 3.2 says that (G/H, ds2) is a geodesic orbit space if and only if the projection
π : Ω → m, by π(ξ, α) = ξ, is surjective; and also (GC/HC, ds

2
C) is a geodesic orbit space if

and only if the projection πC : ΩC → mC, by πC(ξ, α) = ξ, is surjective. But Proposition 2.3
ensures that π is surjective if and only if πC is surjective. That proves the first assertion. Since
{{(G′/H ′, ds′2)}} = {{(G/H, ds2)}} the corresponding π′ : Ω′ → m′ is surjective if and only if πC
is surjective. The second assertion follows. �

4. Naturally Reductive Spaces

A homogeneous space (G/H, ds2) with a reductive decomposition g = h ⊕ m, Ad(H)m = m, is
called naturally reductive if

(4.1) if ξ ∈ m then t 7→ exp(tξ)H is a complete geodesic in (G/H, ds2).

The Lie algebra formulation of (4.1) is

(4.2) 〈[ξ, η]m, ζ〉+ 〈η, [ξ, ζ]m〉 = 0 for all ξ, η, ζ ∈ m.

The case ζ = ξ is 〈[ξ, η]m, ζ〉 + 〈η, [ξ, ζ]m〉 = 〈[ξ, η]m, ξ〉 + 〈η, [ξ, ξ]m〉 = 〈[ξ, η]m, ξ〉, so naturally
reductive spaces are geodesic orbit spaces. Or one can see this by noting that (4.1) is the case
α = 0 of (1.2).

As in (2.1) one has corresponding polynomials

(4.3)
ψ : m⊕m⊕m→ R by ψ(ξ, η, ζ) = 〈[ξ, η]m, ζ〉+ 〈η, [ξ, ζ]m〉 and

ψC : mC ⊕mC ⊕mC → C by ψC(ξ, η, ζ) = 〈[ξ, η]mC , ζ〉+ 〈η, [ξ, ζ]mC〉.

As in (2.2) those polynomials define corresponding moduli spaces

(4.4)
Ψ = {(ξ, η, ζ)) ∈ (m⊕m⊕m) | ψ(ξ, η, ζ) = 0} and

ΨC = {(ξ, η, ζ) ∈ (mC ⊕mC ⊕mC) | ψC(ξ, η, ζ) = 0}.
Then we have the analog of Proposition 2.3:

Proposition 4.5. The real affine variety Ψ = ΨC ∩ (m ⊕ m ⊕ m), and it is a real form of the
complex affine variety ΨC. In other words ΨC is the complexification of Ψ. In particular, if f is a
holomorphic function on ΨC and f |Ψ ≡ 0, then f ≡ 0.

We reformulate the definition (4.2) of naturally reductive space:

Proposition 4.6. In the notation of (4.4), (G/H, ds2) is a naturally reductive space if and only
if ψ(ξ, η, ζ) ∈ Ψ whenever (ξ, η, ζ)) ∈ (m ⊕ m ⊕ m). The crown cr{{(G/H, ds2)}} is a naturally
reductive space if and only if ψ(ξ, η, ζ) ∈ ΨC whenever (ξ, η, ζ)) ∈ (mC ⊕mC ⊕mC).
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Now we combine Propositions 4.5 and 4.6:

Theorem 4.7. In the notation of (4.4), (G/H, ds2) is a naturally reductive space if and only
if the crown cr{{(G/H, ds2)}} is a naturally reductive space. In particular, if (G′/H ′, ds′2) ∈
{{(G/H, ds2)}}, then (G/H, ds2) is a naturally reductive space if and only if (G′/H ′, ds′2) is a
naturally reductive space.

5. Commutative Spaces

Consider a pseudo-riemannian manifold (G/H, ds2) where G is the identity component of the
group of all isometries. The G–invariant differential operators on G/H form an associative algebra
D(G,H). We say that (G/H, ds2) is commutative if the algebra D(G,H) is commutative. This
is the usual definition when H is compact and (G/H, ds2) is riemannian, but it makes perfectly
good sense (and is appropriate for us) in any signature.

We will discuss D’Atri spaces in Section 7, but the point here is that commutative spaces are
D’Atri spaces [6]. In dimensions 5 5 one can say a bit more. There, a homogeneous riemannian
manifold is commutative if and only if it is naturally reductive.

Without loss of generality we suppose that G/H is connected and simply connected, and that
G = I0(G/H, ds2). Then also H is connected. As before we start with a reductive decomposition
g = h⊕m. Identify m with the tangent space Tx0(G/H) at the base point x0 = 1H ∈ G/H. That
gives an obvious Ad(H)–equivariant bijection between D(G,H) and the Ad(H)–invariants 1 S(m)H

in the symmetric algebra S(m). See Helgason, [5, Ch. II, Theorem 4.6], for the details.

Given any real basis {ζ1, . . . , ζ`} of h, S(m)H is the intersection
⋂

15j5` S(m)ζj of null spaces of

the ad (ζj)|S(m). As {ζj} is a complex basis of mC we have

Lemma 5.1. The algebra D(GC, HC) is the complexification D(G,H)C of the algebra. D(G,H).

Now D(GC, HC) is commutative if and only if D(G,H) is commutative. We apply this to real
form families.

Theorem 5.2. The pseudo–riemannian manifold (G/H, ds2) is commutative if and only if its com-
plexification (GC/HC, ds

2
C) is commutative. If (G′/H ′, ds′2) ∈ {{(G/H, ds2)}}, then (G′/H ′, ds′2)

is commutative if and only if (G/H, ds2) is commutative.

6. Weakly Symmetric Spaces

Recall that a pseudo–riemannian manifold (M,ds2) is weakly symmetric if, given x ∈ M
and a tangent vector ξ ∈ Tx(M), there is an isometry sx,ξ ∈ I(M,ds2) such that sx,ξ(x) = x and
dsx,ξ(ξ) = −ξ. The familiar special case: (M,ds2) is symmetric if, given x ∈M there is an isometry
sx ∈ I(M,ds2) such that sx(x) = x and dsx(ξ) = −ξ for every ξ ∈ Tx(M).

Riemannian weakly symmetric spaces were introduced by Selberg [11] in the context of harmonic
analysis and algebraic geometry. One of his results was that riemannian weakly symmetric spaces
are commutative. In view of Theorem 5.2,

Corollary 6.1. Let (G/H, ds2) be a riemannian weakly symmetric space. Then cr{{(G/H, ds2)}}
is commutative, and every (G′/H ′, ds′2) ∈ {{(G/H, ds2)}} is commutative.

1by an abuse of notation we write Ad(H) instead of S(Ad(H)) for the symmetric powers that form the action of
H on S(m).
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Weakly symmetric pseudo–riemannian manifolds are geodesic orbit spaces [1, Theorem 4.2].
Thus, if (G/H, ds2) is weakly symmetric then, by Theorem 3.3, every (G′/H ′, ds′2) ∈ {{(G/H, ds2)}}
is a geodesic orbit space.

There are ℵ0 examples in the tables of [2] and [13]. Tables 3.6, 4.12, 5.1, 5.2 and 5.3 in [2] list
various classes of real form families {{(G/H, ds2)}} with (G/H, ds2) weakly symmetric, G semisim-
ple and H reductive. The Tables in [13] list various classes of real form families {{(G/H, ds2)}} for
which (G/H, ds2) is a weakly symmetric nilmanifold with G = N oH.

The question here is just when weak symmetry of (G/H, ds2) implies weak symmetry for the
members of its real form family {{(G/H, ds2)}}. A partial answer is implicit in a result of Akhiezer
and Vinberg [12, Theorem 12.6.10]; see [12, Corollary 12.6.12]:

Proposition 6.2. Let (G/H, ds2) be a weakly symmetric pseudo–riemannian manifold with G
connected and reductive, and H reductive in G. Then every (G′/H ′, ds′2) ∈ {{(G/H, ds2)}} is
weakly symmetric.

See [12, Section 15.4] for a discussion of commutativity for weakly symmetric riemannian nil-
manifolds.

7. D’Atri Spaces

We say that a pseudo–riemannian manifold (M,ds2) is a D’Atri space if its local geodesic
symmetries σx : exp(tξ) 7→ exp(−tξ), ξ ∈ Tx(M) and t reasonably small, are volume preserving.
This is the standard definition when (M,ds2) is riemannian, but it makes perfectly good sense (and
is appropriate for us) in any signature.

A geodesic orbit riemannian manifold is a D’Atri space [7, Theorem 1]. That argument of
Kowalski and Vanhecke goes through mutatis mutandis for pseudo–riemannian manifolds, using
the definition introduced just above. Or see [8] to develop this in the more general setting of two-
point functions. In any case, we now have inclusions of real form families of pseudo–riemannian
manifolds:

(7.1)
(weakly symmetric spaces) ⊂ (geodesic orbit spaces) ⊂ (D’Atri spaces)

(naturally reductive spaces) ⊂ (geodesic orbit spaces) ⊂ (D’Atri spaces)

This suggests a number of open problems, one of which was noted toward the end of Section 6:

• If (G/H, ds2) is weakly symmetric and (G′/H ′, ds′2) ∈ {{(G/H, ds2)}}, is (G′/H ′, ds′2)
weakly symmetric?
• Can the naturally reductive weakly symmetric spaces be characterized as the weakly sym-

metric spaces (G/H, ds2) for which every (G′/H ′, ds′2) ∈ {{(G/H, ds2)}} is weakly sym-
metric?
• If (G/H, ds2) is a D’Atri space and (G′/H ′, ds′2) ∈ {{(G/H, ds2)}}, is (G′/H ′, ds′2) a D’Atri

space?
• Can the geodesic orbit spaces be characterized as the D’Atri spaces (G/H, ds2) for which

every (G′/H ′, ds′2) ∈ {{(G/H, ds2)}} is a D’Atri space?
• Which commutative spaces are weakly symmetric spaces?
• What happens if we restrict these questions to the case of spaces (G/H, ds2) for which G

is semisimple (or real reductive) and H is reductive in G?
• What happens if we restrict these questions to the case of spaces (G/H, ds2) for which G

is of the form N oH with N nilpotent?
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