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Abstract
The geodesic orbit property is useful and interesting in Riemannian geometry. It
implies homogeneity and has important classes of Riemannian manifolds as special
cases. Those classes include weakly symmetric Riemannian manifolds and naturally
reductive Riemannian manifolds. The corresponding results for indefinite metric man-
ifolds are much more delicate than in Riemannian signature, but in the last few years
important corresponding structural results were proved for geodesic orbit Lorentz
manifolds. Here, we carry out a major step in the structural analysis of geodesic orbit
Lorentz nilmanifolds. Those are the geodesic orbit Lorentz manifolds M = G/H
such that a nilpotent analytic subgroup of G is transitive on M . Suppose that there is a
reductive decomposition g = h⊕ n (vector space direct sum) with n nilpotent. When
themetric is nondegenerate on [n, n], we show that n is abelian or 2-step nilpotent (this
is the same result as for geodesic orbit Riemannian nilmanifolds), and when the metric
is degenerate on [n, n], we show that n is a Lorentz double extension corresponding
to a geodesic orbit Riemannian nilmanifold. In the latter case, we construct examples
to show that the number of nilpotency steps is unbounded.
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1 Introduction

A pseudo-Riemannian manifold (M, ds2) is called a geodesic orbit manifold (or a
manifoldwith homogeneous geodesics, or simply aGO manifold), if every geodesic of
M is an orbit of a 1-parameter subgroup of the full isometry group I (M) = I (M, ds2).
One loses no generality if one replaces I (M) by its identity component I 0(M). IfG is a
transitive Lie subgroup of I 0(M), so (M, ds2) = (G/H , ds2) where H is an isotropy
subgroup of G, and if every geodesic of M is an orbit of a 1-parameter subgroup of G,
thenwe say that (M, ds2) is aG-geodesic orbitmanifold, or aG-GOmanifold.Clearly
every G-GO manifold is a GO manifold, but not vice versa. The class of geodesic
orbit manifolds includes (but is not limited to) symmetric spaces, weakly symmetric
spaces, normal and generalized normal homogeneous spaces, and naturally reductive
spaces. For the current state of knowledge in the theory of Riemannian geodesic orbit
manifolds, we refer the reader to [1] and its bibliography.

In this paper, we study the GO condition for pseudo-Riemannian nilmanifolds
(N , ds2), relative to subgroups G ⊂ I (N ) of the form G = N � H , where H is an
isotropy subgroup. Most of our results apply to the case where (N , ds2) is a Lorentz
manifold.

Our results for G-GO manifolds (M, ds2) = (G/H , ds2) require the coset space
G/H to be reductive. In other words, they make use of an AdG(H)–invariant decom-
position g = m ⊕ h. Very few structural results are known for indefinite metric GO
manifolds that are not reductive, and we always assume that G/H is reductive.

Recall that a pseudo-Riemannian nilmanifold is a pseudo-Riemannian manifold
admitting a transitive nilpotent Lie group of isometries. In the Riemannian case, the
full isometry group of a nilmanifold (N , ds2), where N is a transitive nilpotent group
of isometries, is the semidirect product I (N ) = N � H , where H is the group of
all isometric automorphisms of (N , ds2) [20, Theorem 4.2]. In other words, N is
the nilradical of I (N ). In the pseudo-Riemannian cases, I (N ) might still contain
N �H and yet be strictly larger. In indefinite signatures of metric, a nilmanifold is not
necessarily reductive as a coset space of I (N ), and even when it is, N does not have to
be a normal subgroup of I (N ). Here, the GO condition does not rescue us, for there
exist 4-dimensional, Lorentz GO nilmanifolds that are reductive relative to I (N ),
but for which N is not an ideal in I (N ) [8, Sect. 3]. Moreover, already in dimension
4 (the lowest dimension for homogeneous pseudo-Riemannian spaces G/H with H
connected that are not reductive), every non-reductive space is a GO manifold when
we make a correct choice of parameters [3, Theorem 4.1]. A complete classification
of pseudo-Riemannian GO manifolds of dimension 4 is given in [2].

In Sect. 2, we recall some basic facts on reductive geodesic orbit spaces. In par-
ticular, the Geodesic Lemma (recalled as Proposition 1 below) gives an algebraic
condition 〈[T + A, T ′]m, T 〉 = k〈T , T ′〉 for a reductive pseudo-Riemannian homo-
geneous space M = G/H , with g = h ⊕ m, to be GO . We also recall the notion
of geodesic graph and use it in Proposition 2 for a characterization of the naturally
reductive condition.

In Sect. 3, we sharpen [6, Theorem 7] to obtain a basic structure result on reductive
GO Lorentz nilmanifolds (G/H , ds2). Write g = h⊕ n with n nilpotent and let 〈·, ·〉
denote the inner product on n defined by ds2. If 〈·, ·〉|[n,n] is nondegenerate then [6,
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Theorem 7] says N is either abelian, or 2-step nilpotent, or 4-step nilpotent. While
there are many examples of abelian and of 2-step nilpotent, there were no examples
of 4-step nilpotent. Our Theorem 2 eliminates the 4-step possibility. That is the main
result of this paper. Theorem 2 in Sect. 3 is obtained as a corollary of Theorem 1; the
latter is valid in higher signatures provided the derived algebra of n is either abelian
or Lorentz.

In Sect. 4,we recall the notion of double extension and use it to obtain a complement,
Theorems, 3 toTheorem2.While Theorem2 requires that 〈·, ·〉|[n,n] be nondegenerate,
Theorem3 requires that it be degenerate, and then it shows that (G/H , ds2) is aLorentz
double extension of a Riemannian GO nilmanifold.

In Sect. 5, we construct a large family of naturally reductive GO Lorentz nilmani-
folds (G/H , ds2) that are double extensions of Riemannian GO nilmanifolds. There
the transitive nilpotent groups are r -step nilpotent for unbounded r . Theorem4 extracts
a few of those double extension manifolds and shows that for every d > 0 there is a
naturally reductive Lorentz nilmanifold (N , ds2) of nilpotent step≥ d and dimension
d + 4, and a corresponding Lorentz nilmanifold (N , ds2) of nilpotent step ≥ d and
dimension d + 10, that is not naturally reductive.

The authors have no competing interests to declare that are relevant to the content
of this article.

2 Preliminaries

Let M = G/H be a pseudo-Riemannian homogeneous space. As usual g and h denote
the Lie algebras of G and H . In the Riemannian case, there is an adg(h)-module m
such that g = h ⊕ m as a linear space. This is not necessarily true in an arbitrary
signature; if it is, the pseudo-Riemannian homogeneous space M = G/H is called
G-reductive. Note that reductivity depends on the choice of the isometry group G.
Any corresponding decomposition g = h ⊕ m is called a reductive decomposition.

The GO condition for reductive spaces is given in the Geodesic Lemma:

Proposition 1 Let M = G/H be a reductive pseudo-Riemannian homogeneous space,
with reductive decomposition g = h ⊕ m. Then M is a G-geodesic orbit space if and
only if, for any T ∈ m, there exist A = A(T ) ∈ h and k = k(T ) ∈ R such that if
T ′ ∈ m then

〈[T + A, T ′]m, T 〉 = k〈T , T ′〉. (1)

The subscript m means the m-component in g = h + m.

Substituting T ′ = T one sees that k(T ) = 0 unless T is a null vector. In particular,
k is always zero in the Riemannian signature. Any map A : m → h for which
(1) holds (with some function k) is called a geodesic graph. If a geodesic graph
exists (that is, if the space is GO), it can be chosen adg(h)-equivariant, i.e., such that
[L, A(T )] = A([L, T ]), for all L ∈ h and all T ∈ m.
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A pseudo-Riemannian homogeneous space M = G/H is (G-)naturally reductive
if there is a reductive decomposition g = h ⊕ m such that

if T , T ′ ∈ m then 〈[T ′, T ]m, T 〉 = 0. (2)

In our nilmanifold case, if G = N � H , the space G/H might be naturally reductive
using a choice of a complementary h-module m different from n. In the case G = N ,
the natural reductivity condition says that the inner product on n is invariant under
the adjoint representation, so the metric on N is bi-invariant, in other words invariant
under both left and right translations. Kostant’s criterion for natural reductivity in the
Riemannian signature [13, Theorem 4] is valid as well in pseudo-Riemannian case
[17, Theorem 2.2].

The property of being naturally reductive depends on the choice of group G in
the presentation M = G/H : both enlarging and reducing G may lead to gaining or
losing the natural reductivity property, even in the Riemannian setting [9, § 2]. This
contrasts with the GO condition, which is trivially preserved under enlarging the
isometry group.

A G-naturally reductive space is always G ′-geodesic orbit for any G ′ ⊃ G. This is
seen by taking A = 0 and k = 0 in the Geodesic Lemma. The converse fails even in
Riemannian case, where there are GO spaces that are not G-naturally reductive for
any choice of the transitive group G ([12, Proposition 3], [14, Theorem 5.3(I)]). Also,
see Theorem 4 below.

Proposition 2 below is useful for decidingwhether aGO space is naturally reductive
relative to the same group G. The proof is essentially the same as in [19, Corollaire 2,
Lemme 10] for the affine case (although the “only if" direction there requires H to be
compact), and in [14, Proposition 2.10] for the Riemannian case. For completeness,
we include it below.

Proposition 2 Let M = G/H be a reductive G-GO space with reductive decompo-
sition g = h ⊕ m. Then M is G-naturally reductive if and only if a geodesic graph
A : m → h in the Geodesic Lemma can be chosen linear and adg(h)-equivariant.

Proof Let M = G/H be a naturally reductive G-GO space. Choose a reductive
decomposition g = h ⊕ m such that 〈[T ′, T ]m, T 〉 = 0 for all T , T ′ ∈ m. Let
g = h ⊕ p be any other reductive decomposition. Since both m and p are naturally
identified with the tangent space of (M, ds2) at the base point, there is a uniquely
defined adg(h)-invariant isometry ι : m → p. Now for the decomposition g = h ⊕ p,
the equation (1) holds with A(X) = ι−1X − X and k(X) = 0, for all X ∈ p.

Conversely, given a reductive decomposition g = h⊕pwith an adg(h)-equivariant
linear map A : p → h such that (1) holds for X ∈ p (forcing k = 0 by continuity),
we define m = Span(X + A(X) | X ∈ p), with the inner product such that the map
X �→ X + A(X) is an isometry. Then g = h⊕m, and m is an h-module because A is
adg(h)-equivariant. It is easy to check that 〈[T ′, T ]m, T 〉 = 0 for all T , T ′ ∈ m. �


In the Riemannian case, or more generally when H is compact, the existence of a
linear geodesic graph implies the existence of a linear, adg(h)-equivariant geodesic
graph, and hence is equivalent to natural reductivity [5, Lemma 3].
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3 Eliminating 4-StepWhen [n, n] is Nondegenerate
Some years ago, Gordon proved [11, Theorem 2.2] that a RiemannianGO nilmanifold
is atmost 2-step nilpotent.More recently,Chen,Wolf andZhangproved [6, Theorem7]
that a connected Lorentz G-geodesic orbit nilmanifold M = G/H , with G = N � H ,
N nilpotent and 〈·, ·〉|[n,n] nondegenerate,1 has similar properties: n is abelian, or n
is 2-step nilpotent, or n is 4-step nilpotent. Our theorems here eliminate the 4-step
possibility and go somewhat beyond the case of Lorentz signature.

Given a reductive homogeneous pseudo-Riemannian manifold (G/H , ds2), where
G = N � H with N nilpotent, identify n = Lie(N ) with the tangent space to G/H
at 1N .

Theorem 1 Let (M = G/H , ds2) be a connected pseudo-Riemannian G-geodesic
orbit nilmanifold where G = N � H with N nilpotent. Denote 〈·, ·〉′ = 〈·, ·〉|[n,n]. In
the following cases, N is either abelian or 2-step nilpotent:

(a) 〈·, ·〉′ is of definite signature;
(b) 〈·, ·〉′ is of Lorentz signature and the centralizer of [n, n] is nondegenerate.
Proof The first part of our argument is similar to part of the proof of [6, Theorem 7].
Let n′ = [n, n], and denote m = dim n′. We can assume that m ≥ 2.

Suppose that 〈·, ·〉′ is nondegenerate. Let v denote the orthogonal complement
to n′ in n. Then we have the adg(h)-invariant orthogonal direct sum decomposition
n = n′ ⊕ v. Let T = X + Y and T ′ = X ′ + Y ′ where X , X ′ ∈ n′, Y ,Y ′ ∈ v, and T is
non-null in (1). Then k(T ) = 0 and we have A = A(X ,Y ) ∈ h such that

〈[A, X ′], X〉 + 〈[A,Y ′],Y 〉 + 〈[X , X ′] + [Y , X ′] + [X ,Y ′] + [Y ,Y ′], X〉 = 0. (3)

Taking Y ′ = Y , X ′ = 0 we obtain, by continuity,

〈[Y , X ], X〉 = 0, for all Y ∈ v, X ∈ n′. (4)

As v generates n, it follows that

〈[T , X ], X〉 = 0, for all T ∈ n, X ∈ n′. (5)

Separating the X ′- and the Y ′-components in (3) and using (4) and (5), we find that
for all X ∈ n′ and Y ∈ v with X + Y non-null, there exists A = A(X ,Y ) ∈ h such
that for all X ′ ∈ n′, Y ′ ∈ v,

〈[A,Y ],Y ′〉 = 〈[Y ,Y ′], X〉, (6)

[A + Y , X ] = 0. (7)

Assertion (a) now follows from (5): for all T ∈ n, the (nilpotent) operator adg(T )|n′
on n′ is skew-symmetric relative to the definite inner product 〈·, ·〉′, and hence is zero,
which implies [n, n′] = 0. (This follows the argument of [11, Theorem 2.2].)

1 Nondegeneracy of 〈·, ·〉|[n,n] is stated in the paragraph before the statement of [6, Theorem 7] and is
recalled and used in the proof, but perhaps it could have been part of the statement itself.
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For (b), we suppose that 〈·, ·〉′ is Lorentz. Denote s := so(m − 1, 1) ⊂ gl(n′), the
algebra of skew-symmetric endomorphisms relative to 〈·, ·〉′. Thus, k := adg(n)|n′ is a
subalgebra of s consisting of nilpotent endomorphisms. As such, using Engel’s Theo-
rem, it is triangular. Thus, it is conjugate by an inner automorphism [16, Theorem 2.1]
to a subalgebra of the nilpotent part u of an Iwasawa decomposition s = t ⊕ a ⊕ u.
Now we may (and do) assume k ⊂ u.

Choose a basis { f1, . . . , fm} for n′ such that 〈 fi , f j 〉 = εiδi j , where ε1 = −1 and
εi = +1 for i > 1, and such that the maximal compact subalgebra t = so(m − 1)
acts on Span( f2, . . . , fm), and the 1-dimensional abelian subalgebra is given by a =( 0 1 0
1 0 0
0 0 0m−2

)
R. Here, 0m−2 denotes the (m − 2) × (m − 2) zero matrix. Then u is the

space of matrices of the form

(
0 0 ut

0 0 ut
u −u 0m−2

)
where u ∈ R

m−2. We introduce a new

basis for n′ given by e1 = ( f1 + f2)/
√
2, e2 = ( f1 − f2)/

√
2 and ei = fi for i > 2.

Relative to this basis, we have

〈·, ·〉|n′ =
(

0 −1 0
−1 0 0
0 0 Im−2

)
and u =

{(
0 0 ut
0 0 0
0 u 0m−2

)
, u ∈ R

m−2
}

.

As k ⊂ u, we obtain a linear map � : v → Span(e3, . . . , em) such that, for all Y ∈ v,

adg(Y )e1 = 0, adg(Y )e2 = �Y , and adg(Y )ei = 〈�Y , ei 〉e1 for i > 2. (8)

As u (and hence k) is abelian, [[v, v], n′] = 0. Since v generates n, we obtain
[[n, n], n′] = 0, which implies that n′ is abelian.

To complete the proof of (b), we introduce 2-forms ωi ∈ �2(v) by

[V1, V2] =
∑m

i=1
ωi (V1, V2)ei for V1, V2 ∈ v. (9)

As e1 ∈ n′ and 〈·, ·〉′ is nondegenerate, we cannot have e1 ⊥ n′. But since n′ is abelian
we get n′ = [v, v] + [v, n′], and from (8) we obtain e1 ⊥ [v, n′]. Thus, e1 �⊥ [v, v],
which by (9) implies ω2 �= 0.

Using (8) and (9), the Jacobi identity gives

σ
(
ω2(V1, V2)�V3 +

∑m

i=3
ωi (V1, V2)〈�V3, ei 〉e1

)
= 0, (10)

where σ denotes the cyclic permutation of V1, V2, V3 ∈ v. If rk� ≥ 3, then for almost
all triples V1, V2, V3 ∈ v, the vectors �V1,�V2, and �V3 ∈ Span(e3, . . . , em) are
linearly independent, so ω2 = 0 by (10). This is a contradiction, so rk� ≤ 2.

If � = 0, the algebra n is 2-step nilpotent by (8). Now suppose � �= 0.
The centralizer of n′ in n is an adg(h)-invariant ideal in n, so its intersection with

v, which is the subspace c = Ker� ⊂ v, is also adg(h)-invariant. Then the subspace
c⊥ ⊂ v is adg(h)-invariant as well. Note that dim c⊥ = rk� ∈ {1, 2} by the above
argument, and that 〈·, ·〉|c is nondegenerate by our assumption. Then 〈·, ·〉|c⊥ is also
nondegenerate. As �c = 0, (10) implies ω2(c, c) = 0, where we take V1, V2 ∈ c

123



The Structure of Geodesic… Page 7 of 12    82 

and V3 ∈ c⊥. Moreover, taking in (6) Y ∈ c, Y ′ ∈ c⊥, we obtain [c, c⊥] = 0, and in
particular, ω2(c, c

⊥) = 0.
Since ω2 �= 0, we must have ω2(c

⊥, c⊥) �= 0, and so dim c⊥ = 2. Let Y1,Y2
be a basis for c⊥ such that 〈Yi ,Y j 〉 = εiδi j , where εi = ±1 for i = 1, 2. As c⊥
is adg(h)-invariant, adg(h)|n is skew-symmetric, we obtain [A,Y1] = ε1μ(A)Y2 and
[A,Y2] = −ε2μ(A)Y1, for any A ∈ h, whereμ is a linear functional on h. In particular,
[A, [Y1,Y2]] = 0 for all A ∈ h. Taking X = [Y1,Y2] in (7), we see that [Y , [Y1,Y2]] =
0 for all Y ∈ v such that Y +[Y1,Y2] is non-null. Thus, [Y , [Y1,Y2]] = 0 for all Y ∈ v.
But then (8) and (9) implyω2(Y1,Y2)�Y = 0, soω2(Y1,Y2) = 0. Soω2(c

⊥, c⊥) = 0,
which is a contradiction. �


The Lorentz manifold case of Theorem 1 is of special interest, so we state it sepa-
rately.

Theorem 2 Let (M = G/H , ds2) be a connected Lorentz G-geodesic orbit nilman-
ifold where G = N � H with N nilpotent. Let 〈·, ·〉 denote the inner product on n
induced by ds2. If 〈·, ·〉|[n.n] is nondegenerate, then N is abelian or 2-step nilpotent.

Proof This is an immediate consequence of assertion (b) in Theorem 1. Indeed, the
centralizer of n′ is the direct sum of n′ and a subspace c of v, and if 〈·, ·〉 is Lorentz
and its restriction to n’ is Lorentz, then and its restriction to n′ is Lorentz, then the
inner product on v is definite, which implies that it is also definite on c, and hence the
centralizer of n′ is nondegenerate. �


If the GO condition in Theorems 1 and 2 is replaced by the natural reductivity
condition, the complete description of all resulting nilmanifolds is given in [18, The-
orem 3.2]. There the construction in arbitrary signature is similar to the construction
for Riemannian signature.

4 The Double Extension Theorem

Given a metric Lie algebra m0 with a nondegenerate inner product 〈·, ·〉0, say of
signature (p, q), let m1 be its central extension, as in the exact sequence

0 → Re → m1 → m0 → 0 where m1 = Re ⊕ m0 with e �= 0 �= [e,m1] (11)

where the arrows are Lie algebra homomorphisms. Let a Lie algebra m2 = R f ⊕m1
be an extension of m1 by a nonzero derivation f as follows.

0 → m1 → m2 → R f → 0, Lie algebra exact Seq, adm2( f )|m1 ∈ Derm1. (12)

Then (m2, 〈·, ·〉) is a Lie algebra with a nondegenerate inner product 〈·, ·〉 of signature
(p + 1, q + 1) defined by

〈·, ·〉|m0 = 〈·, ·〉0, 〈e,m0〉 = 〈 f ,m0〉 = 0, ‖e‖ = ‖ f ‖ = 0, 〈e, f 〉 = 1. (13)
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In particular, if 〈·, ·〉0 is positive definite, so 〈·, ·〉 is of Lorentz signature, then
(m2, 〈·, ·〉) is called the Lorentz double extension of (m0, 〈·, ·〉0). The double exten-
sion is a well-known tool since in [15] it has been used for constructing bi-invariant
pseudo-Riemannian inner products. Our approach is closer to that of [22].

Theorem 3 Let (M = G/H , ds2) be a connected Lorentz geodesic orbit nilmanifold,
where G = N � H with N nilpotent. Let 〈·, ·〉 be the inner product on n defined
by ds2. Suppose that 〈·, ·〉|[n,n] is degenerate. Then (n, 〈·, ·〉) is a Lorentz double
extension of the metric Lie algebra corresponding to a Riemannian GO nilmanifold
(which necessarily is abelian or 2-step nilpotent).

Proof Suppose the restriction of 〈·, ·〉 to n′ = [n, n] is degenerate. Let e ∈ n′ be
a nonzero null vector. Let v denote the orthogonal complement to n′ in n, and let
m1 = n′ + v. We have n′ ∩ v = Re and m1 = e⊥. Moreover, all four subspaces
Re, n′, v, and m1 are adg(h)-invariant.

The subspace m1 is a degenerate hyperplane in n and is an adg(h)-invariant ideal.
We choose a null vector f such thatR f ⊕m1 = n and 〈 f , e〉 = 1 (note that the choice
of such f is not unique). Clearly m1 is adg( f )-invariant and adg( f )|m1 acts on m1
as a nilpotent derivation. Moreover, the restriction of 〈·, ·〉 to Span( f , e) is Lorentz.
Let m0 = (Span( f , e))⊥. Define the inner product 〈·, ·〉0 on m0 to be the restriction
of 〈·, ·〉 to m0 . Note that 〈·, ·〉0 is positive definite.

According to our definition, to prove that (n, 〈·, ·〉) is a Lorentz double extension of
(m0, 〈·, ·〉0), it remains to show that e lies in the center ofm1 (and then the Lie bracket
[·, ·]0 on m0 is defined by requiring that (m0, [·, ·]0) be isomorphic to the quotient
algebra m1/(Re)). To see that e is central in m1, take T = X ∈ m0 and T ′ = e in (1).
Using the facts that e ⊥ m0 and thatRe is adg(h)-invariant, we obtain 〈adg(e)X , X〉 =
0 for all X ∈ m0 . Then for X ∈ m0, we have adg(e)X = K X + μ(X)e for some
endomorphism K of m0 and a linear form μ on m0. As K is nilpotent and skew-
symmetric relative to a positive definite inner product 〈·, ·〉0, we get K = 0, and so
[X , e] = −μ(X)e, for all X ∈ m0 . Since adg(X) is nilpotent, e lies in the center of
m1.

To complete the proof of the theorem, we need to show that the metric Lie algebra
(m0, 〈·, ·〉0) is the Lie algebra of a Riemannian GO nilmanifold.

Take a nonzero X ∈ m0. From the Geodesic Lemma, we can find A(X) ∈ h such
that (1) with T = X holds for all T ′ ∈ n, and in particular, for all T ′ = Y ∈ m0 .
Note that k(X) = 0, as X is non-null. Define a skew-symmetric operator D(X) on
(m0, 〈·, ·〉0) by 〈D(X)Y ,Y ′〉0 = 〈[A(X),Y ],Y ′〉 for Y ,Y ′ ∈ m0. As m1 and Re
are adg(A(X))-invariant and [e,m1] = 0, we find that D(X) is a (skew-symmetric)
derivation of the algebra (m0, [·, ·]0). Then (1) gives 〈[X ,Y ]0, X〉0+〈D(X)Y , X〉0 =
0 (as 〈e,m1〉 = 0) which completes the proof according to the Riemannian version of
the Geodesic Lemma. �


5 Examples Related To Degree of Nilpotence

In this section, we use Theorem 3 to show that the set of nilpotency steps of Lorentz
GO nilmanifolds is unbounded. In our examples, the group G = N � H where
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H = H(N ) is the full group of isometric automorphisms of (N , ds2). We construct
both naturally reductive examples and examples that are not naturally reductive, first
constructing the naturally reductive ones and then modifying them to get examples
that are not naturally reductive.

Let d > 1 and let S be an s × s matrix that is d-step nilpotent, that is, Sd = 0
but Sd−1 �= 0. For example, S could be the (d + 1) × (d + 1) matrix (Si, j ) where
Si,i+1 = 1 for 1 ≤ i ≤ d and all other Si, j = 0. Introduce the following (2s) × (2s)
matrices:

P =
(
0s −St

S St−S

)
and Q =

(
0s St

S St−S

)
. (14)

The matrix P is skew-symmetric and the matrix Q is nilpotent. To see the latter,

compute Q =
(

Is Is
0s Is

) ( −S 0s
S St

) (
Is −Is
0s Is

)
. From that, Q is nilpotent and Qd−1 �= 0.

Following the idea of the construction in Theorem 3, we start with a Riemannian
metric Lie algebra (m0, 〈·, ·〉0). Here, m0 = R

2s as a vector space, 〈·, ·〉0 is positive
definite, and we fix an orthonormal basis B. The Lie algebra structure of m0 and a
central extensionm1 = Re⊕m0 (vector space direct sum), 0 → Re → m1 → m0 →
0, are given by

〈e,m1〉 = 0 and 〈X ,Y 〉 = 〈X ,Y 〉0 for X ,Y ∈ m0

[e,m1] = 0 and [X ,Y ] = 〈PX ,Y 〉0 e for X ,Y ∈ m0
(15)

where P has matrix (14) relative to the basis B of m0. Next, define the extension n of
m1 by n = R f ⊕ m1 (vector space direct sum), 0 → m1 → n → R f → 0, with the
Lie bracket and the inner product defined by (15) on m1, and additionally, by

〈 f , e〉 = 1 and 〈 f , X〉 = 〈 f , f 〉 = 0 for X ∈ m0

[ f , e] = 0 and [ f , X ] = QX for X ∈ m0
(16)

withmatrices relative toB as before. The algebra n so constructed is nilpotent, and is of
step at least d, as adg( f )d−1X = Qd−1X �= 0 for some X ∈ m0. Note dim n = 2s+2.

We claim that (n, 〈·, ·〉) is geodesic orbit. To see this, let T = α f + X + ηe ∈ n
where X ∈ m0 and α, η ∈ R. Define k(T ) = 0 and A(T ) ∈ h = Lie(H) in such a
way that

adg(A(T ))e = 0, adg(A(T )) f = v(T ), and adg(A(T ))Y

= −〈v(T ),Y 〉e for Y ∈ m0,

where v(T ) = (Qt + P)X =
(

0s 0s
2S 0s

)
X ∈ m0.

(17)

It is easy to check that adg(A(T )) so defined is a skew-symmetric derivation of
(n, 〈·, ·〉).
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Using (15)–(17), for an arbitrary T ′ = β f +Y +ρe ∈ nwith Y ∈ m0 and β, ρ ∈ R,
we have

[T , T ′] = αQY − βQX + 〈PX ,Y 〉e and [A(T ), T ′] = βv(T ) − 〈v(T ),Y 〉e,

and so

〈[T + A(T ), T ′], T 〉 = 〈(αQY − βQX + βv(T )) + (〈PX , Y 〉 − 〈v(T ), Y 〉)e, α f + X + ηe〉
= β〈v(T ) − QX , X〉 + α〈(Qt + P)X − v(T ), Y 〉 = 0.

By the Geodesic Lemma, (n, 〈·, ·〉) is GO .
In fact (n, 〈·, ·〉) is (G-)naturally reductive. The geodesic graph A(T ) given by (17)

is linear in T (and k = 0), so according to Proposition 2, we need to check that A(T )

is adg(h)-equivariant, where h is the Lie algebra of skew-symmetric derivations of
(n, 〈·, ·〉). Straightforward computation using (15) and (16) shows that h is spanned
by elements B such that

u := adg(B) f ∈ m, adg(B)e = 0 and adg(B)X = �X − 〈u, X〉e for X ∈ m0,

where � ∈ so(m0) and [�, P] = [�, Q] = 0 and (Qt + P)u = 0.

(18)

Then, whenever T ∈ n and B ∈ h, we have adg(A)(adg(B)T ) = adg(B) adg(A(T ))

by a direct calculation, using (17), (18) and the consequence (Qt + P)2 = 0 of (14).
This completes the proof that (n, 〈·, ·〉) is (G-)naturally reductive.

A manifold that is not naturally reductive can be constructed by taking the direct
sum of an algebra constructed above and one that is not naturally reductive. For
example, let (n1, 〈·, ·〉1) be a Lorentz algebra constructed above, and let (n2, 〈·, ·〉2)
be a Riemannian 2-step nilpotent Lie algebra defined by n2 = z ⊕ a, a = z⊥ = R

4,
with Lie bracket defined as follows. Let {z1, z2} is an orthonormal basis for z and
J1, J2 ∈ so(4) such that Ji J j + J j Ji = −2δi j I4 for i, j = 1, 2. So J1 and J2 lie in
the same so(3) factor of so(4) and are orthonormal relative to the Killing form, up to
scale. Then the Lie algebra structure on n2 is given by

[n2, z] = 0 and [X ,Y ] = 〈J1X ,Y 〉2z1 + 〈J2X ,Y 〉2z2, for X ,Y ∈ a.

Then (n2, 〈·, ·〉2) is GO , but not naturally reductive ([12, Proposition 3], [14, Theo-
rem 5.3(I)]). Note dim n2 = 6.

Now define the Lorentz Lie algebra (n, 〈·, ·〉) = (n1, 〈·, ·〉1) ⊕ (n2, 〈·, ·〉2) as the
orthogonal direct sum of (n1, 〈·, ·〉1) and (n2, 〈·, ·〉2). Let πi : n → ni denote the
orthogonal projections. Let H be the full group of skew-symmetric automorphisms
of the resulting nilmanifold (N , ds2) and let h its Lie algebra. Note that h may a
priori be bigger than the direct sum of the corresponding algebras for (n1, 〈·, ·〉1) and
(n2, 〈·, ·〉2). But if B ∈ h then (πi B)|ni is a skew-symmetric derivation of (ni , 〈·, ·〉i ).
Were (n, 〈·, ·〉) naturally reductive, it would admit a linear geodesic graph A : n →
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h by Proposition 2, which would then give a linear geodesic graph (π2A)|n2 for
(n2, 〈·, ·〉2), in contradiction with Proposition 2 and the comment after its proof.

It would be very interesting to see which of these Lorentz GO nilmanifolds are
weakly symmetric.

We summarize the considerations of this section as they apply to the cases where
the nilpotent matrices S are exemplified just before (14).

Theorem 4 For every number d > 1, there exist both a naturally reductiveGO Lorentz
nilmanifold (N , ds2) nilpotent of step ≥ d and dimension 2d + 4, and a GO Lorentz
d ′-step nilmanifold (N1, ds21 ) × (N2, ds22 ) with d

′ ≥ d and dimension 2d + 10.

Note that the GO Lorentz nilmanifolds constructed in Sect. 5, in particular those
cited in Theorem 4, have nilpotence bounds in sharp contrast to the bounds of Theorem
1 and the results of [6].We now compare the constructions of this section, including the
case of Theorem 4, with the nilpotence bounds of [6, Theorem 8]; there, if 〈·, ·〉|[n,n]
is degenerate and the action of adg(h) on n is completely reducible (semisimple), then
N is abelian or 2-step nilpotent. The reason for the difference here is

Proposition 3 The GO Lorentz nilmanifolds constructed in Sect. 5 have the property
that the action of AdG(H) on n is not completely reducible.

Proof Fix a Lorentz nilmanifold as constructed in this section. If we assume com-
plete reducibility, we obtain a contradiction as follows. First note from (14)–(16), that
[n, n] = Qm0 + Re is AdG(H)-invariant. Thus, [n, n] ∩ [n, n]⊥ = Re is AdG(H)-
invariant. Now (Re)⊥ = m0 + Re = m1 is stable under AdG(H). An invariant
complement tom1 in nmay be taken to be R f . So nowm0, Re and R f are AdG(H)-
invariant, while (17) shows that some elements of adg(h) map f intom0,m0 into Re,
and e to 0, with nonzero images. That contradicts complete reducibility of the action
of AdG(H) on n. �


6 Remarks

Together, Theorem 4 and Proposition 3 show that the existence of a reductive decom-
position g = h ⊕ n is crucial in Theorems 1 and 3. This gives a good indication of
the difficulty of finding structural results for non-reductive GO Lorentz nilmanifolds.
However, it might be worthwhile to explore two special cases: naturally reductive and
weakly symmetric.

Recall that a pseudo-Riemannian manifold (M, ds2) is weakly symmetric if, given
x ∈ M and a tangent vector ξ ∈ Mx , there is an isometry sx,ξ of (M, ds2) such
that sx,ξ (x) = x and dsx,ξ (ξ) = ξ ; (M, ds2) is symmetric if we can always choose
sx,ξ independent of ξ . Let (M, ds2) be weakly symmetric and G = I (M, ds2) with
M = G/H . In the Riemannian case [21, Theorem 13.1.1], the nilradical N of G is
abelian or 2-step nilpotent. In general, if there is a reductive decomposition g = m+h
with n ⊂ m and the metric definite on [n, n] then [7, Theorem 4.12] N is abelian
or 2-step nilpotent. There N does not have to be transitive on M . This suggests that
Theorem 1 might apply when N is Lorentz, or perhaps even in a general signature of
metric when the inner product on [n, n] is definite or Lorentz.
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One can consider the possibility of a converse to Theorem 3, perhaps guided by
the examples of Sect. 5. Let (n, 〈·, ·〉) be a double extension of a metric Lie algebra
(n0, 〈·, ·〉0) corresponding to a Riemannian GO manifold. What are the conditions
for (n, 〈·, ·〉) to be GO? Or naturally reductive? Or weakly symmetric? And what if
(n0, 〈·, ·〉0) corresponds to a Lorentz GO manifold?
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