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Abstract. Weakly symmetric space theory is a natural generalization of the theory of Rie-
mannian symmetric spaces. It includes a theory of weakly symmetric Riemannian nilmanifolds.
Much of the recent progress there has been based on the geodesic orbit property and that fact
that the nilpotent groups in question are abelian or two–step nilpotent. Here we concentrate
on the geodesic orbit property for pseudo-Riemannian manifolds, obtaining sharp results on the
structure of geodesic orbit (in particular weakly symmetric) Lorentzian nilmanifolds. Suppose
that the geodesic orbit nilmanifold is G/H with G = N oH and N nilpotent. Then Theorem
4.2 shows that N either is at most 2–step nilpotent as in the Riemannian situation, or is 4–step
nilpotent, but cannot be 3–step nilpotent. Examples show that these bounds on are the best
possible. Surprisingly, Theorem 5.1 shows that N is at most 2–step nilpotent when the metric
is degenerate on [n, n]. Both theorems give additional structural information.
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1. Introduction

Weakly symmetric Riemannian manifolds were introduced by A. Selberg [11]. They give a
natural extension of the theory of Riemannian symmetric spaces. Selberg defined a connected
Riemannian manifold (M, g) to be weakly symmetric if there exist a subgroup G of the isometry
group I(M, g) that is transitive on M and an isometry µ ∈ I(M, g) with these properties. First,
µ2 ∈ G and µGµ−1 = G. Second, for any two points p, q ∈M there exists an isometry φ ∈ G with
φ(p) = µ(q) and φ(q) = µ(p). Of course, any Riemannian symmetric space is weakly symmetric.
This definition is somewhat complicated, and several people gave more transparent geometric
characterizations. J. Berndt and L. Vanhecke [2] showed that a Riemannian homogeneous space
M is weakly symmetric if and only if for any two points p, q ∈ M there is an isometry of M
that exchanges p and q. Z. I. Szabó [12] introduced the notion of symmetric ray space, where
for every maximal geodesic γ and point m ∈ γ there is an isometry that preserves γ with m
as isolated fixed point; the authors of [2] showed that this condition is equivalent to the weakly
symmetric condition. As noted by W. Ziller [16] now a Riemannian manifold (M, g) is weakly
symmetric if and only if, given x ∈ M and a nonzero tangent vector ξ ∈ Tx(M) there exists
sx,ξ ∈ I(M, g) such that sx,ξ(x) = x and dsx,ξ(ξ) = −ξ. See the survey article [7] for a discussion
of weakly symmetric spaces, D’Atri spaces and geodesic orbit spaces, and [16] for a number of
new examples.

The point of Selberg’s introduction of Riemannian weakly symmetric spaces M = G/H is that
the algebra D(G/H) of G–invariant differential operators on G/H is commutative, generalizing
the well known fact for Riemannian symmetric spaces. This is a special case of the notion of
commutative space: if G is a separable locally compact group and H is a compact subgroup, then
G/H is called commutative (or (G,H) is a Gelfand pair) if the convolution algebra L1(H\G/H)
is commutative. The two notions are equivalent if G is a connected Lie group. See [13] for an
exposition. Also (again see [13]) G/H is commutative if and only if the left regular representation
of G on L2(G/H) is multiplicity free. So that multiplicity free condition applies in particular
to weakly symmetric Riemannian manifolds M = G/H independent of choice of G–invariant
Riemannian metric.
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Weakly symmetric pseudo-Riemannian manifolds were studied by Z. Chen and J. A. Wolf
in [3, 4, 14]. They showed that many results from the Riemannian case can be generalized to
weakly symmetric pseudo-Riemannian manifolds, but some need additional hypotheses. There
are many open problems for the theory of weakly symmetric pseudo-Riemannian manifolds. In
this paper, we mainly study several equivalent characterizations and obtain a complete structure
theorem for weakly symmetric Lorentz nilmanifolds.

2. weakly symmetric pseudo-Riemannian manifolds

As mentioned in the Introduction, there are a number of characterizations equivalent to the
definition of weakly symmetric for a Riemannian manifold. The paper [3] of Z. Chen and J. A.
Wolf concentrates on the condition most accessible by Lie algebra methods.

Definition 2.1. Let (M, g) be a pseudo-Riemannian manifold. Suppose that for every x ∈ M
and every nonzero tangent vector ξ ∈ TxM , there is an isometry φ = φx,ξ of M such that
φ(x) = x and dφ(ξ) = −ξ. Then (M, g) is a weakly symmetric pseudo-Riemannian manifold. In
particular, if φx,ξ is independent of ξ, M is symmetric.

In other words, if γ is a maximal geodesic and m ∈ γ there is an isometry of M which is a
non-trivial involution on γ with m as fixed point.

A connected homogeneous pseudo-Riemannian manifold need not be geodesically convex, but
any two points can be joined by a broken geodesic. Thus

Proposition 2.2. Let (M, g) be a connected pseudo-Riemannian manifold. If (M, g) is weakly
symmetric, then for any x, y ∈M there is an isometry that interchanges x and y. In particular
if (M, g) is weakly symmetric then it is homogeneous.

A. Selberg’s original definition of weakly symmetric space holds also for pseudo-Riemannian
manifolds:

Definition 2.3. Let (M, g) be a pseudo-Riemannian manifold. If there exists a subgroup G
of the isometry group I(M) of M acting transitively on M and an involutive isometry µ of
(M, g) with µG = Gµ such that whenever x, y ∈ M there exists φ ∈ G with φ(x) = µ(y) and
φ(y) = µ(x), then (M, g) is a weakly symmetric pseudo-Riemannian manifold.

Going segment by segment along broken geodesics, as in the Riemannian case we have

Proposition 2.4. A pseudo-Riemannian manifold (M, g) is weakly symmetric if and only if for
any two points x, y ∈M there is an isometry of M mapping x to y and y to x.

Recall the De Rham-Wu decomposition theorem [15]. Let (M, g) be a complete simply con-
nected pseudo-Riemannian manifold, x ∈ M , and Tx(M) = Tx,0 ⊕ · · · ⊕ Tx,r a decomposition
of the tangent space at x into holonomy invariant mutually orthogonal subspaces, where the
holonomy group at x is trivial on Tx,0 and irreducible on the other Tx,i . Suppose that the
pseudo-Riemannian metric g has nondegenerate restriction to Tx,i for each index i . Then
(M, g) is isometric to a pseudo-Riemannian direct product (M0, g0) × · · · × (Mr, gr), where
x = (x0, . . . , xr) and for each index, (Mi, gi) has tangent space Tx,i at xi . As in the Riemannian
case (Mi, gi) is the maximal integral manifold through x of the distribution obtained by parallel
translating Tx,i M and equipped with the metric gi induced by g. Thus

Proposition 2.5. Let (M, g) be a complete simply connected pseudo-Riemannian manifold,
x ∈M , and Tx(M) = Tx,0⊕ · · · ⊕ Tx,r a decomposition of the tangent space at x into holonomy
invariant mutually orthogonal subspaces, where the holonomy group at x is trivial on Tx,0 and
irreducible on the other Tx,i . Suppose that the pseudo-Riemannian metric g has nondegenerate
restriction to Tx,i for each index i and let (M, g) = (M0, g0)×· · ·×(Mr, gr) be the De Rham-Wu
decomposition. Then (M, g) is weakly symmetric if and only if each of the pseudo-Riemannian
manifolds (Mi, gi) is weakly symmetric.
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Definition 2.6. Let G be a connected Lie group and H be a closed subgroup. Suppose that
σ is an automorphism of G such that σ(p) ∈ Hp−1H ∀p ∈ G. Then G/H is called a weakly
symmetric coset space, (G,H) is called a weakly symmetric pair, and σ is called a weak symmetry
of G/H.

It is easy to see that a weakly symmetric pseudo-Riemannian manifold is a weakly symmetric
coset space (G,H) where G is the isometry group.

In the context of homogeneous spaces G/H where G is a connected Lie group and H is a
compact subgroup, one often says that G/H is commutative when the algebra of all G-invariant
differential operators is commutative. That is a special case (where G is a connected Lie group)
of the correct definition: G is a separable locally compact group, H is a compact subgroup, and
the convolution algebra L1(H\G/H) is commutative. Selberg [11] proved that a Riemannian
weakly symmetric space M = G/H is a commutative space, but Lauret [9] found commutative
spaces that are not weakly symmetric.

3. Geodesics in pseudo-Riemannian weakly symmetric spaces

In this section we discuss questions of the geodesic orbit property. We will need that in the
proofs of our main results, Theorems 4.2 and 5.1. First we recall some background and some
results of Z. Chen and J. A. Wolf from [3].

Definition 3.1. A pseudo-Riemannian manifold M is called a geodesic orbit space if every
maximal geodesic in M is an orbit of a one-parameter group of isometries of M .

Note that pseudo-Riemannian geodesic orbit spaces are geodesically complete and homoge-
neous. The first principal result in [3, §4] is

Proposition 3.2. Weakly symmetric pseudo-Riemannian manifolds are geodesic orbit spaces.

This is phrased in [3] as saying that every maximal geodesic is homogeneous. The concept of a
homogeneous geodesic is well known in the Riemannian case; see [8]. In the pseudo-Riemannian
case the generalized version comes from [5]:

Definition 3.3. Let M = G/H be a homogeneous pseudo-Riemannian manifold, p = 1H ∈
G/H the base point, and g = m + h a reductive ([h,m] ⊂ m) decomposition. Let s 7→ γ(s) be a
geodesic through p defined on an open interval J . Then γ is homogeneous if there exist

1) a diffeomorphism t 7→ φ(t) from the real line onto J and
2) a vector X ∈ g such that γ(φ(t)) = exp(tX)(p) for all t ∈ R.

The vector X is then called a geodesic vector.

The formula for geodesic vectors in the pseudo-Riemannian case appeared in [5, 6, 10]:

Lemma 3.4. (Geodesic Lemma). Let M = G/H be a pseudo-Riemannian homogeneous space.
Suppose that there is a reductive decomposition g = m + h. Let p = 1H ∈ G/H and X ∈ g.
Then the curve γ(t) = exp(tX)(p) is a geodesic curve with respect to some parameter s if and
only if

〈[X,Z]m, Xm〉 = k〈Xm, Z〉
for all Z ∈ m, where k is a constant. If k = 0, then t is an affine parameter for γ. If k 6= 0,
then s = e−kt is an affine parameter for γ, and γ is a null curve in M .

Definition 3.5. A homogeneous pseudo-Riemannian space M = G/H is called a g.o. space,
if every geodesic of M is homogeneous.

Let M = G/H, G = I(M), be a pseudo-Riemannian homogeneous space with a reductive
decomposition g = m + h. From the Geodesic Lemma, M is a geodesic orbit space if and only
if for each X ∈ m, there exists A ∈ h such that 〈[X +A,Z]m, X〉 = k〈X,Z〉 for any Z ∈ m.
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4. Lorentz Geodesic Orbit and Weakly Symmetric Nilmanifolds, I

We start with a useful lemma.

Lemma 4.1. [1] Let B ∈ so(n− 1, 1). In a suitable basis {ei} of Rn, either

(1)B is semisimple , B =

(
µ 0 0
0 C 0
0 0 −µ

)
with C ∈ so(n− 2) and µ ≤ 0, where

〈e1, en〉 = 1 , 〈ei, ej〉 = δij (i, j = 2, · · · , n− 1) and the other scalar products vanish, or

(2)B is not semisimple , B =

(
0 1 0
0 0 1 0
0 0 0
0 C

)
with C ∈ so(n− 3), where 0 fills in with zeroes,

− 〈e1, e3〉 = 〈e2, e2〉 = 1, 〈ei, ej〉 = δij(i, j = 4, · · · , n) and the other scalar products vanish.

There is a typographical error in [1]; in case (2) there, one should assume r = e1 and q = e2.

From Lemma 4.1, any matrix H ∈ so(n − 1, 1) has n − 2 purely imaginary eigenvalues and
two non-zero real eigenvalues ±µ, or has n purely imaginary eigenvalues, viewing 0 as purely
imaginary. Now we can state the first of our two main results, the case where the metric is
nondegenerate on [n, n].

Theorem 4.2. Let (M = G/H, 〈 , 〉) be a connected Lorentz geodesic orbit nilmanifold, where
G = N oH with N nilpotent. (For example, by Proposition 3.2, (M, 〈 , 〉) could be a connected

weakly symmetric Lorentz nilmanifold with G = I(N)0). Suppose that there is a reductive
decomposition g = n⊕ h. Then N is at most 4-step nilpotent.

Identify n with the tangent space at 1H and let v denote the orthocomplement of [n, n] in n.
Suppose that 〈, 〉 is nondegenerate on [n, n]. Then ad(x) = 0 for any x ∈ v, or there is a basis
{x, x̃1, · · · , x̃s} of v (s ≥ 1) such that

ad(x)|[n,n] =

(
0 1 0
0 0 1
0 0 0

0

0 0

)
; ad(x̃1)|[n,n] =

 0
a1 a2 ··· ap
0 0 ··· 0
0 0 ··· 0

0 0 a1
...

...
...

0 0 ap

0

 ;

ad(x̃i)|[n,n] = 0 for 2 ≤ s, 2 ≤ i ≤ s; and ad([y, z])|[n,n] = 0 for all y, z ∈ n.

Proof. For every X ∈ n, there exists A ∈ h such that 〈[X +A,Z]n, X〉 = k〈X,Z〉 for any Z ∈ n.
Since v = [n, n]⊥ ∩ n relative to 〈·, ·〉, and n and [n, n] are ideals in g, v is AdG(H)-invariant.

For any η ∈ [n, n], by the Geodesic Lemma, there exists Aη such that

〈[η +Aη, ξ]n, η〉 = k〈η, ξ〉 = 0

for any ξ ∈ v. It follows that 〈[ξ, η]n, η〉 = 0. That is, for any ξ ∈ v and η, ζ ∈ [n, n],

〈[ξ, η], ζ]〉+ 〈η, [ξ, ζ]〉 = 0 (4.1)

We are assuming that [n, n] is non-degenerate. Then n = [n, n] ⊕ v. If [n, n] is positive or
negative definite, then ([3, Theorem 4.12]) n is commutative or 2-step nilpotent. Those cases
aside, suppose that [n, n] is indefinite. Write dim[n, n] = p+ 3. Fix x ∈ v. By Lemma 4.1, [n, n]
has a basis {e1, e2, · · · , ep+3} in which the inner product has matrix

〈·, ·〉[n,n] =

(
0 0 −1
0 1 0
−1 0 0

0

0 Ip

)
(4.2)

and if ad(x) 6= 0 it has matrix

ad(x)|[n,n] =

(
0 1 0
0 0 1
0 0 0

0

0 0

)
(4.3)
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If ad(x) = 0 for any x ∈ v, then n is 2-step nilpotent since v generates n. In the following, we
assume that there exists x ∈ v such that ad(x) 6= 0.

Let y ∈ v. The matrix of ad(y) with respect to the given basis on [n, n] has form
(
A B
C D

)
where

D ∈ Rp×p. By Lemma 4.1, in a possibly different basis, we have either ad(y)|[n,n] =

(
0 1 0
0 0 1
0 0 0

0

0 0

)
or ad(y)|[n,n] = 0.

If ad(y)|[n,n] 6= 0, we have the rank r(ad(y)|[n,n]) = 2. If D 6= 0 Take a real number λ � 0
and consider the matrix of ad(λx + y)|[n,n]. For λ � 0 the rank r(ad(λx + y)) ≥ 3, which is a
contradiction. Thus D = 0.

Express A =
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
. In the basis {e1, e2, · · · , ep+3}, ad(λx+ y)|[n,n] has matrix

(
Ã B̃
C̃ 0

)
where Ã =

(
a11 a12+λ a13
a21 a22 a23+λ
a31 a32 a33

)
. If a31 6= 0 and λ� 0 then det(Ã) 6= 0. Then r(ad(λx+ y)|[n,n]) ≥

3, which is a contradiction. Thus a31 = 0. Similarly the first column of C and the third row of
B vanish. We will need these constraints on the matrix ad(y)|[n,n] =

(
A B
C 0

)
.

Since the metric on N has matrix
(
W 0
0 Ip

)
where W =

(
0 0 −1
0 1 0
−1 0 0

)
, by equation (4.1), we have(

At Ct

Bt 0

)(
W 0
0 Ip

)
+
(
W 0
0 Ip

) (
A B
C 0

)
= 0.

In other words.
AtW = −WA and Ct = −WB. (4.4)

Let A =
( a11 a12 a13
a21 a22 a23
0 a32 a33

)
, B =

(
b11 b12 ··· b1p
b21 b22 ··· b2p
0 0 ··· 0

)
and Ct =

( 0 0 ··· 0
c21 c22 ··· c2p
c31 c32 ··· c3p

)
. By (4.4), A =(

a11 a12 0
a21 0 a12
0 a21 −a11

)
, c2i = −b2i and c3i = b1i, for i = 1, · · · , p. Thus

ad(y)|[n,n] =



a11 a12 0 b11 b12 · · · b1p
a21 0 a12 b21 b22 · · · b2p
0 a21 −a11 0 0 · · · 0
0 −b21 b11
...

...
... 0

0 −b2p b1p


. (4.5)

Since ad(n) preserves both [n, n] and v = [n, n]⊥, we have ad([x, y])|[n,n] = [ad(x)|[n,n], ad(y)|[n,n]].
Combining (4.3) and (4.5), now,

ad([x, y])|[n,n] =



a21 −a11 0 b21 b22 · · · b2p
0 0 −a11 0 0 · · · 0
0 0 a21 0 0 · · · 0
0 0 b21
...

...
... 0

0 0 b2p


.

As ad([x, y])|[n,n] is nilpotent, its eigenvalues all are zero. Thus a21 = 0. Similarly, from (4.5),

a11 = 0. Moreover, the matrix of (ad(y)|[n,n])2 is

(ad(y)|[n,n])2 =



0 −
∑p

i=1 b1ib2i a212 +
∑p

i=1 b
2
1i b21 b22 · · · b2p

0 −
∑p

i=1 b
2
2i

∑p
i=1 b1ib2i 0 0 · · · 0

0 0 0 0 0 · · · 0
0 0 −a12b21 −b221 −b21b22 · · · −b21b2p
...

...
...

...
...

...
...

0 0 −a12b2p −b2pb21 −b2pb22 · · · −b22p


. (4.6)
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From that we compute the trace Tr((ad(y)|[n,n])2) = −2
∑p

1 b
2
2i. As (ad(y)|[n,n])2 is nilpotent, it

has trace 0, so b21 = · · · = b2p = 0.

From these calculations we have

ad([x, y])|[n,n] = 0 for all y ∈ v. (4.7)

Writing a(y) for a12 and bj(y) for b1j we also have

ad(y)|[n,n] =



0 a(y) 0 b1(y) b2(y) · · · bp(y)
0 0 a(y) 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 b1(y)
...

...
... 0

0 0 bp(y)


, for all y ∈ v. (4.8)

Initially (4.8) requires y to be linearly independent of x, but it holds for all y ∈ v with a(y) = 1
and bj(y) = 0.

We continue to simplify the structure of ad(y)|[n,n]. For the moment assume dim v = s+1 ≥ 2.
Extend {x} to a basis {x, x1, · · · , xs} of v. Using (4.8)

ad(xi)|[n,n] =



0 a(xi) 0 b1(xi) b2(xi) · · · bp(xi)
0 0 a(xi) 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 b1(xi)
...

...
... 0

0 0 bp(xi)


for 1 ≤ i ≤ s.

From this point on, in the proof of Theorem 4.2, we will make successive modifications of
the basis {x, x1, · · · , xs − a(xs)x}, along the lines of Gauss Elimination. To avoid complicated
notation we use {x, x̃1, · · · , x̃s} for each of the successive modifications.

In the basis {x, x̃1, · · · , x̃s} := {x, x1 − a(x1)x, · · · , xs − a(xs)x} we now have

ad(x̃i)|[n,n] =



0 0 0 b1(x̃i) b2(x̃i) · · · bp(x̃i)
0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
0 0 b1(x̃i)
...

...
... 0

0 0 bp(x̃i)


for 1 ≤ i ≤ s. (4.9)

From (4.9) we compute [ad(x̃i), ad(x̃j)]|[n,n] = [ad(x̃i)|[n,n], ad(x̃j)|[n,n]] = 0 for 1 ≤ i, j ≤ s. Also,
from (4.3) together with (4.9), [ad(x), ad(x̃j)]|[n,n] = [ad(x)|[n,n], ad(x̃j)|[n,n]] = 0. Thus

[[v, v], [n, n]] = 0. (4.10)

Assume s ≥ 2. Write [x, x̃i] =
∑p+3

k=1 a
k
i ek and [x̃i, x̃j ] =

∑p+3
k=1 a

k
i,jek . Then

[x̃i, [x, x̃j ]] =
∑p+3

k=1
akj [x̃i, ek] = a3j

∑p

`=1
b`(x̃i)e`+3 +

(∑p

k=1
ak+3
j bk(x̃i)

)
e1 ,

[x, [x̃j , x̃i]] =
∑p+3

k=1
akj,i[x, ek] = a2j,i e1 + a3j,i e2 , and

[x̃j , [x̃i, x]] = −
∑p+3

k=1
aki [x̃j , ek] = −a3i

∑p

`=1
b`(x̃j)e`+3 +

(∑p

k=1
ak+3
i bk(x̃j)

)
e1

(4.11)

The first and third terms here have no e2 component. From the Jacobi Identity [x, [x̃j , x̃i]] has
no e2 component, i.e. a3j,i = 0, so [x, [x̃j , x̃i]] = a2j,i e1 and [x̃j , x̃i] has no e3 component.
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Suppose that [x, x̃j ] has nonzero e3 component. At least one of those e3 components is nonzero
because v generates n. We next modify the basis {x, x̃1, . . . , x̃s} of v by (1) permuting the {x̃j}
if necessary so that [x, x̃1] has nonzero e3 component, and (2) if j > 1 and [x, x̃j ] has nonzero e3
component then subtract a multiple of x̃1 from x̃j so that [x, x̃j ] has e3 component zero. Then
(4.9), and thus (4.11), still hold for the modified x̃i .

We have arranged a3j,i = 0 for 1 ≤ i, j ≤ s, a31 6= 0, and a3k = 0 for k > 1. Thus, in (4.11),

[x̃i, [x, x̃j ]] is a multiple of e1 when j > 1, [x, [x̃j , x̃i]] is a multiple of e1 in general, and [x̃j , [x̃i, x]]
is a multiple of e1 when i > 1. From the Jacobi Identity, if i > 1 then [x̃i, [x, x̃1]] is a multiple
of e1 . Again from (4.11) a31

∑p
`=1b`(x̃i)e`+3 = 0, and since a31 6= 0 this says that each b`(x̃i) = 0.

Going back to (4.9),

if i > 1 then ad(x̃i)|[n,n] = 0.

In summary we see that n has a very simple structure. Associated with an appropriate basis
{x, x̃1, · · · , x̃s} of v (s ≥ 2), we have

ad(x)|[n,n] =

(
0 1 0
0 0 1
0 0 0

0

0 0

)
; ad(x̃1)|[n,n] =

 0
a1 a2 ··· ap
0 0 ··· 0
0 0 ··· 0

0 0 a1
...

...
...

0 0 ap

0

 ;

ad(x̃i)|[n,n] = 0 for 2 ≤ i ≤ s; and ad([y, z])|[n,n] = 0 for all y, z ∈ n.

(4.12)

In particular [n, n] is abelian. Thus n is at most 4-step nilpotent. That completes the proof of
Theorem 4.2. �

Example 4.3. Consider the connected Lorentz nilmanifold (M = G/H, 〈·, ·〉) with G = N oH,
N nilpotent and [n, n] non-degenerate, where {x1, x2, e1, e2, e3} is a basis of n whose non-zero
Lie brackets are [x1, x2] = e3, [x1, e2] = e1, [x1, e3] = e2. A calculation shows that N is 4-step
nilpotent.

Remark 4.4. By Theorem 4.2 and Example 4.3, n is at most 2-step nilpotent, or exactly 4-step
nilpotent, but cannot be 3-step nilpotent.

5. Lorentz Geodesic Orbit and Weakly Symmetric Nilmanifolds, II

The second of our two main results, the case where the metric is degenerate on [n, n], is as
follows. The result contrasts with Theorem 4.2, and essentially coincides with the situation for
Riemannian manifolds.

Theorem 5.1. Let (M = G/H, 〈, 〉) be a connected Lorentz geodesic orbit nilmanifold. (For
example, by Proposition 3.2, (M, 〈 , 〉) could be a connected weakly symmetric Lorentz nilmanifold

with G = I(N)0). Suppose that G = N o H with N nilpotent. Suppose further that there is
a reductive decomposition g = n ⊕ h, where [n, n] is degenerate and the action of Ad(H)|n is
completely reducible on n. Then n is at most 2-step nilpotent.

Furthermore, there is a basis {e1, · · · , ep; ep+1} of [n, n] and a basis {v0; v1, · · · , vs} of a vector
space complement a to [n, n] in n with the following properties.

(1) v1 := Span(e1, · · · , ep) and v2 := Span(v1, · · · , vs) are both positive definite or both nega-
tive definite and are Ad(H)–invariant,

(2) [n, n] ∩ [n, n]⊥ = ep+1R and a ∩ a⊥ = v0R are Ad(H)–invariant,
(3) w := Span(ep+1, v0) is of signature (1, 1),
(4) n = v1 ⊕w⊕ v2 is an Ad(H)–invariant orthogonal direct sum,
(5) ad(x)|[n,n] = 0 for any x ∈ a.

Proof. Let dim[n, n] = p+ 1. Since n is of Lorentz signature and [n, n] is degenerate, dim([n, n]∩
[n, n]⊥) = 1. So we have ep+1 6= 0 spanning [n, n] ∩ [n, n]⊥, and e⊥p+1 = v + ep+1R where v is
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positive or negative definite. Now v = v1 + v2 , Ad(H)–invariant orthogonal direct sum, where
v1 = v ∩ [n, n]. Thus w := v⊥ is spanned by ep+1 and a null vector v0 with 〈ep+1, v0〉 = 1 and
Ad(H)v0 ∈ v0R. Choose orthonormal bases {e1, · · · , ep} of v1 and {v1, · · · , vs} of v2 . With
those, we have constructed a basis of n that satisfies conditions (1) through (4) above. Note
that the inner product on w has matrix ( 0 1

1 0 ). So the metric on n has the matrix

〈·, ·〉n =

(
Ip 0 0 0
0 0 1 0
0 1 0 0
0 0 0 Is

)
under the basis {e1, e2, · · · , ep; ep+1, v0; v1, · · · , vs}. In particular, the metric on [n, n] has the

matrix 〈·, ·〉[n,n] =
(
Ip 0
0 0

)
which is degenerate.

Let x ∈ n. Then ad(x) preserves [n, n] = v1 + ep+1R and ad(x)|[n,n] has matrix, relative to

{e1, · · · , ep; ep+1}, of the form
(
A B
C d

)
=
(
A(x) B(x)
C(x) d(x)

)
.

First we consider ad(v0)|[n,n] =
(
A(v0) B(v0)
C(v0) d(v0)

)
. By the Geodesic Lemma, there exists av0 ∈ h

such that 〈[v0 + av0 , ei], v0〉 = k〈v0, ei〉 = 0 for 1 ≤ i ≤ p. Since H is completely reducible on g
we have [av0 , ei] ∈ v1 . Now 〈[av0 , ei], v0〉 = 0, so

〈[v0, ei], v0〉 = 0.

Now [v0, ei] = Ci(v0)ep+1 +
∑p

j=1 ajiej for any 1 ≤ i ≤ p. So

〈[v0, ei], v0〉 = 〈Ci(v0)ep+1, v0〉 = Ci(v0), 1 ≤ i ≤ p.

It forces Ci(v0) = 0, i.e. C(v0) = 0. Now ad(v0)|[n,n] =
(
A(v0) B(v0)

0 d(v0)

)
. Furthermore, for any

e ∈ v1, by the Geodesic Lemma, there exists ae ∈ h such that 〈[e+ ae, v0], e〉 = k〈v0, e〉. Since v0
is a one dimensional submodule, we know 〈[ae, v0], e〉 = 0. Hence 〈[e, v0], e〉 = 0. It follows that

〈[v0, ei], ej〉+ 〈ei, [v0, ej ]〉 = 0, 1 ≤ i, j ≤ p.
Then we have aij + aji = 0, that says A(v0)

t = −A(v0). Since ad(v0) is nilpotent, we have
A(v0) = 0 and d(v0) = 0. Thus,

ad(v0)|[n,n] =
(

0 B(v0)
0 0

)
.

Next consider ad(v)|[n,n] =
(
A(v) B(v)
C(v) d(v)

)
. For any v ∈ v2, we write equation (4.1) as(

A(v)t C(v)t

B(v)t d

) (
Ip 0
0 0

)
+
(
Ip 0
0 0

) ( A(v) B(v)
C(v) d

)
= 0.

It follows that A(v)t = −A(v) and B(v) = 0. Since ad(v)|[n,n] is nilpotent, now we have A(v) = 0

and d = 0, so ad(v)|[n,n] =
(

0 0
C(v) 0

)
. We now apply the Geodesic Lemma to ad(v + v0)|[n,n].

That gives us av+v0 ∈ h such that 〈[v + v0 + av+v0 , ei], v + v0〉 = k〈v + v0, ei〉 = 0 for 1 ≤ i ≤ p.
Since [av+v0 , ei] ∈ [h, v1] ⊂ v1 ,

〈[v + v0, ei], v + v0〉 = 0.

On the other hand, since [v0, ei] = 0 for any 1 ≤ i ≤ p, we have

〈[v + v0, ei], v + v0〉 = 〈[v, ei], v + v0〉 = 〈Ci(v)ep+1, v + v0〉
= 〈Ci(v)ep+1, v0〉
= Ci(v).

This forces Ci(v) = 0, i.e. C(v) = 0. Thus ad(v)|[n,n] = 0.

Furthermore for any v ∈ v2, first we get ad(v)|v1⊕w =
(

0 B1(v)
0 0

)
in the basis {e1, · · · , ep+1, v0}

since ad(v)|[n,n] = 0. By the Geodesic Lemma to ad(v)|v1⊕w and the fact that v2 and v1⊕w are
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Ad(H)-invariant, we know ad(v)|v1⊕w ∈ so(p + 1, 1). By Lemma 4.1, we have ad(v)|v1⊕w = 0.
That is, [v, v0] = 0 for any v ∈ v2, then for any v ∈ a.

Since a generates n, ad(v)|[n,n] = 0 for any v ∈ v2, and ad(v0)|[n,n] =
(

0 B(v0)
0 0

)
, there exist

y, z ∈ a such that [y, z] =
∑p+1

i=1 aiei with ap+1 6= 0. Then

[v0, [y, z]] = ap+1[v0, ep+1] = ap+1

p∑
i=1

Bi(v0)ei.

From the Jacobi Identity and the fact [v, v0] = 0 for any v ∈ a, we have

[v0, [y, z]] = [[v0, y], z] + [y, [v0, z]] = 0,

it forces B(v0) = 0. That is ad(v0)|[n,n] = 0.

Now we know ad(x)|[n,n] = 0 for any x ∈ a, and thus also for any x ∈ n. Thus n is at most
2-step nilpotent since a generates n. �
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