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In this note we complete a study of globally homogeneous Riemannian quotients 
Γ\(M, ds2) in positive curvature. Specifically, M is a homogeneous space G/H that 
admits a G–invariant Riemannian metric of strictly positive sectional curvature, 
and ds2 is a G–invariant Riemannian metric on M , not necessarily normal and not 
necessarily positively curved. The Homogeneity Conjecture is that Γ\(M, ds2) is 
(globally) homogeneous if and only if (M, ds2) is homogeneous and every γ ∈ Γ is of 
constant displacement on (M, ds2). In an earlier paper we verified that conjecture 
for all homogeneous spaces that admit an invariant Riemannian metric of positive 
curvature — with three exceptions, all of them odd dimensional spheres, which 
surprisingly did not yield to the earlier approaches. In this note we deal with those 
exceptions: we develop some methods that let us verify the Homogeneity Conjecture 
for those three obstinate spheres. That completes verification of the Homogeneity 
Conjecture in positive curvature.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this note we study homogeneous spaces M = G/H that admit a G–invariant Riemannian metric of 
strictly positive curvature. Let ds2 be a G–invariant Riemannian metric on M , not necessarily normal and 
not necessarily positively curved. We consider Riemannian quotient manifolds Γ\(M, ds2) and ask when 
such a manifold is globally homogeneous.

In [16] we verified a certain conjecture, concerning global homogeneity for locally homogeneous Rieman-
nian manifolds Γ\(M, ds2), when M = G/H admits an invariant Riemannian metric of positive sectional 
curvature — with three exceptions, listed below in Table 2.1. In this note we deal with those exceptions.

Let (M, ds2) be a connected simply connected Riemannian homogeneous space. Let π : M → M ′ be a 
Riemannian covering. In other words π : M → M ′ is a topological covering space that is a local isometry. 
Then the base of the covering must have form M ′ = Γ\M where Γ is a discontinuous group of isometries of 

E-mail address: jawolf@math.berkeley.edu.
1 Research partially supported by Simons Foundation grant 419528.
https://doi.org/10.1016/j.difgeo.2021.101757
0926-2245/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.difgeo.2021.101757
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.difgeo.2021.101757&domain=pdf
mailto:jawolf@math.berkeley.edu
https://doi.org/10.1016/j.difgeo.2021.101757


2 J.A. Wolf / Differential Geometry and its Applications 76 (2021) 101757
M such that only the identity element has a fixed point. Clearly M ′, with the induced Riemannian metric 
ds′ 2 from π : M → M ′, is locally homogeneous. We ask when (M ′, ds′ 2) is globally homogeneous.

If M ′ = Γ\M is homogeneous then [10] every element γ ∈ Γ is of constant displacement δγ(x) =
dist(x, γx) on M . For the identity component of the isometry group I(M ′, ds′ 2) lifts to the normalizer 
NI(M,ds2)(Γ) of Γ in the isometry group I(M, ds2), and NI(M,ds2)(Γ)/Γ is a transitive group of isometries on 
(M ′, ds′ 2). Since Γ is discrete the identity component of that normalizer actually centralizes Γ in I(M, ds2), 
and this centralizer is transitive on M . If x, y ∈ M and γ ∈ Γ we write y = g(x) with g in the centralizer 
of Γ. Compute δγ(y) = dist(y, γy) = dist(gx, γgx) = dist(gx, gγx) = dist(x, γx) = δγ(x). That is the easy 
half of the

Homogeneity Conjecture. Let M be a connected, simply connected Riemannian homogeneous manifold and 
M → Γ\M a Riemannian covering. Then Γ\M is homogeneous if and only if every γ ∈ Γ is an isometry 
of constant displacement on M .

Over the years there has been a lot of work on this conjecture, implicitly beginning in the thesis of Georges 
Vincent [9, §10.5], who noted that the linear transformations diag{R(θ), . . . , R(θ)}, R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, 

are of constant displacement on the sphere S2n−1.
I extended this to a proof of the Homogeneity Conjecture, first for spherical space forms [11] and then 

for locally symmetric Riemannian manifolds [12]. The proof used classification and case by case checking. 
This was partially improved by Freudenthal [3] and Ozols ([5], [6], [7]) for the case where Γ is contained in 
the identity component of I(M, ds2).

The Homogeneity Conjecture is valid for locally symmetric Finsler manifolds as well [2].
A number of special cases of the Homogeneity Conjecture have been verified. Rather that make a long 

list I’ll just note that many of them are listed in [14], [15] and [16].
In Section 2 we recall some facts about homogeneous spaces that admit a Riemannian metric of strictly 

positive sectional curvature (curvature � 0 was settled in [13]). We then establish some basic tools that we 
need for the open cases.

In Section 3 we settle the first open case, the 3-sphere as the group manifolds SU(2) with left translations. 
The technique is to use the Maurer–Cartan forms on the group.

In Section 4 we go to the next open case, SU(m + 1)/SU(m) = S2m+1, m � 1. This uses elementary 
matrix methods.

In Section 5 we go to the open case Sp(m +1)/Sp(m) = S4m+3 with the restriction m � 2. This restriction 
is needed for some Weyl group considerations. We use a mixture of Weyl group methods, split fibrations 
([15] and [16]), and computation with quaternionic matrices.

In Section 6 we go to the last open case, Sp(2)/Sp(1) = S7, where we draw on methods from Section 5
but take advantage of the specific setting.

Finally, in Section 7, we summarize the results of Sections 2 through 6 and describe how this completes 
the proof of the Homogeneity Conjecture for homogeneous manifolds that admit an invariant metric of 
strictly positive sectional curvature.

Along the way we describe the isometries of constant displacement.

2. The classification for positive curvature

Here are the three homogeneous spaces considered in this note. The numbering is retained from [16, Table 
2.1]. The spaces and the isometry groups are listed in the first two columns of Table 2.1. The third column 
lists some fibrations that will be relevant to our verification of the Homogeneity Conjecture for manifolds 
that admit an invariant metric of strictly positive curvature. See [17, Section 4] for a description of exactly 
which invariant metrics have positive sectional curvature.
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Table 2.1
The Three Obstinate Spheres.

M = G/H I(M,ds2) G/H → G/K

15 S2m+1 = SU(m + 1)/SU(m) U(m + 1) � Z2 S2m+1 → Pm(C)
16 S4m+3 = Sp(m + 1)/Sp(m) Sp(m + 1) �Z2 Sp(1) S4m+3 → Pm(H)
17 S3 = SU(2) O(4) S3 → P 1(C) = S2

Theorem 2.2. Let M = G/H be a connected, simply connected homogeneous space. Suppose that M has 
a G–invariant Riemannian metric of strictly positive curvature. Let ds2 be any G–invariant Riemannian 
metric on M , not necessarily the normal or the positively curved metric. Suppose further that M = G/H

is not one of the entries (15), (16) or (17) of Table 2.1. Then the Homogeneity Conjecture is valid for 
(M, ds2).

This is the main result of [16]. The purpose of this paper is to extend it to the cases of Table 2.1 as well. 
This will make use of a few simple observations.

Lemma 2.3. Let g and γ be isometries of a Riemannian manifold (M, ds2). Suppose that γ is of constant 
displacement c. Then g−1γg is of the same constant displacement c.

Proof. The distance ρ(y, γy) = c for all y ∈ M . Compute ρ(x, g−1γgx) = ρ(gx, γgx) = c for all x ∈ M . �
We extend Lemma 2.3 to geodesics. By horizontal projection in the tangent bundle of G we mean 

projection to the horizontal subspaces for the Levi–Cività connection of ds2. One easily picks this out on 
the Lie algebra when the representation AdG|H of H on the tangent space g/h is disjoint (no common 
summand) from the adjoint representation of h.

Lemma 2.4. Let γ be an isometry of constant displacement c in a homogeneous Riemannian manifold 
(M, ds2), where M = G/H with G connected and ds2 G–invariant. Let t �→ σ(t) be a minimizing geodesic 
from x0 = 1H ∈ M to γ(x0), parameterized proportional to arc length with σ(0) = x0 and σ(1) = γ(x0). 
Let π : G → M be the projection and let σ̃ denote the lift of σ to a horizontal curve in G with σ̃(0) = 1. 
Let g ∈ G and β(t) = π([Ad(g)σ̃(t)]g). Then β is a minimizing geodesic from g(x0) to g(γ(x0)) and the 
horizontal component of Ad(g)[σ̃′(0)] has the same length c as σ̃′(0).

Proof. Since the vector field σ̃′ is basic, so are all its left G–translates, and thus β(t) = π(Ad(g)[σ̃(t)]g) =
π(gσ̃(t)) is a minimizing geodesic from β(0) = gx0 to β(1) = gγx0. In particular the square length ||β′(0)||2 =
||σ′(0)||2 = c2. Thus the horizontal component of Ad(g)[σ̃′(0)], which is the horizontal lift of β′(0), has the 
same length c as σ̃′(0). �
3. SU(2) = Sp(1) = S3

We consider S3 as the group manifold with SU(2) = Sp(1) acting by left translations. Let {ω1 , ω2 , ω3}
denote the (left–invariant) Maurer–Cartan forms for the group SU(2). Then the constant curvature metrics 
are the ds2 = a(ω2

1 +ω2
2 +ω2

3), a > 0 with isometry group I0(S3, ds2) = [SU(2) ×SU(2)]/{(I, I), (−I, −I)}
acting by (g, h) : x �→ gxh−1 and I(S3, ds2) = I0(S3, ds2) ∪ sI0(S3, ds2) with Ad(s)(g, h) = (h, g). Up to 
O(4)–conjugacy, every left–invariant Riemannian metric on SU(2) has form 

∑
aiω

2
i with each ai > 0. Thus, 

for verification of the Homogeneity Conjecture there are only three cases, as follows

Lemma 3.1. The left SU(2)–invariant metrics on S3, and their isometry groups, are equivalent, up to 
SO(4)–conjugacy, to one of these:
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(1) ds2 = ω2
1 + ω2

2 + ω2
3 with I(S2, ds2) as described above,

(2) ds2 = ω2
1 + ω2

2 + aω2
3, 0 < a �= 1, with I(S2, ds2) = SU(2) × U(1), and

(3) ds2 =
∑

aiω
2
i with {a1, a2, a3} distinct and I(S2, ds2) = SU(2) × {1}.

Let Γ ⊂ I(S3, ds2) be a finite group of constant displacement isometries of (S3, ds2), and γ ∈ Γ. From 
[12, Lemma 4.2.2], γ has form ±(g, h) ∈ [SU(2) × SU(2)]/{(1, 1), (−1, −1)}. In other words,

Γ ⊂ G where G = I(S3, ds2) ∩ [SU(2) ×H]/[±(1, 1)] (3.2)

for a subgroup H ⊂ SU(2). Note that right translations by elements of H are isometries.
Let ρ be the distance function and c = ρ(1, gh−1). If x ∈ S3 now c = ρ(x, gxh−1) = ρ(1, x−1gx · h−1) =

ρ(h, x−1gx). So c is the distance from h to any conjugate of g. A minimizing geodesic segment σ from h to 
g meets Ad(SU(2))g orthogonally. It follows that σ is tangent at g to the SU(2)–centralizer of g.

Consider a perturbation {σt} of σ as a minimizing geodesic from h to gt ∈ Ad(SU(2))g. If g �= ±1 then 
each σt meets Ad(SU(2))g = Ad(SU(2)gt orthogonally. Thus Ad(SU(2))g is half way to the cut locus of 
h, dim Ad(SU(2))g = 2, and each centralizer ZSU(2)(xgx−1) has dimension 1. It follows that the image of 
each σt, which includes both h and gt, centralizes h. In other words h commutes with every conjugate of g. 
Those conjugates generate SU(2), so h = ±1. We have proved:

Proposition 3.3. Let Γ ⊂ I(S3, ds2) be a finite group of constant displacement isometries of (S3, ds2). If 
γ = ±(g, h) ∈ Γ and g �= ±1 then h = ±1.

Now every γ ∈ Γ is contained either in SU(2) × {±1} or in {±1} × H. If γ = ±(g, 1) ∈ Γ and γ′ =
±(1, h′) ∈ Γ with g �= ±1 �= h′ then γγ′ = ±(g, h′) ∈ Γ violates Proposition 3.3. Thus, using (3.2),

Corollary 3.4. Let Γ ⊂ I(S3, ds2) be a finite group of constant displacement isometries of (S3, ds2). Then 
either Γ ⊂ [SU(2) × {±1}]/[±(1, 1)] or Γ ⊂ [{±1} ×H]/[±(1, 1)].

Now consider the two possibilities. First, if Γ ⊂ [{±1} ×H]/[±(1, 1)] then SU(2), acting by left transla-
tions, centralizes Γ. Then Γ\S3 is homogeneous. Now consider the other case: Γ ⊂ [SU(2) ×{±1}]/[±(1, 1)]
and Γ has at least one element ±(g, 1) with g �= ±1.

In Case (1) of Lemma 3.1 the right translation group H = SU(2) is transitive on S3, so Γ\S3 is homo-
geneous, and the Homogeneity Conjecture is valid. This is a special case of [12, Corollary 4.5.3].

Now we may assume ds2 = ω2
1 + a2ω

2
2 + a3ω

2
3 with a2 �= 1 and a2, a3 > 0. Let ξi ∈ su(2) denote tangent 

vectors to S3 at the identity such that ωi(ξj) = 0 for i �= j and each t �→ exp(tξi) has period 2π. We 
have γ = ±(g, 1) ∈ Γ with g �= ±1. Passing to an SU(2)–conjugate we may assume g = exp(t0ξ1) with 
0 < t0 < π. Thus γ has displacement t0. This uses Lemma 2.3. But passing to another SU(2)–conjugate we 
may assume g = exp(t0ξ2) so γ has displacement a2t0 �= t0. (These conjugations are specific to the group 
SU(2) = Sp(1).) This contradiction shows that, in cases (2) and (3) of Lemma 3.1, Γ does not contain an 
element ±(g, 1) with g �= ±1. We conclude:

Theorem 3.5. Let ds2 be a left SU(2)–invariant Riemannian metric on S3. Let Γ be a finite group of 
isometries of constant displacement on (S3, ds2). Then the centralizer of Γ in I(S2, ds2) is transitive on 
S3, so the quotient Riemannian manifold Γ\(S3, ds2) is homogeneous. In other words, the Homogeneity 
Conjecture is valid for (S3, ds2).
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4. SU(m + 1)/SU(m) = S2m+1, m � 2

Denote G = SU(m + 1), K = U(m) and H = SU(m), so S2m+1 = G/H → G/K = Pm(C) is a circle 
bundle. The fiber over z0 = 1K is the center ZK of U(m). G/H has tangent space v ⊕ zK where v is the 
tangent space Cm of G/K and zK is the center of k; v and zK are the (two) irreducible summands of the 
isotropy representation of H.

Proposition 4.1. Let ds2 be Riemannian metric on M = S2m+1 invariant under G = SU(m +1). Then either 
the isometry group I(M, ds2) is the orthogonal group O(2m + 2), or I(M, ds2) = [U(m + 1) ∪ νU(m + 1)]
where Ad(ν) is complex conjugation on U(m + 1). In the first case (M, ds2) is the constant curvature 
(2m + 1)–sphere, and in the second case ds2 is given by (4.3) below.

Proof. The isotropy subgroup of U(m + 1) ∪ νU(m + 1) is U(m) ∪ νU(m), where U(m) consists of all 
(m + 1) × (m + 1) unitary matrices of the form 

(
k 0
0 1

)
and ν gives complex conjugation on U(m + 1). 

The isotropy representation is the usual action of U(m) on v ∼= Cm together with complex conjugation 
from ν, and is trivial on zK . That preserves any Ad(H)–invariant real inner product on v + zK . Thus 
[U(m + 1) ∪ νU(m + 1)] ⊂ I(M, ds2) ⊂ O(2m + 2). As U(m + 1) is a maximal connected subgroup of 
SO(2m + 2) it follows that either [U(m + 1) ∪ νU(m + 1)] = I(M, ds2) or I(M, ds2) = O(2m + 2). �

If I(M, ds2) = O(2m +2), so (M, ds2) is the constant curvature (2m −1)–sphere, I proved the Homogeneity 
Conjecture some time ago [11].

We now assume that I(M, ds2) = [U(m + 1) ∪ νU(m + 1)] and view S2m−1 as the coset space U(m +
1)/U(m). It will be convenient to use the notation G̃ = U(m + 1), H̃ = U(m) and K̃ = U(m) × U(1).

In (m + 1) × (m + 1) complex matrices, K̃ consists of all 
(
k 0
0 �

)
with k−1 = k∗ ∈ U(m) and � ∈ U(1). H̃

is the subgroup � = 1. Use diagonal matrices for Cartan subalgebras t̃ of g̃ and k̃. Then t̃ = t̃′ + t̃′′ where 
t̃′ ⊂ U(m) and t̃′′ = u(1). Using εj(diag{a1, . . . , am+1}) = aj . The simple roots of g̃ are the ψi = εi − εi+1. 
Let Ei,j denote the matrix with 1 in row i and column j and 0 elsewhere. It spans the εi − εj root space 
when i �= j, and t̃ consists of the 

∑
aiEi,i,. Now

v =
m∑
j=1

(
(Ej,m+1 −Em+1,j)R +

√
−1 (Ej,m+1 + Em+1,j)R

)

and k̃ has center zK̃ =
√
−1 (E1,1 + · · · + Em,m)R +

√
−1Em+1,m+1R, and k has center

zK =
√
−1

(
(E1,1 + · · · + Em,m) −m

√
−1Em+1,m+1

)
R .

The complex projective space Pm(C) = G/K is a symmetric space of rank 1 so every element of v
is Ad(K)–conjugate to an element of a = (Em,m+1 − Em+1,m)R. Thus every element of v + zK is 
Ad(H)–conjugate to an element of a + zK . In other words, if η ∈ v + zK then we have constants a′, a′′ ∈ R

such that

η = a′(Em,m+1 − Em+1,m) + a′′
√
−1 ((E1,1 + · · · + Em,m) −mEm+1,m+1).

Lemma 4.2. If γ ∈ U(m + 1) has constant displacement c on S2m+1, then γ is central in U(m + 1).

Proof. Suppose that γ is not central in U(m + 1). Take a minimizing geodesic {t �→ σ(t)} from x0 = 1H to 
γx0, parameterized proportional to arc length, such that σ(0) = x0 and σ(1) = γx0. Then σ′(t) = d

dtσ(t), 
has constant length c for 0 � t � 1. Let η = σ′(0). Using Lemmas 2.3 and 2.4 we replace γ by a conjugate 
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and assume η ∈ a + zK , say η = η′ + η′′. Let κ denote the negative multiple of the Killing form such that 
κ(ν, μ) = − Re(trace(νμ)) on (m + 1) × (m + 1) matrices. Using Ad(H)–invariance, the metric satisfies

ds2|v = b′κ|v , ds2|zK = b′′κ|zK , and ds2(t′, zK) = 0 (4.3)

for some b′, b′′ > 0. The displacement satisfies c2 = b′κ(η′, η′) + b′′κ(η′′, η′′).
The normal Riemannian metric is the case b′ = b′′. There it is known, from [15] and [16, Proposition 

3.2], that γ is central in G. We now assume b′ �= b′′ and argue more or less as in the paragraph leading to 
Proposition 3.3. From the discussion above,

||η′||2 = 2b′|a′|2 and ||η′′||2 = b′′|a′′|2(m + m2) so ||η||2 = 2b′|a′|2 + b′′|a′′|2(m + m2).

The Weyl group of G acts by all permutations of the Ej,j so we have g ∈ G that exchanges E1,1 with 
Em+1,m+1 and leaves fixed the other Ej,j . Let ζ = Ad(g)η. Then

ζ = a′(Em,1 −E1,m) + a′′
√
−1 ((Em+1,m+1 + E2,2 + · · · + Em,m) −mE1,1)

= a′(Em,1 −E1,m) + a′′
√
−1 ((E1,1 + E2,2 + · · · + Em,m) −mEm+1,m+1)

− a′′
√
−1 (m + 1)(E1,1 − Em+1,m+1).

Split E1,1 −Em+1,m+1 = 1
m [(E1,1 + · · ·+Em,m) −mEm+1,m+1] + [E1,1 − 1

m (E1,1 + · · ·+Em,m)]. It belongs 
to k = h + zK . Combining two terms using 1 − m+1

m = − 1
m ,

ζ = a′(Em,1 − E1,m) − a′′
√
−1 (m + 1)[E1,1 − 1

m (E1,1 + · · · + Em,m)] h component,

− a′′
√
−1 1

m ([(E1,1 + E2,2 + · · · + Em,m) −mEm+1,m+1] zK component.

Thus the horizontal component of ζ is its zK–component, and that has square length b′′|a′′|2 (m
2+m
m2 ). 

Comparing this with ||η||2 = 2b′|a′|2 + b′′|a′′|2(m +m2) we have a′ = 0 and m
2+m
m2 = (m +m2). So m2 = 1, 

which contradicts m � 2. That in turn contradicts our assumption that γ is not central in U(m + 1), 
completing the proof of Lemma 4.2. �
Lemma 4.4. Let Γ ⊂ I(M, ds2) be a subgroup such that every γ ∈ Γ is an isometry of constant displacement. 
If γ = νg ∈ Γ ∩ νU(m + 1) then m + 1 is even, γ2 = −I ∈ U(m + 1), and Γ is SU(m + 1)–conjugate to the 
binary dihedral group whose centralizer in U(m + 1) is Sp(m+1

2 ).

Proof. Let γ ∈ Γ with γ = νg and g ∈ U(m + 1). Suppose that γ �= 1 Let g = g′z with g′ ∈ SU(m + 1) and 
z central (thus scalar) in U(m +1). The centralizer of ν in U(m + 1) is the orthogonal group O(m +1). Let 
B denote the maximal torus in SO(m + 1) consisting of all

diag{R(θ1), . . . , R(θm+1)} 1f m + 1 is even, diag{R(θ1), . . . , R(θm), 1} 1f m + 1 is odd,

where R(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. Following de Siebenthal [8], νg′ is Ad(SU(m + 1))–conjugate to an element 

νb ∈ νB. Proposition 4.1 says that γ2 ∈ U(m + 1) is a scalar matrix, say γ2 = cI. But γ2 = (νbz)2 =
νbν−1 ·νzν−1 · bz = bz−1bz = bb = b2, so b2 = cI. Define θi mod 2π by b = diag{R(θ1), . . . , R(θm+1)}. Then 
b2 = diag{R(2θ1), . . . , R(2θm+1)}. Since b2 = cI either c = +1 and each θi = ±π mod 2π, or c = −1 and 
each θi = ±π/2 mod 2π.

If c = 1 then γ2 = 1. But γ is also an isometry for the constant curvature metric on S2m+1, and there 
the only fixed point free isometry of square 1 is the antipodal map −I. But −I /∈ νU(m + 1) because it is 
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central in U(m + 1) ∪ νU(m + 1); so we cannot have c = 1. Thus c = −1, in other words γ2 = b2 = −I. In 
particular m + 1 is even.

Let Γ0 = Γ ∩ U(m + 1). Then Γ = Γ0 ∪ γΓ0, and the elements of Γ0 are scalar matrices. If γ0 ∈ Γ0
now γ0 = γγ0γ

−1 =�= gγ0g
−1ν−1 = νγ0ν

−1 = γ0 = γ−1
0 . Thus Γ is the binary dihedral group whose 

U(m + 1)–centralizer is Sp(m+1
2 ). �

Combining Lemmas 4.2 and 4.4 with Proposition 4.1 we have

Theorem 4.5. Let ds2 be an SU(m + 1)–invariant Riemannian metric on S2m+1, m � 2. Let Γ be a finite 
group of isometries of constant displacement on S2m+1. Then the centralizer of Γ in I(S2m+1, ds2) is tran-
sitive on S2m+1, so the Riemannian quotient manifold Γ\(SU(m +1), ds2) is homogeneous. In other words, 
the Homogeneity Conjecture is valid for (S2m+1, ds2).

5. Sp(m + 1)/Sp(m) = S4m+3, m � 2

The first step here is to prove Proposition 5.3, which is the analog of Proposition 4.1.

Lemma 5.1. Let D be a compact connected Lie group acting transitively and effectively on S4m+3 , m � 1. 
Suppose that Sp(m + 1) ⊂ D but SU(2m + 2) �⊂ D. Then D is one of Sp(m + 1) · Sp(1), Sp(m + 1) · U(1), 
or Sp(m + 1).

Proof. It is now classical from [4] and [1] that the compact connected Lie groups acting transitively on 
spheres are the linear groups SO(d), U(d/2), SU(d/2), Sp(d/4), Sp(d/4) · U(1) and Sp(d/4) · Sp(1) on 
Sd−1; G2 on S6, Spin(7) on S7, and Spin(9) on S15. So the cases of S4m+3 are SO(4m + 4), U(2m + 2), 
SU(2m +2), Sp(m +1) ·Sp(1), Sp(m +1) ·U(1), Sp(m +1) all for m � 1, Spin(7) for m = 1 and Spin(9) for 
m = 3. The restrictions Sp(m +1) ⊂ D and SU(2m +2) �⊂ D eliminate SO(4m +4), U(2m +2), SU(2m +2), 
Spin(7) and Spin(9). For the latter two, dimSpin(7) = 21 = dimSp(3), so Sp(3) ⊂ D = Spin(7) would 
imply Sp(3) = Spin(7), which is false; and similarly dimSpin(9) = 36 = dimSp(4), so Sp(4) ⊂ D = Spin(9)
would imply Sp(4) = Spin(9), which is false. The lemma follows. �

Denote G = Sp(m + 1), K = Sp(m) × Sp(1) and H = Sp(m) ⊂ K, where m � 1. Then G/H = S4m+3

and we have the projection S4m+3 → Pm(H) = G/K. G/H has tangent space v + w where v is the 
tangent space Hm of G/K and w is the tangent space ImH of the fiber of S4m+3 → Pm(H). The isotropy 
representation of H is the natural representation of Sp(m) on Hm = v, and on w it is three copies of the 
trivial representation.

Let κ′ = κ|v and κ′′ = κ|w where κ(μ, ν) = − Re trace(μ ν) with trace taken in Sp(m +1). Let {e1, e2, e3}
be a κ′′–orthonormal basis of w and split κ′′ = κ1 + κ2 + κ3 accordingly. Then

ds2|v = b0κ
′, ds2|w = b1κ1 + b2κ2 + b3κ3 , ds

2(v,w) = 0 and ds2(ei, ej) = 0 for i �= j (5.2)

for some positive numbers b0, b1, b2 and b3. The normal Riemannian metric on G/H is the case where 
b0 = b1 = b2 = b3 for a certain b0 > 0. We now normalize ds2 and assume b0 = 1; this has no effect on 
I(M, ds2) nor on which isometries have constant displacement.

Proposition 5.3. Let ds2 be an Sp(m +1)–invariant Riemannian metric on M = S4m+3, m � 1. Then either 
ds2 is invariant under SU(2m + 2), or I(M, ds2) = Sp(m + 1) · L = (Sp(m + 1) × L)/{±(Im+1, I3)} where 
L is one of the following.

(1) L = Sp(1) acting on Sp(m + 1)/Sp(m) on the right. L acts on the tangent space as multiplication by 
quaternion unit scalars on v and the adjoint representation of Sp(1) on w. This is the case b1 = b2 = b3.
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(2) L = O(2) ×Z2 acting on Sp(m +1)/Sp(m) on the right. L acts the tangent space as multiplication by 
an O(2) ×Z2 (essentially circle) group of quaternion unit scalars on v, O(2)–rotation on the (e1, e2)–plane 
in w, and the Z2–action e3 �→ ±e3 on w. This is the case where two, but not all three, of the bi are equal, 
for example where b1 = b2 �= b3.

(3) L = Z3
2 acting on Sp(m + 1)/Sp(m) on the right. L acts on the tangent space by ±1 on v and the 

ei �→ ±ei on w. This is the case where b1, b2 and b3 are all different.

Proof. Suppose that ds2 is not invariant under SU(2m + 2). Then Lemma 5.1 shows that the identity 
component I0(M, ds2) of the isometry group must be Sp(m + 1) · Sp(1), Sp(m + 1) · U(1), or Sp(m + 1). 
Thus I(M, ds2) = Sp(m + 1) · L where Sp(m) · L is the normalizer of the isotropy subgroup Sp(m) of 
I0(M, ds2) in the orthogonal group of ds2|v+w and also preserves κ′′.

First consider the case I0(M, ds2) = Sp(m + 1) · Sp(1). That is the case b1 = b2 = b3. Then S4m+3 =
[Sp(m + 1) · Sp(1)]/[Sp(m) × Sp(1)] where Sp(m) acts on the summand v of the tangent space, and Sp(1)
acts on v as quaternion unit scalars and on w by its adjoint representation..

Second consider the case I0(M, ds2) = Sp(m + 1) · SO(2). This is the case where two of the bi are 
equal but different from the third. By conjugacy we may suppose b1 = b2 �= b3 here. Then S4m+3 =
[Sp(m + 1) · SO(2)]/[Sp(m) × SO(2)], and L = O(2) × Z2, so I(M, ds2) = Sp(m + 1) · (O(2) × Z2), as 
asserted.

Third consider the case I0(M, ds2) = Sp(m + 1). This is the case where the bi are all different. Then 
S4m+3 = Sp(m + 1)/Sp(m), L = Z3

2, and I(M, ds2) = Sp(m + 1) · Z3
2, as asserted. �

We write the quaternion algebra H as R + iR + jR + kR. In (m + 1) × (m + 1) quaternion matrices, K
consists of all 

(
k 0
0 �

)
with k ∈ Sp(m) and � ∈ Sp(1). H is the subgroup � = 1. Use diagonal matrices with 

entries in iR for Cartan subalgebras t of g and k. Then t = t′ + t′′ where t′ ⊂ sp(m) and t′′ = u(1) ⊂ sp(1). 
Using εj(diag{a1, . . . , am+1}) = aj , the simple roots of g are the ψi = εi−εi+1 , i � m, and ψm+1 = 2εm+1. 
Let Ei,j denote the matrix with 1 in row i and column j and 0 elsewhere, as usual, so t consists of the ∑

aiEi,i with each ai ∈ iR. Now

v =
m∑
j=1

(
(Ej,m+1 − Em+1,j)R + (iR + jR + kR)(Ej,m+1 + Em+1,j)

)
and w = (iR + jR + kR)Em+1,m+1.

The quaternion projective space Pm(H) = G/K is a symmetric space of rank 1 so every element of 
v is Ad(K)–conjugate to an element of a = (Em,m+1 − Em+1,m)R. Thus every element of v + w is 
Ad(H)–conjugate to an element of a + w. In other words, if η̃ ∈ v + w then we have constants a′, a� ∈ R

such that η̃ is Ad(H)–conjugate to

η = η′ + η′′ with η′ = a′(Em,m+1 − Em+1,m) and η′′ = (a1i + a2j + a3k)Em+1,m+1 = η1 + η2 + η3 . (5.4)

Lemma 5.5. If γ ∈ Sp(m + 1) has constant displacement c > 0 on S4m+3, m � 2, then γ belongs to the 
centralizer of Sp(m + 1) in I(S4m+3, ds2).

Proof. Suppose that γ does not centralize Sp(m +1). Take a minimizing geodesic {t �→ σ(t)} from x0 = 1H
to γx0, parameterized proportional to arc length, such that σ(0) = x0 and σ(1) = γx0. Then σ′(t) = d

dtσ(t), 
has constant length c for 0 � t � 1. Let η = σ′(0). Using Lemmas 2.3 and 2.4 we replace γ by a conjugate 
and assume η = η′ + η′′ as in (5.4). Recall the expression (5.2) for ds2. Then the displacement satisfies

c2 = b′κ(η′, η′) + b1κ(η1, η1) + b2κ(η2, η2) + b3κ(η3, η3) = 2b′a′ 2 + b1a
2
1 + b2a

2
2 + b3a

2
3 . (5.6)
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The Weyl group of G contains all permutations of the iEj,j, including a conjugation by g ∈ Sp(m + 1)
that exchanges iE1,1 with iEm+1,m+1 and leaves fixed the other iEi,i. Let ζ = Ad(g)η, suppose m > 1, 
and compute ζ = a′(Em,1 − E1,m) + (a1i + a2j + a3k)E1,1. Thus m > 1 implies a′(Em,1 − E1,m) ∈ h and 
(a1i + a2j + a3k)E1,1 ∈ h as well, so c = 0 and γ = 1. �
Lemma 5.7. Let Γ ⊂ I(M, ds2) be a subgroup such that every γ ∈ Γ is an isometry of constant displacement. 
Suppose m � 2 and that ds2 is not SU(2m + 2)–invariant. Then Γ centralizes Sp(m + 1) in I(M, ds2).

Proof. First consider the case L = Sp(1). There L is irreducible on the subspace w of the tangent space 
of M = G/H, so b1 = b2 = b3 in (5.6). Thus the fiber of the projection M = Sp(m + 1)/Sp(m) →
Sp(m + 1)/[Sp(m) × Sp(1)] = Pm(H) is the constant curvature S3. Now the conditions (5.1) of [16] are 
valid for M = Sp(m + 1)/Sp(m) → Sp(m + 1)/[Sp(m) × Sp(1)] = Pm(H). We quote them as follows.

G is a compact connected simply connected Lie group,

H ⊂ K are closed connected subgroups of G such that

(i) M = G/H, M ′ = G/K, and F = H\K,

(ii) π : M → M ′ is given by π(gH) = gK, right action of K on G/H,

(iii) M ′ and F are Riemannian symmetric spaces, and

(iv) the tangent spaces m′ for M ′, m′′ for F and (m′ + m′′) for M satisfy m′ ⊥ m′′ .

(5.8)

The arguments of [16, Lemmas 5.2 and 5.3] go through without change to prove that Γ centralizes Sp(m +1).
Second, we consider the case L = O(2) × Z2. In view of Lemma 5.5, either Γ ∩ Sp(m + 1) = {I} or 

Γ ∩ Sp(m + 1) = {±I}, and we need only consider the situation where Γ �⊂ Sp(m + 1).
To start, let γ = (g, r, t) ∈ Γ where g ∈ Sp(m + 1), r ∈ O(2) acting on the subspace of w spanned by 

iR + jR, and t ∈ O(1) = {±1} acting on kR.
Suppose first that det(r) = −1. Then r is conjugate to diag{1, −1}, so γ2 = (g2, I3) ∈ Sp(m + 1), and 

g2 = ±Im+1. If t = +1 the square of the displacement is of the form c2γ = c20 + b2a
2, and if t = −1 it is of 

the form c2γ = c20 + b2a
2 + b3a

2 where a > 0, ds2 is b1κ on iR, b2κ on jR, and b3κ on kR, we can permute 
iR, jR and kR through conjugation by unit quaternions, where w = ImH. Then all three bi are equal and 
we are in the setting of L = Sp(1). That contradiction forces det(r) = +1.

We now have γ = (g, r, t) ∈ Γ where g ∈ Sp(m +1), r =
(

cos(θ) sin θ

− sin(θ) cos(θ)

)
on the plane iR + jR, and t = ±1

on kR. If t = +1 the square displacement c2γ = c20 + b1a
2 + b2a

2, and if t = −1 it is c20 + b1a
2 + b2a

2 + b3a
2. 

Conjugation by an appropriate element of exp(v) exchanges iR with an element of sp(m), sending γ to an 
isometry γ′ of square displacement c2γ′ = c20 + b2a

2 if t = +1, c20 + b2a
2 + b3a

2 if t = −1. But c2γ′ = c2γ , so 
b1a

2 = 0 for either t = ±1. That contradicts det(r) = +1.
We have shown that if L = O(2) ×Z2 then every γ ∈ Γ belongs to Sp(m +1); thus Γ centralizes Sp(m +1).
Third suppose that L = Z3

2 = (diag{±1,±1,±1}). Let γ = (g, diag{t1, t2, t3}) ∈ Γ. If t1 = t2 = t3 then 
the action of diag{t1, t2, t3} on w comes from ±Im+1 ∈ Sp(m + 1), and we may view γ as an element of 
Sp(m + 1). Now we may assume t1 = t2 = 1 , t3 = −1. Thus the square displacement of γ is c2γ = c20 + b3a

2. 
Conjugation by j exchanges iR and kR and sends γ to γ′ with square displacement c2γ′ = c20 + b1a

2, so 
b1 = b3. Thus L �= Z3

2. This contradiction completes the proof. �
Combining Lemmas 5.1, 5.5 and 5.7 with Proposition 5.3 and Theorem 4.5 we have

Theorem 5.9. Let ds2 be an Sp(m +1)–invariant Riemannian metric on S4m+3, m � 2. Let Γ be a finite group 
of isometries of constant displacement on S4m+3. Then the centralizer of Γ in I(S4m+3, ds2) is transitive 
on S4m+3. In other words the Homogeneity Conjecture is valid for (S4m+3, ds2).
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6. Sp(2)/Sp(1) = S7

The homogeneous space Sp(2)/Sp(1) = S7 is the case m = 1 of Sp(m + 1)/Sp(m) = S4m+3. Lemma 5.1
and Proposition 5.3 apply here, but Lemmas 5.5 and 5.7 do not. However we can salvage something from 
their proofs.

Proposition 6.1. Suppose that ds2 is Sp(2)–invariant but not SU(4)–invariant. If γ ∈ Sp(2) has constant 
displacement c > 0 on S7, then γ ∈ L = Sp(1), so belongs to the centralizer of Sp(2) in I(S7, ds2). In 
particular if Γ ⊂ Sp(2) is a finite group of constant displacement isometries of (S7, ds2) then (S7, ds2) is 
homogeneous.

Proof. The proof is similar to the arguments of Section 5 – up to a point. We use the Cartan subalgebra 
t = t′ + t′′ of sp(2) where t′ = iRE1,1 and t′′ = iRE2,2. Take a minimizing geodesic {t �→ σ(t)} from 
x0 = 1H to γx0, parameterized proportional to arc length, such that σ(0) = x0 and σ(1) = γx0. Then 
σ′(t) = d

dtσ(t), has constant length c for 0 � t � 1. Let η = σ′(0). Using Lemmas 2.3 and 2.4 we replace γ
by a conjugate and assume η = η′ + η′′ with η′ = a′(E1,2 − E2,1) and η′′ = a′′iE2,2, a′ and a′′ real. Using 

(5.2) the displacement satisfies c2 = b′κ(η′, η′) + b1κ(η1, η1) = 2b′a′ 2 + b1a
′′ 2. Conjugation by J =

(
0 1
−1 0

)
sends η to ζ = a′(E2,1 −E1,2) +a′′iE1,1. The tangential component of ζ is a′(E2,1 −E1,2), and it has square 
length 2b′a′ 2. Thus a′′ = 0, that is, η = η′ = a′(E1,2 − E2,1).

Conjugation by g1 = exp( t
2 i(E1,2+E2,1)) sends E1,2−E2,1 to ζ1 = cos(t)(E1,2−E2,1) +sin(t)i(E1,1−E2,2), 

which has tangential component a′[cos(t)(E1,2 − E2,1) − sin(t)iE2,2]. It has square length 2b′a′ 2 = c2 =
a′ 2[2b′ cos2(t) + b1 sin2(t)], so a′ �= 0 implies 2b′ = b1. Similarly using g2 = exp( t

2 j(E1,2 + E2,1)) and 
g3 = exp( t

2k(E1,2 + E2,1)) we have 2b′ = b2 and 2b′ = b3. Thus b1 = b2 = b3, and so L = Sp(1).
We have just proved that (5.8) holds for Sp(2)Sp(1) = S7 → P 1(H) = Sp(2)/[Sp(1) × Sp(1)]. The 

arguments of [16, Lemmas 5.2 and 5.3] go through to show γ ∈ L = Sp(1). In particular γ centralizes 
G = Sp(2). �

The immediate consequence, extending Theorem 5.9 to include the case m = 1, is

Theorem 6.2. Let ds2 be an Sp(2)–invariant Riemannian metric on S7. Let Γ be a finite group of isometries 
of constant displacement on (S7, ds2). Then the centralizer of Γ in I(S7, ds2) is transitive on S7. In other 
words the Homogeneity Conjecture is valid for (S7, ds2).

7. Summary

Summarizing the Theorems 3.5, 4.5, 5.9 and 6.2,

Theorem 7.1. Let M = G/H be one of the spaces listed in Table 2.1. Let ds2 be a G–invariant Riemannian 
metric on M , not necessarily normal and not necessarily of positive curvature. Let Γ be a finite group of 
isometries of constant displacement on (M, ds2). Then the centralizer of Γ in I(M, ds2) is transitive on M . 
In other words the Homogeneity Conjecture is valid for (M, ds2).

Combining Theorems 2.2 and 7.1 we have the main result of this note:

Theorem 7.2. Let M = G/H be a connected, simply connected homogeneous space. Suppose that M has 
a G–invariant Riemannian metric of strictly positive curvature. Let ds2 be any G–invariant Riemannian 
metric on M , not necessarily the normal or the positively curved metric. Then the Homogeneity Conjecture 
is valid for (M, ds2).
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