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WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN
NILMANIFOLDS

Joseph A. Wolf & Zhiqi Chen

Abstract

In an earlier paper we developed the classification of weakly
symmetric pseudo–Riemannian manifoldsG/H, whereG is a semi-
simple Lie group and H is a reductive subgroup. We derived the
classification from the cases whereG is compact. As a consequence
we obtained the classification of semisimple weakly symmetric
manifolds of Lorentz signature (n − 1, 1) and trans–Lorentzian
signature (n− 2, 2). Here we work out the classification of weakly
symmetric pseudo–Riemannian nilmanifolds G/H from the classi-
fication for the case G = NoH with H compact and N nilpotent.
It turns out that there is a plethora of new examples that merit
further study. Starting with that Riemannian case, we see just
when a given involutive automorphism of H extends to an involu-
tive automorphism ofG, and we show that any two such extensions
result in isometric pseudo–Riemannian nilmanifolds. The results
are tabulated in the last two sections of the paper.

1. Introduction

There have been a number of important extensions of the theory of
Riemannian symmetric spaces. Weakly symmetric spaces, introduced by
A. Selberg [15], play important roles in number theory, Riemannian ge-
ometry and harmonic analysis; see [22]. Pseudo–Riemannian symmetric
spaces also appear in number theory, differential geometry, relativity, Lie
group representation theory and harmonic analysis. We study the clas-
sification of weakly symmetric pseudo–Riemannian nilmanifolds. This is
essentially different from the Riemannian symmetric case; the only sim-
ply connected Riemannian symmetric nilmanifolds are the Euclidean
spaces. The work of Vinberg, Yakimova and others shows that there
are many simply connected weakly symmetric Riemannian nilmanifolds,
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and here we will see that each of them leads to a large number of simply
connected weakly symmetric pseudo–Riemannian nilmanifolds.

Recall that a Riemannian manifold (M,ds2) is weakly symmetric if,
for every x ∈M and ξ ∈Mx, there is an isometry sx,ξ such that sx,ξ(x) =
x and dsx,ξ(ξ) = −ξ. In that case (M,ds2) is homogeneous. Let G be
the identity component of the isometry group, so M has expression
G/H. Then the following are equivalent, and each follows from weak
symmetry. (i) M is (G,H)–commutative, i.e. the convolution algebra
L1(H\G/H) is commutative, i.e. (G,H) is a Gelfand pair, (ii) the left
regular representation of G on L2(G/H) is multiplicity free, and (iii) the
algebra of G–invariant differential operators on M is commutative. If G
is reductive then conversely commutativity implies weak symmetry, but
that can fail for example when G = N oH with N nilpotent. See [22]
for a systematic treatment with proper references.

The situation is more complicated for pseudo–Riemannian weakly
symmetric spaces. If (M,ds2) is pseudo–Riemannian then the defini-
tion of weakly symmetric can require only the existence of isometries
sx,ξ as above, either for all ξ ∈ Mx (as in our paper [5]) or only for
ξ ∈ Mx such that ds2(ξ, ξ) 6= 0. The definition, (i) above, of commuta-
tivity, is problematic for noncompactH because the convolution product
involves integration over H. The multiplicity free condition, (ii) above,
becomes HomH(π∞, id) 5 1 for every π ∈ Ĝ, where π∞ is the space
of C∞ vectors for π; see the work [17], [7], [8], [9] and [10] of Thomas
and van Dijk on generalized Gelfand pairs. Our class of weakly sym-
metric pseudo–Riemannian manifolds consists of the complexifications,
and real forms of the complexifications, of weakly symmetric Riemann-
ian manifolds. There is still quite a lot of work to be done to clarify the
relations between these various extensions of “weakly symmetric Rie-
mannian manifold” and the corresponding extensions of “commutative
space”.

The weakly symmetric spaces we study have the formG/H whereH is
reductive in G and G is a semidirect product N oH with N nilpotent.
We find a large number of interesting new examples of these spaces,
in particular many new homogeneous Lorentz and trans–Lorentz (e.g.
conformally Lorentz) manifolds.

Our analysis of weakly symmetric pseudo–Riemannian nilmanifolds is
based on the work of (in chronological order) Wolf ([20], [21]), Carcano
[4], Benson-Jenkins-Ratcliff ([1], [2], [3]), Gordon [12], Vinberg ([18],
[19]) and Yakimova ([23], [24], [25]), as described in [22, Chapter 13].
Starting there we adapt the “real form family” method of Chen–Wolf [6]
to the setting of nilmanifolds.

We first consider weakly symmetric pseudo–Riemannian nilmanifolds
(M,ds2),M = G/H withG = NoH, N nilpotent andH reductive inG.
We show that every space of that sort belongs to a family of such spaces
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associated to a weakly symmetric Riemannian manifold Mr = Gr/Hr

(r for Riemannian). There Hr is a compact real form of the complex
Lie group HC, Gr = Nr o Hr is a real form of GC and where Nr is a
real form of NC, andMr is a weakly symmetric Riemannian nilmanifold.
In fact, every weakly symmetric Riemannian manifold is a commutative
space, and we work a bit more generally, assuming that M and Mr are
commutative nilmanifolds.

Definition 1.1. The real form family of Gr/Hr consists of the
complexification (Gr)C/(Hr)C and all G′/H ′ with the same complexifi-
cation (Gr)C/(Hr)C. The space (Gr)C/(Hr)C is considered to be a real
manifold. We denote that real form family by {{Gr/Hr}}. In this pa-
per, a space G/H ∈ {{Gr/Hr}} is called weakly symmetric just when
Gr/Hr is a weakly symmetric Riemannian manifold.

Our classifications will consist of examinations of the various possible
real form families. Proposition 1.2 reduces this to an examination of
involutions of the groups Gr.

Proposition 1.2. Let Gr = Nr o Hr where Nr is nilpotent, Hr is
compact, and Mr = Gr/Hr is a commutative, connected, simply con-
nected Riemannian nilmanifold. Let σ be an involutive automorphism
of Gr that preserves Hr. Then there is a unique G′/H ′ in the real form
family {{Gr/Hr}} such that G′ is connected and simply connected, H ′
is connected, and g′ = g+r +

√
−1g−r with h′ = h+r +

√
−1h−r in terms

of the (±1)–eigenspaces of σ on gr and hr. Up to covering, every space
G′/H ′ ∈ {{Gr/Hr}} either is obtained in this way or is the real manifold
underlying the complex structure of (Gr)C/(Hr)C.

Proof. First let σ be an involutive automorphism of Gr that preserves
Hr. In terms of the (±1)–eigenspaces of σ on gr, g′ = g+r +

√
−1g−r is

a well defined Lie algebra with nilradical n′ = n+r +
√
−1n−r and Levi

component h′ = h+r +
√
−1h−r . Let G′ be the connected simply connected

group with Lie algebra g′, and H ′ and N ′ the analytic subgroups for h′
and n′. Then H ′ is reductive in G′, N ′ is the nilradical of G′ and is
simply transitive on G′/H ′, and G′/H ′ ∈ {{Gr/Hr}}.

Conversely let G′/H ′ ∈ {{Gr/Hr}}; we want to construct the invo-
lution σ as above. Without loss of generality we may assume that G′ is
connected and simply connected, that H ′ is the analytic subgroup for h′,
and that g′ and h′ are stable under the complex conjugation ν of (gr)C
over gr. Then g′ = (g′)+ + (g′)− and h′ = (h′)+ + (h′)−, eigenspaces
under ν. Now gr = (g′)+ +

√
−1(g′)− and hr = (h′)+ +

√
−1(h′)−, and

νgr is the desired involution. q.e.d.

In Section 2 we work out the relations between involutive automor-
phisms of Hr (which of course are known) and involutive automorphisms
of Gr. This is a matter of understanding how to extend an involutive
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automorphism of Hr to an automorphism of Gr, finding the condition
for that extension to be involutive, and seeing that involutive extensions
(when they exist) are essentially unique.

We need some technical preparation on linear groups and bilinear
forms in order to carry out our classifications. That is carried out in
Section 3. Some of it is delicate.

In Section 4 we examine the case where Nr is a Heisenburg group.
There are two distinct reasons for examining this Heisenberg case sep-
arately. First, it indicates our general method and illustrates the need
for the maximality condition when we look at a larger class of groups
Nr. Second, and more important, the study of harmonic analysis on
Hr oU(k, `)/U(k, `) is a developing topic, and it is important to have a
number of closely related examples.

Section 5 contains our first main results. We interpret Vinberg’s clas-
sification of maximal irreducible commutative nilmanifolds, Table 5.1,
as the classification of all real form families for all maximal irreducible
commutative nilmanifolds. Then we extend Vinberg’s classification to a
complete analysis (including signatures of invariant pseudo–Riemannian
metrics) of the real form families of maximal irreducible commutative
nilmanifolds. Many of these cases are delicate and rely on both the
results of Section 2 and specific technical information worked out in
Section 3. Table 5.2 is the classification. Then we extract some non-
Riemannian cases of special interest from Table 5.2. Those are the cases
of Lorentz signature (n − 1, 1), important in physical applications, and
trans–Lorentz signature (n− 2, 2), the parabolic geometry extension of
conformal geometry.

Finally in Section 6 we extend the results of Sections 5 to a larger col-
lection of real form families, those where Gr/Hr is indecomposable and
satisfies certain technical conditions. Those results rely on the methods
developed for the maximal irreducible case. They are collected in Ta-
ble 6.1. As corollaries we extract the cases of Lorentz signature (n−1, 1)
and trans–Lorentz signature (n− 2, 2).

2. Reduction of the real form question

Proposition 1.2 reduces the classification of spaces in a real form fam-
ily {{Gr/Hr}} to a classification of involutive automorphisms of Gr that
preserve Hr. If this section we reduce it further to a classification of in-
volutive automorphisms of Hr. For that we first review some facts about
nilpotent groups that occur in commutative Riemannian nilmanifolds.

Let Mr = Gr/Hr be a commutative nilmanifold, Gr = Nr oHr with
Nr connected simply connected and nilpotent, and withHr compact and
connected. Then Nr is the nilradical of Gr and it is the only nilpotent
subgroup of Gr that is transitive on Mr [20, Theorem 4.2]. Further,
Nr is commutative or 2–step nilpotent ([1, Theorem 2.4], [12, Theorem
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2.2]). Thus we can decompose nr = zr + vr where zr is the center and
vr is an Ad(Hr)–invariant complement. Following [22, Chapter 13] we
say that

(2.1)

Gr/Hr is irreducible
if [nr, nr] = zr and Hr is irreducible on nr/[nr, nr]

(Gr/Z)/(Hr ∩ Z) is a central reduction of Gr/Hr

if Z is a closed central subgroup of Gr
Gr/Hr is maximal if it is not a nontrivial central reduction.

Now we employ a decomposition from [18] and [19]. Split zr = zr,0⊕
[nr, nr] with Ad(Hr)zr,0 = zr,0. Also decompose nr = zr,0⊕ ([nr, nr]+vr)
with vr = vr,1 + · · · + vr,m vector space direct sum where Ad(Hr) pre-
serves and acts irreducibly on each vr,i. The representations of Ad(Hr)
on the vr,i are mutually inequivalent. Consider the subalgebras nr,i =
[vr,i, vr,i] + vr,i of nr generated by vr,i. Then [vr,i, vr,j ] = 0 for i 6= j and
(ξ0, ξ1, . . . , ξm) 7→ (ξ0 + ξ1 + · · · + ξm) defines an Ad(Hr)–equivariant
homomorphism of zr ⊕ nr,1 ⊕ · · · ⊕ nr,m onto nr with central kernel.

Let Nr,i be the analytic subgroup of Nr for nr,i. Let Hr,i = Hr/Jr,i
where Jr,i is the kernel of the adjoint action of Hr on nr,i. Similarly let
Jr,0 be the kernel of the adjoint action of Hr on zr,0 and Hr,0 = Hr/Jr,0.
Let Gr,i = Nr,ioHr,i for i = 0. As in [22, Section 13.4C], we summarize.

Proposition 2.2. The representation of Hr on vr,i is irreducible. If
i 6= j then [nr,i, nr,j ] = 0 and the representations of Hr on vr,i and vr,j are
mutually inequivalent. Mr,0 = Gr,0/Hr,0 is an Euclidean space, the other
Mr,i = Gr,i/Hr,i are irreducible commutative Riemannian nilmanifolds.

The Ad(Hr)–equivariant homomorphism of zr,0⊕nr,1⊕· · ·⊕nr,m onto
nr defines a Riemannian fibration

(2.3) γ : M̃r = Mr,0 ×Mr,1 × · · · ×Mr,m →Mr

with flat totally geodesic fibers that are intersections of the exp([vr,i,
vr,i]).

Theorem 2.4. LetMr = Gr/Hr be a commutative nilmanifold, Gr =
NroHr with Nr connected simply connected and nilpotent, and with Hr

compact and connected. Let G′/H ′, G′′/H ′′ ∈ {{Gr/Hr}}. If H ′ ∼= H ′′,
then G′ ∼= G′′.

Proof. Let σ′, σ′′ be the involutive automorphisms of Gr that define
G′ and G′′. As H ′ ∼= H ′′, their restrictions to hr belong to the same
component of the automorphism group. Define L = Ad(Hr)∪σ′Ad(Hr).
It is a compact group of linear transformations of gr that has one or
two components, and σ′′ ∈ σ′Ad(Hr). Let T be a maximal torus of
the centralizer of σ′ in Ad(Hr). A theorem of de Siebenthal [16] on
compact disconnected Lie groups says that every element of σ′Ad(Hr)
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is Ad(Hr)–conjugate to an element of σ′T . Thus we may replace σ′′
by an Ad(Hr)–conjugate and assume σ′′ ∈ σ′T . That done, σ′ and σ′′
commute. Thus we may assume that ν := (σ′)−1 · σ′′ satisfies ν2 = 1.

We first consider the case where Gr/Hr is irreducible. In other words,
following (2.1), [nr, nr] = zr and Ad(Hr)|vr is irreducible. Thus the
commuting algebra of Ad(Hr)|vr is R, C or H, so the only elements of
square 1 in that commuting algebra are ±1. As ν2 = 1, now ν|vr = ±1.
If ν = 1 on vr then ν = 1 on nr, in other words σ′ = σ′′ on nr. Then
n′ = n′′. As σ′ and σ′′ commute, and as we have an isomorphism f :
H ′ ∼= H ′′, we extend f to an isomorphism G′ → G′′ by the identity on
N ′ = N ′′.

The other possibility is that ν = −1 on vr. As linear transformations
of vr, σ′ = c′ and σ′′ = c′′ where c′ 2 = 1 = c′′ 2 and c′c′′ = c′′c′.
Again using irreducibility, c′ = ±1 and c′′ = ±1. But c′c′′ = ν = −1.
So we may suppose c′ = 1 and c′′ = −1. Then n′ = zr + vr and n′′ =
zr+
√
−1vr. Now define ϕ : n′ → n′′ by ϕ(z, v) = (−z,

√
−1v). Compute

[ϕ(z1, v1), ϕ(z2, v2)] = [(−z1,
√
−1v1), (−z2,

√
−1v2)] = (−[v1, v2], 0) =

ϕ([v1, v2], 0) = ϕ[(z1, v1), (z2, v2)]. Thus ϕ : n′ → n′′ is an isomorphism.
It commutes with (Ad(Hr)C), so it combines with f : H ′ ∼= H ′′ to define
an isomorphism G′ → G′′.

That completes the proof of Theorem 2.4 in the case where Gr/Hr

is irreducible. We now reduce the general case to the irreducible case,
using Proposition 2.2, i.e., material from [22, Section 13.4C]. As the
representations αi of Hr on the vr,i are inequivalent, ν|vr permutes the
vr,i. If ν(vr,i) = vr,j with i 6= j then ν defines an equivalence of αi
and αj , contradicting inequivalence. Thus ν(vr,i) = vr,i for every i. As
ν2 = 1 now ν|vr,i = εi = ±1. As in the irreducible case f : H ′ ∼= H ′′

together with the ν|vr,i defines an isomorphism G′ ∼= G′′. q.e.d.

Theorem 2.5. LetMr = Gr/Hr be a commutative, connected, simply
connected Riemannian nilmanifold, say with Gr = Nr o Hr where Hr

is compact and connected and Nr is nilpotent. Let θ and H denote
an involutive automorphism of Hr and the corresponding real form of
(Hr)C. Consider the fibration γ : G̃r/H̃r = M̃r → Mr = Gr/Hr of
(2.3). Then θ lifts to an involutive automorphism θ̃ of H̃r, and θ̃ extends
to an automorphism σ of Gr such that dσ(vr) = vr.

If σ2 = 1 then the corresponding (G,H) ∈ {{Gr/Hr}} is a homo-
geneous pseudo–Riemannian manifold. If we cannot choose σ so that
σ2 = 1 then θ and H do not correspond to an element of {{Gr/Hr}}.

Proof. In the notation leading to Proposition 2.2, vr = vr,1 + · · · +
vr,m where Ad(Hr) acts on vr,i by an irreducible representation αi, and
the αi are mutually inequivalent. As θ(Hr) = Hr the corresponding
representations α′i = αi · θ just form a permutation of the αi, up to
equivalence. If θ is inner then α′i = αi.
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If i 6= j with αi equivalent to α′j , let τ denote the intertwiner. So
α′i(h)τ = ταj(h) and the intertwiner τ interchanges vr,i and vr,j . On the
other hand if αi is equivalent to α′i, the intertwiner τ satisfies α′i(h)τ =
ταi(h) and τvr,i = vr,i. Thus α(θ(h))τ = τα(h) for h ∈ Hr.

Define H̃r = Hr∪tHr where tht−1 = θ(h) and t2 belongs to the center
of Hr. Define σ(h) = α(h) and σ(th) = τα(h) for h ∈ Hr (in particular
σ(t) = τ). We check that σ is a representation of H̃r on v:
(i) σ(th1)σ(th2) = τα(h1)τα(h2) = α(θh1)α(h2) = α(th1th2) =

σ(th1th2),
(ii) σ(th1)σ(h2) = τα(h1)α(h2) = τα(h1h2) = σ(th1h2), and
(iii) σ(h1)σ(th2) = α(h1)τα(h2) = τα(θh1)α(h2) = τα(θ(h1)h2) =

σ(tθ(h1)h2) = σ(h1th2).

Now we check that σ(H̃r) consists of automorphisms of nr. Set σ(t)
equal to the identity on zr,0. Since [vr,i, vr,j ] = 0 for i 6= j we extend
σ(t) to the subalgebras zr,i := [vr,i, vr,i] by Λ2(αi). In order that this
be well defined on [nr, nr] it suffices to know that [nr, nr] = [vr, vr] is
the direct sum of the zr,i = [vr,i, vr,i]. That is clear if there is only one
[vr,i, vr,i], in other words if Ad(Hr) is irreducible on vr. In general θ
permutes the irreducible factors of the representation of Hr on vr, so it
permutes the vr,i. Thus θ lifts to H̃r, and we apply the irreducible case
result to the factors Mr,i. Thus θ extends to the automorphism σ of Gr.

q.e.d.

Remark 2.6. If θ extends to σ ∈ Aut(Gr) then evidently that ex-
tension is well defined on vr oHr. But the converse holds as well (and
this will be important for us): If θ extends to α ∈ Aut(vr oHr) then θ
extends to an element of Aut(Gr). For α extends to (zr +vr)oHr since
zr is an Ad(Hr)–invariant summand of Λ2

R(vr), and that extension of α
exponentiates to some σ ∈ Aut(Gr).

Corollary 2.7. Let Mr = Gr/Hr be a commutative, connected, sim-
ply connected Riemannian nilmanifold, say with Gr = Nr o Hr where
Hr is compact and connected and Nr is nilpotent. Let M = G/H be-
long to the real form family {{Gr/Hr}}. Then G = N o H where
n = z + v, z is the center, and each of n and z has a nondegenerate
Ad(H)–invariant symmetric bilinear form. In particular M = G/H is
a pseudo–Riemannian homogeneous space.

Proof. By Proposition 1.2 and Theorem 2.5, the pair (G,H) corre-
sponds to an involutive automorphism σ of Gr whose complex extension
and restriction to G gives a Cartan involution of H. We may assume
that σ preserves the nilradical nr of gr, the center zr of nr, and the or-
thocomplement vr of zr in nr. Thus, in the Cartan duality construction
described in Proposition 1.2, the positive definite Ad(Hr)–invariant in-
ner product on nr (corresponding to the invariant Riemannian metric on
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Gr/Hr), gives us a nondegenerate Ad(H)–invariant symmetric bilinear
form on n for which v = z⊥. The corollary follows. q.e.d.

Example 2.8. Consider the Heisenberg group case nr = ImC +
Cn and hr = u(n), with θ(h) = h. Then θ extends to an involutive
automorphism σ of gr by complex conjugation on nr. Denote H̃r =
Hr ∪ tHr where t2 = 1 and tht−1 = θ(h) for h ∈ Hr. Then σ(th)n =
σ(tht−1 · t)n = σ(θ(h))σ(t)n = σ(h)n = σ(t)(σ(h)n). Thus in fact σ
defines a representation of H̃r given, in this Heisenberg group case, by
σ(t) : n 7→ n.

3. Irreducible commutative nilmanifolds: preliminaries

Recall the definition (2.1) of maximal irreducible commutative Rie-
mannian nilmanifolds. They were classified by Vinberg ([18], [19]) (or
see [22, Section 13.4A]), and we are going to extend that classification
to the pseudo–Riemannian setting. In order to do that we need some
specific results on linear groups and bilinear forms. We work those out in
this section, and we extend the Vinberg classification in the next section.

U(1) factors
We first look at the action of θ when Hr has a U(1) factor and see

just when θ extends to an involutive automorphism of gr, in other words
just when we do have a corresponding (G,H) in {{Gr, Hr}}.
Lemma 3.1. Let (Gr, Hr) be an irreducible commutative Riemannian

nilmanifold such that Hr = U(1) ·H ′r. Suppose that |U(1)∩H ′r| = 3. Let
(G,H) ∈ {{Gr, Hr}} corresponding to an involutive automorphism θ of
Hr. If θ|H′r is inner then H has form U(1) ·H ′. If θ|H′r is outer then H
has form R+ ·H ′.
Lemma 3.2. Let (Gr, Hr) be an irreducible commutative Riemannian

nilmanifold such that Hr = U(1) ·H ′r. Suppose that |U(1)∩H ′r| 5 2. Let
θ′ be an involutive automorphism of H ′r and H ′ the corresponding real
form of (H ′r)C. Then {{Gr, Hr}} contains both an irreducible commu-
tative pseudo–Riemannian nilmanifold with H = U(1) ·H ′ and an irre-
ducible commutative pseudo–Riemannian nilmanifold with H = R+ ·H ′.

For all Gr/Hr in Vinberg’s list (5.1), for which Hr = (U(1)·)H ′r, the
representation of Hr on vr is not absolutely irreducible. In other words
(vr)C is of the form wr ⊕ wr in which vr consists of the (w,w). Thus
u ∈ U(1) acts by (w,w) 7→ (uw, uw). In consequence,

Lemma 3.3. If (G,H) ∈ {{Gr, Hr}} with H = R+ · H ′ then vr =
v′r ⊕ v′′r direct sum of real vector spaces that are eigenspaces of R+, in
other words by the condition that et ∈ R+ acts on vr by v′ + v′′ 7→
etv′+e−tv′′. In particular v′ and v′′ are totally isotropic, and paired with
each other, for the Ad(H)–invariant inner product on vr. Consequently
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that invariant inner product has signature (p, p) where p = dimC vr =
1
2 dimR vr.

Spin representations
Next, we recall signatures of some spin representations for the groups

Spin(k, `).

Lemma 3.4. ([13, Chapter 13]) Real forms of Spin(7;C) satisfy

Spin(6, 1) ⊂ SO∗(8) ' SO(6, 2), Spin(5, 2) ⊂ SO∗(8) ' SO(6, 2)

and Spin(4, 3) ⊂ SO(4, 4).

Real forms of Spin(9;C) satisfy

Spin(8, 1) ⊂ SO(8, 8), Spin(7, 2) ⊂ SO∗(16),

Spin(6, 3) ⊂ SO∗(16) and Spin(5, 4) ⊂ SO(8, 8).

Real forms of Spin(10;C) satisfy

Spin(9, 1) ⊂ SL(16;R), Spin(8, 2) ⊂ SU(8, 8),

Spin(7, 3) ⊂ SL(4;H) ⊂ Sp(4, 4), Spin(6, 4) ⊂ SU(8, 8),

Spin(5, 5) ⊂ SL(16;R) ⊂ SO(16, 16),

and Spin∗(10) ⊂ SL(4;H) ⊂ Sp(4, 4).

E6

Issues involving E6 are more delicate. If L is a connected reductive
Lie group, let ϕL,b denote the fundamental representation corresponding
to the bth simple root in Bourbaki order, ϕL,0 denote the trivial 1–
dimensional representation, and write τ for the defining 1–dimensional
representation of U(1). Then ϕE6,6|C4 = ϕC4,2, ϕE6,6|F4 = ϕF4,4 ⊕
ϕF4,0 and ϕE6,6|A5A1 = (ϕA5,5 ⊗ ϕA1,1) ⊕ (ϕA5,2 ⊗ ϕA1,0). These C4

and F4 restrictions are real. As ϕE6,6(H) is noncompact, and there are
only one or two summands under its maximal compact subgroup, we
conclude that ϕE6,6(E6,C4) ⊂ SO(27, 27), ϕE6,6(E6,F4) ⊂ SO(26, 1) and
ϕE6,6(E6,A5A1) ⊂ SU(15, 12).
ϕE6,6|D5T1 has three summands, (ϕD5,0⊗τ−1)⊕(ϕD5,4⊗τ−1)⊕(ϕD5,1⊗

τ2), of respective degrees 1, 16 and 10, so the above argument must be
supplemented. For that, we look at ϕE6,6|Lr where Lr ∼= SU(3) is a
certain subgroup of E6.

Write ξb for the bth fundamental highest weight of A2. Thus A2

has adjoint representation α := ϕA2,ξ1+ξ2 Denote β := ϕA2,2ξ1+2ξ2 , so
the symmetric square S2(α) = ϕA2,0 ⊕ α ⊕ β. Then [11, Theorem
16.1] E6 has a subgroup Lr ∼= SU(3) such that ϕE6,6|Lr = β. Fur-
ther [11, Table 24] Lr is invariant under the outer automorphism of
E6 that interchanges ϕE6,6 with its dual ϕE6,1. The representation of
Hr on vr treats vr as the unique (ϕE6,6 ⊕ ϕE6,1)–invariant of vC, so
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it is the invariant real form for ϕE6,6(Lr) ⊕ ϕE6,1(Lr). Thus the rep-
resentation of H = E6,D5T1 on v treats v as the invariant real form
of vC for ϕE6,6(L) ⊕ ϕE6,1(L) where L = (Lr)C ∩ H. L must be one
of the real forms SU(1, 2) or SL(3;R) of (Lr)C = SL(3;C). Now
S2(α) has signature (20, 16) or (21, 15). Subtracting α from S2(α)
leaves signature (16, 12), and subtracting ϕA2,0 (for the Killing form
of L) leaves signature (15, 12) or (16, 11). But this must come from
the summands of ϕE6,6|D5T1 , which have degrees 1, 16 and 10. Thus
ϕE6,6(E6,D5T1) ⊂ SU(16, 11).

Split quaternion algebra
Another delicate matter concerns the split real quaternion algebra

Hsp. While Hsp
∼= R2×2, the conjugation of Hsp over R is given by(

a b
c d

)
=
(
d −b
−c a

)
. Thus ImHn×n

sp has real dimension 2n2 + n and is
isomorphic to the Lie algebra of Sp(n;R), and ReHn×n

sp has real dimen-
sion 2n2 − n. In Case 9 of Table 5.2 below, we can have v = Hn

sp with
z = ReHn×n

sp,0 ⊕ ImHsp, where H = {1, U(1),R+}Sp(n;R). Then the
bracket v × v → z has two somewhat different pieces. The obvious one
is v × v → ImHsp, given by [u, v] = Imuv. For the more subtle one
we note Hn ' C2n as a C∗ · Sp(n;C)–module, z = [v, v] ⊂ Λ2

C(C2n),
and dimR ReHn×n

sp = 2n2 − n = dimC(Λ2
C(C2n)), so ReHn×n

sp is an
Sp(n;R)–invariant real form of Λ2

C(C2n). Thus ReHn×n
sp ' Λ2

R(R2n) as
an Sp(n;R)–module. If ω denotes the Sp(n;R)–invariant antisymmetric
bilinear form on R2n then 〈u ∧ v, u′ ∧ v′〉 = ω(u, u′)ω(v, v′) defines the
Sp(n;R)–invariant symmetric bilinear form on Λ2

R(R2n). The assertions
in Case 9 of Table 5.2 follow.

SL(n/2;H) and GL(n/2;H)
The real forms SL(n/2;H) of SU(n) and GL(n/2;H) of U(n) can

appear or not, in an interesting way.

Lemma 3.5. Let (G,H) ∈ {{Gr, Hr}}. Suppose that Hr = U(n)
or Hr = SU(n), and that vr = Cn. Then H 6= GL(n/2;H) and H 6=
SL(n/2;H).

Proof. Let Hr be U(n) or SU(n) and vr = Cn. Suppose that H is
GL(n/2;H) or SL(n/2;H). Then the corresponding involutive auto-
morphism θ of Hr is given by θ(g) = JgJ−1 where J = diag{J ′, . . . , J ′}
with J ′ = ( 0 1

−1 0 ). Then one extension of θ to Gr = Nr oHr is given on
Gr/Zr ' vroHr by α(x, g) = (Jx, JgJ−1). This extension is not involu-
tive: σ2(x, 1) = (−x, 1). However, sinceH is GL(n/2;H) or SL(n/2;H),
θ has an involutive extension β to Gr. Thus β(x, g) = (Bx, JgJ−1) for
some B ∈ U(n). We compare α and β. Calculate

β(x, g)β(x′, g′) = (Bx, JgJ−1)(Bx′, Jg′J−1)

= (Bx+ JgJ−1(Bx′), Jgg′J−1)
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and

β((x, g)(x′, g′)) = β(x+ g(x′), gg′) = (Bx+Bgx′, Jgg′J−1).

Since β is an automorphism this says JgJ−1B = Bg, in other words
g · J−1B = J−1B · g. Thus J−1B is a central element of U(n), in other
words B = cJ with c ∈ C , |c| = 1. As β is involutive we calculate
(x, g) = β2(x, g) = β(Bx, JgJ−1) = (BBx, J JgJ−1 J−1) = (BBx, g).
Thus I = BB = (cJ)(cJ) = |c|2J2 = −I. That contradicts Theo-
rem 2.5, and the Lemma follows. q.e.d.

Remark 3.6. Let (G,H) ∈ {{Gr, Hr}} with Hr = U(n) or SU(n).
Suppose thatH isGL(n/2;H) or SL(n/2;H) as defined by the involutive
automorphism θ of Hr. Then θ(g) = JgJ−1 as noted in the proof of
Corollary 3.5. By contrast here, if vr is a subspace of

⊗2(Cn) then
θ does extend to an involutive automorphism of Gr. That extension is
given on vr by α(x⊗y, g) = (Jx⊗Jy, JgJ−1), and on zr as a subspace of
Λ2
R(vr). The point here is that α2(x⊗y, g) = (JJx⊗JJy, JJgJ−1J−1 =

(J2x⊗ J2y, g) = ((−x)⊗ (−y), g) = (x⊗ y, g).

Remark 3.7. Following the idea of Remark 3.6, suppose that Hr

is locally isomorphic to a product, say Hr = H ′r · H ′′r with H ′′r =
U(n) or SU(n), and that vr = v′r ⊗ v′′r accordingly with v′′r = Cn. Sup-
pose θ = θ′⊗ θ′′ so that H splits the same way. Let σ′ denote the exten-
sion of θ′ to v′r. If σ′ 2 = 1 thenH ′′ cannot be GL(n/2;H) or SL(n/2;H).
For example this says that H cannot be SL(m;R)×SL(n/2;H). But if
σ′ 2 = −1 and vr = Cm ⊗ Cn, one must consider the possibility that H
be SL(m/2;H) · SL(n/2;H).

U(1) ·H′′r
Remark 3.8. A small variation the argument of Remark 3.7 has a

useful application to some more of the cases Hr = H ′′r · H ′′′r where H ′′r
has form U(1) ·H ′r. If θ|H′′r has form g 7→ JgJ−1 with J2 = −I, so that
the extension x 7→ Jx to vr has square −I, we can replace J by iJ ;
then the extension x 7→ iJx is involutive. If θ|H′′r has form g 7→ JgJ−1

with J real and J2 = −I, then this fails, for if c ∈ U(1) the extension
x 7→ cJx has square -I, thus is not involutive. That could be balanced
if extension of θ|H′′′r also has square −I.

SO∗(2`) and Sp(n;R)
The analog of Lemma 3.5 (or at least the analog of the proof) for the

groups SO∗(2`) is

Lemma 3.9. Let (G,H) ∈ {{Gr, Hr}} with Hr = SO(2`) and vr =
R2`. Then H 6= SO∗(2`).

Proof. Suppose H = SO∗(2`). Then it is the centralizer in SO(2`)
of J = ( 0 I

−I 0 ), and θ(g) = JgJ−1. Thus θ extends to an automorphism
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α of Gr given on Gr/Zr ' vr o Hr by α(x, g) = (Jx, JgJ−1). Note
that α2 is −1 on vr. Now let β be an involutive extension of θ, so
β(x, g) = (Bx, JgJ−1) with B2 = I. We compute β(x, g)β(x′, g′) =
(Bx + JgJ−1Bx′, Jgg′J−1) and β((x, g)(x′, g′)) = β(x + gx′, gg′) =
(Bx+Bgx′, Jgg′J−1), so JgJ−1Bx′ = Bgx′ and it follows that J−1B is
central in SO(2`). Thus either J−1B = I so J = B contradicting J2 =
−I = −B2, or J−1B = −I so J = −B contradicting J2 = −I = −B2.
That contradicts β2 = 1, and the Lemma follows. q.e.d.

The arguments of Lemmas 3.5 and 3.9 go through without change for
Sp(n;R):

Lemma 3.10. Let (G,H) ∈ {{Gr, Hr}} with Hr = Sp(n) and vr =
C2n. Then H 6= Sp(n;R).

Proof. Sp(n;R) is defined by the involution θ : g 7→ JgJ−1 of Sp(n)
with fixed point set U(n). As before, θ extends to an automorphism
α on Gr given on Gr/Zr ' vr o Hr by α(x, g) = (Jx, JgJ−1), where
J = ( 0 I

−I 0 ), we let β be an involutive extension of θ, and note β(x, g) =

(Bx, JgJ−1) with B2 = I. We do a computation to see that J−1B
is central in Sp(n), so it is ±I, and J = ±B. Either choice of sign
contradicts B2 = I, and the Lemma follows. q.e.d.

Remark 3.11. Consider cases where the semisimple part of Hr is of
the form H ′r ·H ′′r with H ′′r = Sp(n). Let θ = θ′× θ′′ define the real form
H ′′ = Sp(n;R) corresponding to θ′′. Consider an extension β of θ to Gr,
given by β(x′⊗x′′, g) = (B′x′⊗B′′x′′, θg) on vr×Hr. The argument of
Lemma 3.10 shows B′′ 2 = −I, so β cannot be involutive unless either
B′ 2 = −I as well, or Hr has a U(1) factor so that we can replace B′ by
a scalar multiple with square −I. For example, in Table 5.2,

In Case 9: H 6= Sp(n;R) and H 6= R+ · Sp(n;R).
In Case 17: H 6= Sp(1)× Sp(n;R) and H 6= Sp(1;R)⊗ Sp(r, s).
In Case 18: H /∈ {Sp(2)× Sp(n;R), Sp(2;R)× Sp(r, s),

Sp(1, 1)× Sp(n;R)}.
In Case 21: H /∈ {{1,R+}(Sp(2;R)×SL(n;R)), (Sp(2;R)×SU(r, s)}.
In Case 22: H 6= GL(2;R)× Sp(n;R).
In Case 23: H 6= GL(3;R)× Sp(n;R).
Similar methods and restrictions apply to Table 6.1.

Signature of products

Lemma 3.12. Suppose that Hr is irreducible on vr and that Hr = H ′r ·
H ′′r with θ = θ′×θ′′. Suppose further that there is an involutive extension
of θ to Gr, resulting in (G,H) ∈ {{(Gr, Hr}} with H = H ′ ·H ′′. Further,
v has form v′ ⊗ v′′ with action of H of the form α′ ⊗ α′′, with invariant
R–bilinear forms b′ and b′′. The H–invariant symmetric R–bilinear form
on v is b := b′⊗ b′′. If one of b′, b′′ is antisymmetric, so is the other, and
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b has signature (t, t) where 2t = dimR(v). If one of b′, b′′ has signature of
the form (u, u) then also b has signature (t, t) where 2t = dimR(v). More
generally, if b′ is symmetric with signature (k, `) and b′′ is symmetric
with signature (r, s) then b has signature (kr + `s, ks+ `r).

Proof. Since Hr is irreducible on vr its action there has form α′r ⊗
α′′r . Thus the action of H on v has form α′ ⊗ α′′, and the H–invariant
symmetric R–bilinear form on v is b := b′ ⊗ b′′ as asserted.

If b′ is antisymmetric, then b′′ is antisymmetric also, because b is
symmetric. Then v′ = v′1⊕v′2 where b′(v′i, v′i) = 0 and b′ pairs v′1 with v′2,
and v′′ = v′′1⊕v′′2 similarly. Choose bases {e′1,i} of v′1, {e′2,j} of v′2, {e′′1,u}
of v′′1 and {e′′2,v} of v′′2 such that b′(e′1,i, e

′
2,j) = δi,j and b′′(e′′1,u, e′′2,v) = δu,v.

Here of course dim v′1 = dim v′2 and dim v′′1 = dim v′′2. Then (v′1 ⊗ v′′1)⊕
(v′2⊗v′′2) is positive definite for b, (v′1⊗v′′2)⊕(v′2⊗v′′1) is negative definite
for b, and the two are b–orthogonal and of equal dimension. That proves
the first assertion on signature.

Now suppose that b′ and b′′ are symmetric, that b′ has signature of
the form (u, u), and that b′′ has signature of the form (v, w). Then v′ =
v′1⊕v′2 into orthogonal positive definite and negative definite summands,
similarly v′′ = v′′1⊕v′′2, dim v′1 = dim v′2 = u, dim v′′1 = v and dim v′′2 = w.
So the corresponding decomposition of v is v = v1 ⊕ v2 where v1 =
(v′1 ⊗ v′′1) + (v′2 ⊗ v′′2) and v2 = (v′1 ⊗ v′′2) + (v′2 ⊗ v′′1). Thus dim v1 =
uv + uw = dim v2. That proves the second assertion on signature. The
third signature assertion follows by the same calculation. q.e.d.

Lemma 3.13. We have inclusions
(i) Sp(m;R) · Sp(n;R) ⊂ SO(4mn, 4mn),
(ii) Sp(m;R) ⊂ SO(2m, 2m),
(iii) Sp(m;R) · U(r, s) ⊂ SO(4mn, 4mn), n = r + s,
(iv) Sp(m;R) · SO(r, s) ⊂ SO(4mn, 4mn), n = r + s and
(v) Sp(m;R) · Sp(r, s) ⊂ SO(8mn, 8mn), n = r + s.

Proof. The first of these is immediate from the proof of Lemma 3.12.
For (ii) view Sp(m;R) as the diagonal action on two paired real sym-
plectic vector spaces of dimension 2m, for example on R4m = R2m⊕R2m

or on R2m ⊕
√
−1R2m. For (iii), we have the antisymmetric C–bilinear

b′ on C2m and the antisymmetric R–bilinear form b′′(u, v) = Im 〈u, v〉 on
Cr,s, so b′ ⊗ b′′ is a symmetric bilinear form of signature (4mn, 4mn) on
the real vector space underlying C2m ⊗R Cr,s, and the assertion follows
as in Lemma 3.12. Then (iv) follows because SO(r, s) ⊂ U(r, s) and (v)
follows because Sp(r, s) ⊂ U(2r, 2s). q.e.d.

4. General Heisenberg nilmanifolds

We recall the basic facts on commutative nilmanifolds Mr = Gr/Hr,
where Gr = Nr oHr and Nr is the Heisenberg group ImC + Cn.
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Proposition 4.1. ([1, Theorem 4.6] or see [22, Theorem 13.2.4]) Let
Nr denote the Heisenberg group ImC + Cn of dimension 2n + 1, as in
Example 2.8. Let Hr be a closed connected subgroup of U(n) acting
irreducibly on Cn. Then the following are equivalent.

1. Mr = Gr/Hr is commutative, where Gr = Nr oHr.
2. The representation of Hr on Cn is multiplicity free on the ring of

polynomials on Cn.
3. The representation of Hr on Cn is equivalent to one of the fol-

lowing.

Group Hr Group (Hr)C acting on conditions on n

1 SU(n) SL(n;C) Cn n = 2

2 U(n) GL(n;C) Cn n = 1

3 Sp(m) Sp(m;C) Cn n = 2m

4 U(1) · Sp(m) C∗ × Sp(m;C) Cn n = 2m

5 U(1) · SO(n) C∗ × SO(n;C) Cn n = 2

6 U(m) GL(m;C) S2(Cm) m = 2, n = 1
2
m(m + 1)

7 SU(m) SL(m;C) Λ2(Cm) m odd, n = 1
2
m(m− 1)

8 U(m) GL(m;C) Λ2(Cm) n = 1
2
m(m− 1)

9 SU(`) · SU(m) SL(`;C)× SL(m;C) C` ⊗ Cm n = `m, ` 6= m

10 U(`) · SU(m) GL(`;C)× SL(m;C) C` ⊗ Cm n = `m

11 U(2) · Sp(m) GL(2;C)× Sp(m;C) C2 ⊗ C2m n = 4m

12 SU(3) · Sp(m) SL(3;C)× Sp(m;C) C3 ⊗ C2m n = 6m

13 U(3) · Sp(m) GL(3;C)× Sp(m;C) C3 ⊗ C2m n = 6m

14 U(4) · Sp(4) GL(4;C)× Sp(4;C) C4 ⊗ C8 n = 32

15 SU(m) · Sp(4) SL(m;C)× Sp(4;C) Cm ⊗ C8 n = 8m, m = 3

16 U(m) · Sp(4) GL(m;C)× Sp(4;C) Cm ⊗ C8 n = 8m, m = 3

17 U(1) · Spin(7) C∗ × Spin(7;C) C8 n = 8

18 U(1) · Spin(9) C∗ × Spin(9;C) C16 n = 16

19 Spin(10) Spin(10;C) C16 n = 16

20 U(1) · Spin(10) C∗ × Spin(10;C) C16 n = 16

21 U(1) ·G2 C∗ ×G2,C C7 n = 7

22 U(1) · E6 C∗ × E6,C C27 n = 27

In each case, Gr/Hr is a weakly symmetric Riemannian manifolds;
see [22, Theorem 15.4.7].

Now consider the corresponding real form families. Following Theo-
rems 2.4 and 2.5 we need only enumerate the real forms H of the groups
(Hr)C listed in Proposition 4.1. All of them are weakly symmetric.
The only ones of Lorentz signature come from the Riemannian cases
(H = Hr compact) by changing the sign of the metric on the center
z of n. In all cases H acts trivially on z, which has dimension 1, and
v = vr with the action of H given by the restriction of the action of
(Hr)C. Note that the action of H on v is irreducible except in a few
cases, such as H = SL(n;R) in Case 1, where v = Rn ⊕ Rn under the
action of H.
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In general we need and use the tools from Sections 2 and 3. The
discussion of U(1) factors shows that many potential cases do not occur.
The discussions of linear groups and signature of product groups also
eliminate many potential cases.

Later, in Section 5, we will consider real form families in the non–
Heisenberg cases. In view of the length of the classification in the Heisen-
berg cases, we will limit our considerations in the non–Heisenberg setting
to cases where Hr is maximal in the following sense. If G′r = Nr nH ′r
with G′r/H

′
r weakly symmetric and Hr ⊂ H ′r, then Hr = Hr (and so

Gr = G′r).
We run through the real form families corresponding to the entries

of the table in Proposition 4.1. We use the notation k + ` = m and
r + s = n where applicable, and if we write e.g. m/2 for some case,
usually GL(m/2;H), then it is assumed thatm is even for that case. The
notation {L1, . . . , Lp} means any one of the Li, as in {1, U(1),R+} ·H ′.
Our convention on possible invariant signatures is that (a, b) represents
both possibilities (a, b) and (b, a), that (a, b) ⊕ (c, d) represents all four
possibilities (a+ c, b+ d), (a+ d, b+ c), (b+ d, a+ c) and (b+ c, a+ d),
etc.
Cases 1 and 2. Lemma 3.5 shows H 6= SL(n/2;H) and H 6=

GL(n/2;H). The signatures are obvious.
Case 3. Lemma 3.10 shows H 6= Sp(m;R). The signatures are

obvious.
Case 4. Lemma 3.2 covers the other possibilities. The signatures

come from Lemma 3.3 and Remark 3.8.
Case 5. The argument of Lemma 3.9 combines with the adjustment

described in Remark 3.8 to cover the case H = U(1) · SO∗(n), n even.
Cases 6–8. Remark 3.6 shows that the linear groups do occur here.

The signatures for the general linear groups come from Lemma 3.3, and
they follow for the special linear groups.
Cases 9–16. Only the linear groups and the groups Sp(m;R) present

difficulties here, and for those groups we apply Remark 3.11 and Lem-
ma 3.12.
Cases 17–20. Here we apply Lemma 3.4, Remark 3.7, and the fact

that the centers Z(Spin(7)) ∼= Z2
∼= Z(Spin(9)) and Z(Spin(10)) ∼= Z4,

Case 21. This uses the classification of real forms of G2,C and the
fact that the compact simply connected G2 is centerless and has no outer
automorphisms.
Case 22. This uses the classification of real forms of E6,C and the

fact that the compact simply connected E6 has center Z3 and that the
outer automorphisms of E6 act on that center by z 7→ z−1.

Omitting the obvious cases (Gr)C/(Hr)C, where v and z have signa-
tures of the form (n, n) and (1, 1), now
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Table 4.2. Irreducible Commutative Heisenberg
Nilmanifolds (Nr oHr)/Hr

Group H v and signature(v) z and signature(z)

1 SU(n), n = 2 Cn, (2n, 0) ImC, (1, 0)

SU(r, s) Cr,s, (2r, 2s) ImC, (1, 0)

SL(n;R) Rn,n, (n, n) ImC, (1, 0)

2 U(n), n = 1 Cn, (2n, 0) ImC, (1, 0)

U(r, s) Cr,s, (2r, 2s) ImC, (1, 0)

GL(n;R) Rn,n, (n, n) ImC, (1, 0)

3 Sp(m) C2m, (4m, 0) ImC, (1, 0)

Sp(k, `) C2k,2`, (4k, 4`) ImC, (1, 0)

4 U(1) · Sp(m) C2m, (4m, 0) ImC, (1, 0)

{U(1),R+} · Sp(k, `) C2k,2`, (4k, 4`) ImC, (1, 0)

U(1) · Sp(m;R) Cm,m, (2m, 2m) ImC, (1, 0)

5 SO(2) · SO(n), n = 2 R2×n, (2n, 0) ImC, (1, 0)

SO(2) · SO(r, s) R2×(r,s), (2r, 2s) ImC, (1, 0)

SO(1, 1) · SO(r, s) R(1,1)×(r,s), (n, n) ImC, (1, 0)

U(1) · SO∗(n), n even Cn ' Rn,n, (n, n) ImC, (1, 0)

6 U(m),m = 2 S2
C(Cm), (m2 + m, 0) ImC, (1, 0)

U(k, `)
S2
C(Ck,`),

(k2 + k + `2 + `, 2k`))
ImC, (1, 0)

GL(m;R)
S2
C(Cm) ' R1,1 ⊗ S2

R(Rm),
(m2+m

2
, m2+m

2
)

ImC, (1, 0)

GL(m/2;H)
S2
C(Cm) ' R1,1 ⊗ S2

R(Rm),
(m2+m

2
, m2+m

2
)

ImC, (1, 0)

7 SU(m),m odd Λ2
C(Cm), (m2 −m, 0) ImC, (1, 0)

SU(k, `)
Λ2

C(Ck,`),
(k2 − k + `2 − `, 2k`)

ImC, (1, 0)

SL(m;R)
Λ2

C(Cm) ' R1,1 ⊗ ΛR(Rm),
(m2−m

2
, m2−m

2
)

ImC, (1, 0)

8 U(m) Λ2
C(Cm), (m2 −m, 0) ImC, (1, 0)

U(k, `)
Λ2

C(Ck,`),
(k2 − k + `2 − `, 2k`))

ImC, (1, 0)

GL(m;R)
Λ2

C(Cm) ' R1,1 ⊗ ΛR(Rm),
(m2−m

2
, m2−m

2
)

ImC, (1, 0)

GL(m/2;H)
Λ2

C(Cm) ' R1,1 ⊗ ΛR(Rm),
(m2−m

2
, m2−m

2
)

ImC, (1, 0)

9 SU(m) · SU(n) Cm×n, (2mn, 0) ImC, (1, 0)

SU(k, `) · SU(r, s)
C(k,`)×(r,s),
(2kr + 2`s, 2ks + 2`r)

ImC, (1, 0)

SL(m;R) · SL(n;R) Rm×n ⊕ Rm×n, (mn,mn) ImC, (1, 0)

SL(m
2

;H) · SL(n
2

;H) Cm×n, (mn,mn) ImC, (1, 0)

10 S(U(m) · U(n)) Cm×n, (2mn, 0) ImC, (1, 0)

S(U(k, `) · U(r, s))
C(k,`)×(r,s),
(2kr + 2`s, 2ks + 2`r)

ImC, (1, 0)

. . . Table 4.2 continued on next page
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Table 4.2 continued from previous page . . .
Group H v and signature(v) z and signature(z)
S(GL(m;R) ·GL(n;R)) Rm×n ⊕ Rm×n, (mn,mn) ImC, (1, 0)

S(GL(m
2

;H) ·GL(n
2

;H)) Cm×n, (mn,mn) ImC, (1, 0)

11 U(2) · Sp(m) C2 ⊗C C2m, (8m, 0) ImC, (1, 0)

U(a, b) · Sp(k, `), a+b=2
k+`=m

Ca,b ⊗C C2k,2`,
(4ak + 4b`, 4a` + 4bk)

ImC, (1, 0)

U(a, b) · Sp(m;R), a + b = 2 Ca,b ⊗C C2m, (4m, 4m) ImC, (1, 0)

GL(2;R) · Sp(k, `), k + ` = m C2 ⊗C C2k,2` (4m, 4m) ImC, (1, 0)

GL(1;H) · Sp(m;R) C2 ⊗C C2m, (4m, 4m) ImC, (1, 0)

12 SU(3) · Sp(m) C3 ⊗C C2m, (12m, 0) ImC, (1, 0)

SU(a, b) · Sp(k, `), a+b=3
k+`=m

Ca,b ⊗C C2k,2`,
(4ak + 4b`, 4a` + 4bk)

ImC, (1, 0)

SL(3;R) · Sp(k, `), k + ` = m C3 ⊗C C2k,2`, (6m, 6m) ImC, (1, 0)

13 U(3) · Sp(m) C3 ⊗C C2m, (12m, 0) ImC, (1, 0)

U(a, b) · Sp(k, `), a+b=3
k+`=m

Ca,b ⊗C C2k,2`,
(4ak + 4b`, 4a` + 4bk)

ImC, (1, 0)

U(a, b) · Sp(m;R), a + b = 3 Ca,b ⊗C C2m, (6m, 6m) ImC, (1, 0)

GL(3;R) · Sp(k, `), k + ` = m C3 ⊗C C2k,2`, (6m, 6m) ImC, (1, 0)

14 U(4) · Sp(4) C4 ⊗C C8, (64, 0) ImC, (1, 0)

U(a, b) · Sp(k, `), a+b=4
k+`=4

Ca,b ⊗C C2k,2`,
(4ak + 4b`, 4a` + 4bk)

ImC, (1, 0)

U(a, b) · Sp(4;R), a + b = 4 Ca,b ⊗C C8, (32, 32) ImC, (1, 0)

GL(4;R) · Sp(k, `), k + ` = 4 C4 ⊗C C2k,2`, (32, 32) ImC, (1, 0)

GL(2;H) · Sp(4;R) C4 ⊗C C8, (32, 32) ImC, (1, 0)

15 SU(m) · Sp(4),m = 3 Cm ⊗C C8, (16m, 0) ImC, (1, 0)

SU(k, `) · Sp(r, s), k+`=m
r+s=4

Ck,` ⊗C C2r,2s,
(4kr + 4`s, 4ks + 4`k)

ImC, (1, 0)

SL(m;R) · Sp(r, s), r + s = 4 Cm ⊗C C2r,2s, (8m, 8m) ImC, (1, 0)

SL(m/2;H) · Sp(4;R) Cm ⊗C C8, (8m, 8m) ImC, (1, 0)

16 U(m) · Sp(4),m = 3 Cm ⊗C C8, (16m, 0) ImC, (1, 0)

U(k, `) · Sp(r, s), k+`=m
r+s=4

Ck,` ⊗C C2r,2s,
(4kr + 4`s, 4ks + 4`r)

ImC, (1, 0)

U(k, `) · Sp(4;R), k + ` = m Ck,` ⊗C C8, (8m, 8m) ImC, (1, 0)

GL(m;R) · Sp(r, s), r + s = 4 Cm ⊗C C2r,2s, (8m, 8m) ImC, (1, 0)

GL(m/2;H) · Sp(4;R) Cm ⊗C C8, (8m, 8m) ImC, (1, 0)

17 U(1) · Spin(7) C8, (16, 0) ImC, (1, 0)

U(1) · Spin(6, 1) C6,2, (12, 4) ImC, (1, 0)

U(1) · Spin(5, 2) C6,2, (12, 4) ImC, (1, 0)

U(1) · Spin(4, 3) C4,4, (8, 8) ImC, (1, 0)

R+ · Spin(r, s), r + s = 7 R8,8, (8, 8) ImC, (1, 0)

18 U(1) · Spin(9) C⊗R R16, (32, 0) ImC, (1, 0)

U(1) · Spin(r, s), r + s = 9 C8,8, (16, 16) ImC, (1, 0)

R+ · Spin(r, s), r + s = 9 C8,8, (16, 16) ImC, (1, 0)

19 Spin(10) C16, (32, 0) R, (1, 0)

Spin(9, 1) R16,16, (16, 16) ImC, (1, 0)

Spin(8, 2) C8,8, (16, 16) ImC, (1, 0)

Spin(7, 3) H4,4, (16,16) ImC, (1, 0)

. . . Table 4.2 continued on next page
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Table 4.2 continued from previous page . . .
Group H v and signature(v) z and signature(z)

Spin(6, 4) C8,8, (16, 16) ImC, (1, 0)

Spin(5, 5) R16,16, (16, 16) R, (0, 1)

20 U(1) · Spin(10) C16, (32, 0) ImC, (1, 0)

R+ · Spin(9, 1) R16,16, (16, 16) R, (0, 1)

U(1) · Spin(8, 2) C8,8, (16, 16) ImC, (1, 0)

R+ · Spin(7, 3) H4,4, (16,16) ImC, (1, 0)

U(1) · Spin(6, 4) C8,8, (16, 16) ImC, (1, 0)

R+ · Spin(5, 5) R16,16, (16, 16) R, (0, 1)

U(1) · Spin∗(10) H4,4, (16, 16) ImC, (1, 0)

21 U(1) ·G2 C7, (14, 0) ReO, (1, 0)

U(1) ·G2,A1A1 C3,4, (6, 8) ReOsp, (1, 0)

R+ ·G2 R1,1 ⊗R R7, (7, 7) ReO, (0, 1)

R+ ·G2,A1A1 R1,1 ⊗R R3,4, (7, 7) ReOsp, (1, 0)

22 U(1) · E6 C27, (54, 0) ImC, (1, 0)

U(1) · E6,A5A1 C15,12, (30, 24) ImC, (1, 0)

U(1) · E6,D5T1 C16,11, (32, 22) ImC, (1, 0)

R+ · E6,C4 R1,1 ⊗R R27, (27, 27) R, (0, 1)

R+ · E6,F4 R1,1 ⊗R R26,1, (27, 27) R, (0, 1)

Certain signatures of pseudo–Riemannian metrics from Table 4.2 are
particularly interesting. The Riemannian ones, of course, are just the
Gr/Hr, in other words those whereH is compact. But every such Gr/Hr

also has an invariant Lorentz metric, from the invariant symmetric bi-
linear form on nr that is positive definite on vr and negative definite
on the (one dimensional) center zr. But inspection of Table 4.2 shows
that there are a few others, where v has an invariant bilinear form of
Lorentz signature, say (d, 1), so that n has an invariant bilinear form
of Lorentz signature (d + 1, 1). For each of those, d = 1 and H ∼= R+,
so n is the 3–dimensional Heisenberg algebra

(
0 x z
0 0 y
0 0 0

)
where R+ acts by

t :
(

0 x z
0 0 y
0 0 0

)
→
( 0 tx z

0 0 t−1y
0 0 0

)
and the metric has signature (2, 1).

The trans-Lorentz signature is more interesting. Running through the
table we see that the only cases there are the following.

Proposition 4.3. The trans–Lorentz cases in Table 4.2, signature of
the form (p− 2, 2), all are weakly symmetric. They are

Case 1. H = SU(n − 1, 1) where G/H has a G–invariant metric of
signature (2n− 1, 2), and H = SL(2;R) where G/H has a G–invariant
metric of signature (3, 2).

Case 2. H = U(n − 1, 1) where G/H has a G–invariant metric of
signature (2n− 1, 2), and H = GL(2;R) where G/H has a G–invariant
metric of signature (3, 2).

Case 4. H = U(1) ·Sp(1;R) where G/H has a G–invariant metric of
signature (3, 2).
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Case 5. H = SO(2) · SO(n − 1, 1) where G/H has a G–invariant
metric of signature (2n− 1, 2).

Case 6. H = U(1, 1) where G/H has a G–invariant metric of signa-
ture (5, 2).

Case 7. H = SU(2, 1) where G/H has a G–invariant metric of sig-
nature (5, 2).

Case 8. H = U(2) and H = U(1, 1), where G/H has a G–invariant
metric of signature (1, 2); H = U(2, 1) where G/H has a G–invariant
metric of signature (5, 2); H = GL(2;R) and H = GL(1;H), where
G/H has a G–invariant metric of signature (1, 2).

5. Irreducible commutative nilmanifolds: classification

In our notation, Vinberg’s classification of maximal irreducible com-
mutative Riemannian nilmanifolds is

Table 5.1. Maximal Irreducible Nilpotent Gelfand Pairs
(Nr oHr, Hr)

Group Hr vr zr U(1) max
Group Hr vr zr U(1) max

1 SO(n) Rn ΛRn×n = so(n)
2 Spin(7) R8 = O R7 = ImO
3 G2 R7 = ImO R7 = ImO
4 U(1) · SO(n) Cn ImC n 6= 4
5 (U(1)·)SU(n) Cn Λ2Cn ⊕ ImC n odd
6 SU(n), n odd Cn Λ2Cn

7 SU(n), n odd Cn ImC
8 U(n) Cn ImCn×n = u(n)

9 (U(1)·)Sp(n) Hn ReHn×n
0 ⊕ ImH

10 U(n) S2(Cn) R
11 (U(1)·)SU(n), n = 3 Λ2(Cn) R n even
12 U(1) · Spin(7) C8 R7 ⊕ R
13 U(1) · Spin(9) C16 R
14 (U(1)·)Spin(10) C16 R
15 U(1) ·G2 C7 R
16 U(1) · E6 C27 R
17 Sp(1)× Sp(n) Hn ImH = sp(1) n = 2
18 Sp(2)× Sp(n) C4×2n ImH2×2 = sp(2)
19 (U(1)·)SU(m)× SU(n)

m,n = 3 Cm ⊗ Cn R m = n
20 (U(1)·)SU(2)× SU(n) C2 ⊗ Cn ImC2×2 = u(2) n = 2
21 (U(1)·)Sp(2)× SU(n) H2 ⊗ Cn R n 5 4 n = 3
22 U(2)× Sp(n) C2 ⊗Hn ImC2×2 = u(2)
23 U(3)× Sp(n) C3 ⊗Hn R n = 2
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All groups are real. All spaces (Gr/Hr, ds
2) are weakly symmetric

except for entry 9 with Hr = Sp(n); see [22, Theorem 15.4.10]. This is
due to Lauret [14]. For more details see [22, Section 15.4]. If a group Hr

is denoted (U(1)·)H ′r it can be H ′r or U(1) ·H ′r. Under certain conditions
the only case is U(1) · H ′r then those conditions are noted in the U(1)
column. In this section we extend the considerations of Table 5.1 from
commutative (including weakly symmetric) Riemannian nilmanifolds to
the pseudo–Riemannian setting.

Now we run through the corresponding real form families, omitting
the complexifications of the Riemannian forms Gr/Hr. When we write
m/2 it is implicit that we are in a case where m is even, and similarly
n/2 assumes that n is even. Further k + ` = m and r + s = n where
applicable. We also use the notation {L1, . . . , Lp} to mean any one of
the Li, as in {{1}, U(1),R+} · H ′. Finally, our convention on possible
invariant signatures is that (a, b) represents both possibilities (a, b) and
(b, a), that (a, b)⊕(c, d) represents all four possibilities (a+c, b+d), (a+
d, b+ c), (b+ d, a+ c) and (b+ c, a+ d), etc.
Case 1. H 6= SO∗(n) by Lemma 3.9. The signature calculations are

straightforward.
Case 2. The assertions follow from Lemma 3.4.
Case 3. The assertions are obvious.
Case 4. Lemma 3.9 does not eliminate H = U(1) · SO∗(2m) be-

cause θ = Ad(J), J =
(

0 I
−I 0

)
, extends to C2m as cJ where c ∈ U(1)

with (cJ)2 = 1. However that is necessarily trivial on the U(1) factor,
so H = R+ · SO∗(2m) is eliminatred. The signature calculations are
straightforward.
Cases 5a and 5b. H 6= {S,G}L(n/2;H) by Lemma 3.5. The signa-

tures for (S)U(r, s) are obvious, and for {S,G}L(n;R) they follow from
Lemma 3.3.
Cases 6 and 7. The calculations are straightforward.
Case 8. H 6= GL(n/2;H) by Lemma 3.5. The signatures for U(r, s)

are obvious, and for GL(n;R) they follow from Lemma 3.3.
Case 9. The Sp(n;R) entry depends on Example 3.12.
Cases 10, 11a and 11b. The calulations are straightforward. Note

Remark 3.6 for H = GL(n/2;H).
Cases 12 and 13. The calculations are straightforward.
Case 14. H = U(1) · Spin∗(10) is admissible by lifting Ad(J), J =(
0 I
−I 0

)
, from SO(10) to θ = Ad(cJ̃) on Spin(10), where c ∈ U(1) so

that cJ̃ has square 1 on vr. But H 6= Spin∗(10) by Lemma 3.9.
Case 15. The assertions are obvious.
Case 16. The assertions follow from the E6 discussion in Section 3.
Case 17. H 6= Sp(1)×Sp(n;R) and H 6= Sp(1;R)⊗Sp(r, s) as noted

in Remark 3.11. The signatures are obvious for H = Sp(1) × Sp(r, s).
They follow from Lemma 3.12 for the other two cases.
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Case 18. H cannot be Sp(2) × Sp(n;R), Sp(2;R) × Sp(r, s), nor
Sp(1, 1) × Sp(r, s), as noted in Remark 3.11. See Lemma 3.13 for the
signatures when H = Sp(2;R) × Sp(n;R). The other signatures are
immediate.
Case 19. Lemma 3.5 eliminates both variations on {1,R+}(SL(m;

R)×SL(n/2;H)). The signatures in the other cases are straightforward.
Case 20. H cannot have semisimple part SU(k, l) × Sl(n/2;H) by

Remark 3.7. The signatures are evident in the other four cases.
Case 21–23. Remarks 3.11 and 3.7 eliminate most cases with a real

symplectic group and some cases with a quaternion linear group. The
signatures are computable.

For the convenience of the reader in using the tables, Table 5.2 repeats
some material from Table 4.2.

Table 5.2. Maximal Irreducible Commutative
Nilmanifolds (Nr oHr)/Hr

Group H
v
signature(v)

z
signature(z)

1 SO(r, s)
Rr,s

(r, s)

so(r, s)

( r(r−1)+s(s−1)
2

, rs)

2 Spin(k, 7− k)
4 5 k 5 7

Rq,8−q , q = 2[ k+1
2

]
(q, 8− q)

Rk,7−k

(k, 7− k)

3 G2 ImO, (7, 0) ImO, (7, 0)

G2,A1A1 ImOsp, (3, 4) ImOsp, (3, 4)

4 U(1) · SO(r, s)
n = r + s 6= 4

Cr,s, (2r, 2s) ImC, (1, 0)

U(1) · SO∗(2m) Cm,m, (2m, 2m) ImC, (1, 0)

R+ · SO(r, s) R1,1 ⊗R Rr,s, (n, n) R,(0,1)

5a SU(r, s),
n = r + s even Cr,s, (2r, 2s)

Λ2
R(Cr,s)⊕ ImC

(2r2 − r + 2s2 − s, 4rs)

⊕(1, 0)

SL(n;R) Rn,n, (n, n)
Λ2

R(Rn,n)⊕ R
(n2 − n

2
, n2 − n

2
)

⊕(1, 0)

5b U(r, s), n = r + s Cr,s, (2r, 2s)
Λ2

R(Cr,s)⊕ ImC
(2r2 − r + 2s2 − s, 4rs)

⊕(1, 0)

GL(n;R) Rn,n, (n, n)
Λ2

R(Rn,n)⊕ R
(n2 − n

2
, n2 − n

2
)

⊕(1, 0)

6 SU(r, s)
r + s = n odd Cr,s, (2r, 2s)

Λ2
R(Cr,s)

(2r2 − r + 2s2 − s, 4rs)

SL(n;R) Rn,n, (n, n)
Λ2

R(Rn,n)
(n2 − n

2
, n2 − n

2
)

7 SU(r, s)
r + s = n odd Cr,s, (2r, 2s) ImC, (1, 0)

. . . Table 5.2 continued on next page
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Table 5.2 continued from previous page . . .
Group H

v
signature(v)

z
signature(z)

SL(n;R) Rn,n, (n, n) R, (0, 1)

8 U(r, s) Cr,s, (2r, 2s) u(r, s), (r2 + s2, 2rs)

GL(n;R) Rn,n, (n, n)
gl(n;R)

(n(n−1)
2

, n(n+1)
2

)

9 {{1}, U(1),R+} · Sp(r, s) Hr,s, (4r, 4s)
ReH(r,s)×(r,s)

0 ⊕ ImH
(2n2-n-4rs-1, 4rs)

⊕(3, 0)

U(1) · Sp(n;R) R2n,2n, (2n, 2n)
ReHn×n

sp,0 ⊕ ImHsp

(n2 − 1, n2 − n)
⊕(2, 1)

10 U(r, s)
S2
C(Cr,s)

(r(r + 1) + s(s + 1), 2rs)
ImC, (1, 0)

GL(n;R)
R1,1 ⊗R S2

R(Rn)
(
n(n+1)

2 ,
n(n+1)

2 )
R, (0, 1)

GL(n
2

;H)
S2
C(Cn)

(
n(n+1)

2 ,
n(n+1)

2 )
R, (0, 1)

11a SU(r, s)
r + s = n > 3 odd

Λ2
C(Cr,s)

(r2 − r + s2 − s, 2rs)
ImC, (1, 0)

SL(n;R)
R1,1 ⊗R Λ2

R(Rn)

(n(n−1)
2

, n(n−1)
2

))
R, (0,1)

11b U(r, s)
r + s = n = 3

Λ2
C(Cr,s)

(r2 − r + s2 − s, 2rs)
ImC, (1, 0)

GL(n;R)
R1,1 ⊗R ΛR(Rn)

(
n(n−1)

2 ,
n(n−1)

2 )
R, (0,1)

H = GL(n
2

;H)
Λ2

C(Cn)

(n(n−1)
2

, n(n−1)
2

)
R, (0, 1)

12 U(1) · Spin(k, 7− k)
4 5 k 5 7, q = 2[ k+1

2
]

C⊗R Rq,8−q

(2q, 16− 2q)
Rk,7−k ⊕ ImC
(k, 7− k)⊕ (1, 0)

R+ · Spin(k, 7− k)
4 5 k 5 7, q = 2[ k+1

2
]

R1,1 ⊗R Rq,8−q

(8, 8)
Rk,7−k ⊕ R
(k, 7− k)⊕ (0, 1)

13
U(1) · Spin(k, 9− k)

5 5 k 5 9, q = 21+[
k+3
4

]

C⊗R Rq,16−q

(2q, 32− 2q)
ImC, (1, 0)

R+ · Spin(k, 9− k)

5 5 k 5 9, q = 21+[
k+3
4

]

R1,1 ⊗R Rq,16−q

(16, 16)
R, (0, 1)

14 {{1}, U(1)}·)Spin(10) C16, (32, 0) ImC, (1, 0)

{{1}, R+} · Spin(9, 1) R16,16, (16, 16) R, (0, 1)

{{1}, U(1)} · Spin(8, 2) C8,8, (16, 16) ImC, (1, 0)

{{1}, R+} · Spin(7, 3) H4,4, (16,16) R, (0, 1)

{{1}, U(1)} · Spin(6, 4) C8,8, (16, 16) ImC, (1, 0)

{{1}, R+} · Spin(5, 5) R16,16, (16, 16) R, (0, 1)

U(1) · Spin∗(10) H4,4, (16, 16) ImC, (1, 0)

15 U(1) ·G2 C7 = ImOC, (14, 0) R = ReO, (0, 1)

U(1) ·G2,A1A1 C3,4, (6, 8) ReOsp, (1, 0)

R+ ·G2 R1,1 ⊗R R7, (7, 7) ReO, (0, 1)

. . . Table 5.2 continued on next page
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Table 5.2 continued from previous page . . .
Group H

v
signature(v)

z
signature(z)

R+ ·G2,A1A1 R1,1 ⊗R R3,4, (7, 7) ReOsp, (1, 0)

16 U(1) · E6 C27, (54, 0) ImC, (1, 0)

U(1) · E6,A5A1 C15,12, (30, 24) ImC, (1, 0)

U(1) · E6,D5T1 C16,11, (32, 22) ImC, (1, 0)

R+ · E6,C4 R1,1 ⊗R R27, (27, 27) R, (0, 1)

R+ · E6,F4 R1,1 ⊗R R26,1, (27, 27) R, (0, 1)

17 Sp(1) · Sp(r, s), r + s = 2 Hr,s, (4r, 4s) sp(1), (3, 0)

Sp(1;R) · Sp(n;R) R2n,2n, (2n, 2n) sp(1;R), (1, 2)

18 Sp(2) · Sp(r, s)
r + s = n = 2

C4 ⊗C C2r,2s, (16r, 16s) sp(2), (10, 0)

Sp(1, 1) · Sp(r, s) C2,2 ⊗C C2r,2s, (8n, 8n) sp(1, 1), (6, 4)

H = Sp(2;C) (n = 2) C4×4, (16, 16) sp(2), (10, 0)

H = Sp(2;R) · Sp(n;R) R8n,8n, (8n, 8n) sp(2;R), (4, 6)

19

{{1}, U(1)}·
(SU(k, `) · SU(r, s))

m = k + `, n = r + s = 3
U(1) required if m = n

C(k,`)×(r,s)

(2kr + 2`s, 2ks + 2`r)
ImC, (1, 0)

R+ · SL(m;C) (m = n) gl(m;C)
(m2,m2)

ImC, (1, 0)

{{1}, R+}·
(SL(m;R) · SL(n;R))

R1,1 ⊗R Rm×n

(mn,mn)
R, (0, 1)

{{1}, R+}·
(SL(m

2
;H) · SL(n

2
;H))

R1,1 ⊗R H(m/2)×(n/2)

(mn,mn)
R, (0, 1)

20

{{1}, U(1)}·
(SU(k, `) · SU(r, s))

k + ` = 2, n = r + s = 2
U(1) required if n = 2

C(k,`)×(r,s)

(2kr + 2`s, 2ks + 2`r)

u(k, `)
(2k, 2`)

{{1}, R+}·
(SL(1;H) · SL(n/2;H))

C2×n, (2n, 2n) gl(1;H), (3, 1)

{{1}, R+} · (SL(2;R)·
SL(n;R))

R1,1 ⊗R R2×n

(2n, 2n)
gl(2;R), (1, 3)

21
{{1}, U(1)} · Sp(k, `)·

SU(r, s),
k+`=2

r+s=n=3

U(1) required if n 5 4

Hk,` ⊗R Cr,s

(8kr + 8`s, 8ks + 8`r)
ImC, (1, 0)

{{1}, R+} · Sp(k, `)·
SL(n;R)), R+ if n 5 4

Hk,` ⊗R Rn,n

(8n, 8n)
ImC, (1, 0)

Sp(2;R) · U(r, s)) R4,4 ⊗R Cr,s, (8n, 8n) ImC, (1, 0)

{{1}, R+} · (Sp(2;R)·
SL(n

2
;H), R+ if n 5 4

R4,4 ⊗R Hn/2, (8n, 8n) R, (0, 1)

22 U(k, `) · Sp(r, s), k+`=2
r+s=n

Ck,` ⊗C C2r,2s

(4kr + 4`s, 4ks + 4`r)
u(k, `)
(2k, 4− 2k)

U(k, `) · Sp(n;R)
Ck,` ⊗C Cn,n

(4n, 4n)
u(k, `)
(2k, 4− 2k)

GL(2;R) · Sp(r, s) R2 ⊗R Hr,s, (4n, 4n) gl(2;R), (1, 3)

GL(1;H) · Sp(n;R) H⊗C C2n, (4n, 4n) gl(1;H), (3, 1)

. . . Table 5.2 continued on next page
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Table 5.2 continued from previous page . . .
Group H

v
signature(v)

z
signature(z)

23 U(k, `) · Sp(r, s)
k + ` = 3, n = r + s = 2

Ck,` ⊗C C2r,2s

(4kr + 4`s, 4ks + 4`r)
ImC, (1, 0)

U(k, `) · Sp(n;R) Ck,` ⊗C C2n, (6n, 6n) ImC, (1, 0)

GL(3;R) · Sp(r, s) C3 ⊗C Hr,s, (6n, 6n) R, (0, 1)

We now extract special signatures from Table 5.2. In order to avoid
redundancy we consider SO(n) only for n = 3, SU(n) and U(n) only
for n = 2, and Sp(n) only for n = 1.

Corollary 5.3. The Lorentz cases, signature of the form (p − 1, 1)
in Table 5.2, all are weakly symmetric. In addition to their invariant
Lorentz metrics, each has invariant weakly symmetric Riemannian met-
rics:

Case 4. H = U(1) · SO(n) with G–invariant metric on G/H of sig-
nature (2n, 1)

Case 5. H = SU(n) and H = U(n), each with G–invariant metric
on G/H of signature (2n2 + n, 1)

Case 7. H = SU(n) with G–invariant metric on G/H of signature
(2n, 1)

Case 10. H = U(n) with G–invariant metric on G/H of signature
(n2 + n, 1)

Case 11. H = SU(n) and H = U(n), each with G–invariant metric
on G/H of signature (n2 − n, 1)

Case 12. H = U(1) · Spin(7) with G–invariant metric on G/H of
signature (23, 1)

Case 13. H = U(1) · Spin(9) with G–invariant metric on G/H of
signature (32, 1)

Case 14. H = (U(1)·)Spin(10) with G–invariant metric on G/H of
signature (32, 1)

Case 15. H = U(1)·G2 with G–invariant metric on G/H of signature
(14, 1)

Case 16. H = U(1) ·E6 with G–invariant metric on G/H of signature
(54, 1)

Case 19. H = (U(1)·)(SU(m) · SU(n)) with G–invariant metric on
G/H of signature (2mn, 1)

Case 21. H = (U(1)·)(Sp(2) · SU(n)) with G–invariant metric on
G/H of signature (16n, 1)

Case 23. H = U(3) · Sp(n) with G–invariant metric on G/H of
signature (12n, 1)

Corollary 5.4. The complexifications of the Lorentz cases listed in
Corollary 5.3 all are of trans–Lorentz signature (p − 2, 2). The trans–
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Lorentz cases, signature of the form (p−2, 2) in Table 5.2, all are weakly
symmetric, and they are given as follows.

Case 1. H = SO(2, 1) with G–invariant metric on G/H of signature
(4, 2)

Case 4. H = U(1) ·SO(n− 1, 1) with G–invariant metric on G/H of
signature (2n− 1, 2)

Case 7. H = SU(n − 1, 1) with G–invariant metric on G/H of sig-
nature (2n− 1, 2)

Case 10. H = U(1, 1) with G–invariant metric on G/H of signature
(5, 2)

Case 11. H = SU(2, 1) and H = U(2, 1), each with G–invariant
metric on G/H of signature (5, 2)

6. Indecomposable commutative nilmanifolds

In this section we broaden the scope of Table 5.2 from irreducible
to indecomposable commutative spaces — subject to a few technical
conditions. This is based on a classification of Yakimova ([24], [25];
or see [22]). It settles the case where (N o H,H) is indecomposable,
principal, maximal and Sp(1)–saturated.

SinceG = NoH acts almost–effectively onM = G/H, the centralizer
of N in H is discrete, in other words the representation of H on n
has finite kernel. (In the notation of [25, Section 1.4] this says H =
L = L◦ and P = {1}.) That simplifies the general definitions [25,
Definition 6] of principal and [25, Definition 8] of Sp(1)–saturated, as
follows. Decompose v as a sum w1 ⊕ · · · ⊕ wt of irreducible Ad(H)–
invariant subspaces. Then (G,H) is principal if Z0

H = Z1 × · · · × Zm
where Zi ⊂ GL(wi), in other words Zi acts trivially on wj for j 6= i.
Decompose H = Z0

H ×H1×· · ·×Hm where the Hi are simple. Suppose
that whenever some Hi acts nontrivially on some wj and Z0

H ×
∏
`6=iH`

is irreducible on wj , it follows that Hi is trivial on wk for all k 6= j.
Then Hi

∼= Sp(1) and we say that (G,H) is Sp(1)–saturated. The
group Sp(1) will be more visible in the definition when we extend the
definition to the cases where H 6= L.

In the Table 6.1 below, hn;F is the Heisenberg algebra ImF + Fn of
real dimension (dimR F − 1) + n dimR F. Here F is the real, complex,
quaternion or octonion algebra over R, ImF is its imaginary component,
and

hn;F = ImF + Fn with product [(z1, v1), (z2, v2)] = (Im (v1 · v∗2), 0),

where the vi are row vectors and v∗2 denotes the conjugate (F over
R) transpose of v2. It is the Lie algebra of the (slightly generalized)
Heisenberg group Hn;F. Also in the table, in the listing for n the sum-
mands in double parenthesis ((..)) are the subalgebras [w,w] +w where
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w is an H–irreducible subspace of v with [w,w] 6= 0, and the sum-
mands not in double parentheses are H–invariant subspaces w with
[w,w] = 0. The center z = [n, n] + u where u is the sum of those w
with [w,w] = 0. Thus n = z + v where the center z is the sum of
[n, n] with those summands listed for n that are not enclosed in double
parenthesis ((..)).

As before, when we write m/2 it is assumed that m is even, and
similarly n/2 requires that n be even. Further k + ` = m and r +
s = n where applicable. In the signatures column we write n′ for
[n, n].

Table 6.1. Maximal Indecomposable Principal Satu-
rated Nilpotent Gelfand Pairs (N o H,H) for N Non-
abelian, Where the Action of H on n/[n, n] is Reducible

Group H, Algebra n Signatures

1 U(r, s)
((hr+s;C))⊕ su(r, s)

v : (2r, 2s)
u : (r2 + s2 − 1, 2rs)
n′ : (1, 0)

GL(n;R)
((hn;C))⊕ sl(n;R)

v : (n, n)
u : (n(n− 1)/2, n(n + 1)/2− 1)
n′ : (0, 1)

2
U(k, `), (k, `) = (4, 0) or (2, 2)

((ImC + Λ2(Ck,`) + Ck,`))⊕ Λ2(Rk,`)

v : (2k, 2`)
u : (k(k − 1)/2 + `(`− 1)/2, k`)
n′ : (1, 0)⊕ ((12, 0) or (4, 8))

GL(4;R)
((R + Λ2(C2,2) + C2,2))⊕ R3,3

v : (4, 4)
u : (3, 3) and n′ : (0, 1)⊕ (6, 6)

3 U(1) · SU(r, s) · U(1), r + s = n
((hn;C))⊕ hn(n−1)/2;C))

v : (2r, 2s)⊕ (r2 − r + s2 − s, 2rs)
u : 0 and n′ : (1, 0)⊕ (1, 0)

R+ · SL(n;R) · R+

((hn;C))⊕+((hn(n−1)/2;C))
v : (n, n)⊕ (

n(n−1)
2 ,

n(n−1)
2 )

u : 0 and n′ : (0, 1)⊕ (0, 1)

4
SU(2k, 2`), (k, `) = (2, 0) or (1, 1)

((ImC + ReH(k,`)×(k,`) + C2k,2`))

⊕Rk(2k−1)+`(2`−1),4k`

v : (4k, 4`)
u : (k(2k − 1) + `(2`− 1), 4k`)
n′ : (1, 0)⊕ ((6, 0) or (2, 4))

SL(4;R)

((R + ReH2×2
sp + R4,4))⊕ R3,3

v : (4, 4)
u : (3, 3) and n′ : (0, 1)⊕ (4, 2)

5
U(k, `)× U(2r, 2s), k+`=2

r+s=2

((u(k, `) + C(k,`)×(2r,2s)))

⊕Rr(2r−1)+s(2s−1),4rs

v : (2kr + 2`s, 2ks + 2`r)
u : (r(2r − 1) + s(2s− 1), 4rs)
n′ : (2r, 2s)

GL(2;R) ·GL(4;R)

((gl(2;R) + R1,1 ⊗ R2×4))⊕ R3,3
v : (8, 8)
u : (3, 3) and n′ : (1, 3)

GL(1;H) ·GL(2;H)
((gl(1;H) + R1,1 ⊗R H2))⊕ R5,1

v : (8, 8)
u : (5, 1) and n′ : (3, 1)

6
S(U(2k, 2`)× U(r, s)), k+`=2

r+s=n

((h4n;C))⊕ Rk(2k−1)+`(2`−1),4k`

v : (8r, 8s)
u : (k(2k − 1) + `(2`− 1), 4k`)
n′ : (1, 0)

S(GL(4;R) ·GL(n;R))

((R + R1,1 ⊗ R4×n))⊕ R3,3
v : (4n, 4n)
u : (3, 3) and n′ : (0, 1)

S(GL(2;H) ·GL(n/2;H))

((R + R1,1 ⊗R H2×n/2))⊕ R5,1
v : (4n, 4n)
u : (5, 1) and n′ : (0, 1)

7 U(k, `) · U(r, s), k+`=m
r+s=n

((hmn;C))⊕ ((hm;C))

v : (2kr + 2`s, 2ks + 2`r)⊕ (2k, 2`)
u : 0 and n′ : (1, 0)⊕ (1, 0)

GL(m;R) ·GL(n;R)

((R + R1,1 ⊗ Rm×n))⊕ ((R + Rm,m))
v : (mn,mn)⊕ (m,m)
u : 0 and n′ : (0, 1)⊕ (0, 1)

8 U(1) · Sp(r, s) · U(1), r + s = n
((h2n;C))⊕ ((h2n;C))

v : (4r, 4s)⊕ (4r, 4s)
u : 0 and n′ : (1, 0)⊕ (1, 0)

. . . Table 6.1 continued on next page
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Table 6.1 continued from previous page . . .
Group H, Algebra n Signatures

R+ · Sp(r, s) · U(1), r + s = n
((R + R2n,2n))⊕ ((h2n;C))

v : (4r, 4s)⊕ (4r, 4s)
u : 0 and n′ : (0, 1)⊕ (1, 0)

R+ · Sp(r, s) · R+, r + s = n
((R + R2n,2n))⊕ ((R + R2n,2n))

v : (4r, 4s)⊕ (4r, 4s)
u : 0 and n′ : (1, 0)⊕ (1, 0)

U(1) · Sp(n;R) · U(1)
((h2n;C))⊕ ((h2n;C))

v : (2n, 2n)⊕ (2n, 2n)
u : 0 and n′ : (1, 0)⊕ (1, 0)

9 Sp(1) · Sp(r, s) · {U(1), R+}
((hn;H))⊕ ((h2n;C)), r + s = n

v : (4r, 4s)⊕ (4r, 4s)
u : 0 and n′ : (3, 0)⊕ (1, 0)

Sp(1;R) · Sp(n;R) · U(1)
((hn;H))⊕ ((h2n;C))

v : (2n, 2n)⊕ (2n, 2n)
u : 0 and n′ : (1, 2)⊕ (1, 0)

10 Hr = Sp(1) · Sp(r, s) · Sp(1)
((hn;H)) + ((hn;H)), r + s = n

v : (4r, 4s)⊕ (4r, 4s)
u : 0 and n′ : (3, 0)⊕ (3, 0)

Sp(1;R) · Sp(n;R) · Sp(1;R)
((hn;H))⊕ ((hn;H))

v : (2n, 2n)⊕ (2n, 2n)
u : 0 and n′ : (1, 2)⊕ (1, 2)

11
Sp(k, `) · {Sp(1), U(1), {1}} · Sp(r, s)

((hn;H))⊕ H(k,`)×(r,s), k+`=m
r+s=m

v : (4k, 4`)
u : (4kr + 4`s, 4ks + 4`r)
n′ : (3, 0)

Sp(m;R) · {Sp(1;R), U(1)} · Sp(n;R)

((hm;H)) + Hm×n
v : (2m, 2m)
u : (2mn, 2mn) and n′ : (2, 1)

12
Sp(k, `) · {Sp(1), U(1), {1}}, k + ` = m

((hm;H))⊕ ReH(k,`)×(k,`)
0

v : (4k, 4`)
u : (2m2 −m− 1− 4k`, 4k`)
n′ : (3, 0)

H = Sp(m;R) · {Sp(1;R), U(1)}
((hm;H))⊕ ReHm×m

sp,0

v : (2m, 2m)
u : (m2 − 1,m2 −m)
n′ : (2, 1)

13
Spin(k, `) · {{1}, SO(r, s)}
((h1;O))⊕ R(k,`)×(r,s)

k + ` = 7, ` 5 k, (r, s) = (2, 0) or (1, 1)

v : (q, 8− q), q = 2[ k+1
2 ]

u : (rk + s`, r` + sk)
n′ : (k, `)

14
U(1) · Spin(k, `), k + ` = 7, ` 5 k

((h7;C))⊕ Rq,8−q, q = 2[ k+1
2 ]

v : (2k, 2`)
u : (q, 8− q) and n′ : (1, 0)

R+ · Spin(k, `), k + ` = 7, ` 5 k

((R + R1,1 ⊗R Rk,`))⊕ Rq,8−q, q = 2[ k+1
2 ]

v : (7, 7)
u : (q, 8− q) and n′ : (0, 1)

15
U(1) · Spin(k, `), k + ` = 7, ` 5 k

((h8;C))⊕ Rk,`
v : (2q, 16− 2q), q = 2[ k+1

2 ]
u : (k, `) and n′ : (1, 0)

R+ · Spin(k, `), k + ` = 7, ` 5 k

((R + R1,1 ⊗R Rq,8−q))⊕ Rk,`, q = 2[ k+1
2 ]

v : (8, 8)
u : (k, `) and n′ : (0, 1)

16 U(1) · Spin(k, `) · U(1), k + ` = 8, ` 5 k,
((h8;C))⊕ ((h8;C))

v : (2k, 2`)⊕ (2k, 2`)
u : 0 and n′ : (1, 0)⊕ (1, 0)

R+ · Spin(k, `) · U(1), k + ` = 8, ` 5 k,
((R + R1,1 ⊗ Rk,`))⊕ ((h8;C))

v : (8, 8)⊕ (2k, 2`)
u : 0 and n′ : (0, 1)⊕ (1, 0)

R+ · Spin(k, `) · R+, k + ` = 8, ` 5 k,
((R + R1,1 ⊗ Rk,`))⊕ ((R + R1,1 ⊗ Rk,`))

v : (8, 8)⊕ (8, 8)
u : 0 and n′ : (0, 1)⊕ (0, 1)

U(1) · SO∗(8) · U(1)
((h8;C))⊕ ((h8;C))

v : (8, 8)⊕ (8, 8)
u : 0 and n′ : (1, 0)⊕ (1, 0)

17
U(1) · Spin(2k, 2`), k = 3, 4, 5; ` = 5− k

((h16;C))⊕ R2k,2`
v : (q, 16− q), q = 2[

k+1
2 ]+2

u : (2k, 2`) and n′ : (1, 0)

R+ · Spin(2k − 1, 2` + 1), k=3,4,5; `=5−k

((R + R16,16))⊕ R2k−1,2`+1

v : (16, 16)
u : (2k − 1, 2` + 1)
n′ : (0, 1)

U(1) · Spin∗(10)
((h16;C))⊕ C5

v : (16, 16)
u : (10, 0) and n′ : (1, 0)

18 {SU(k, `), U(k, `), U(1)Sp( m
2 )} · SU(r, s)

((h2m;C)) + su(r, s), k + ` = m, r + s = 2
v : (2kr + 2`s, 2ks + 2`r)
u : (3− 2rs, 2rs) and n′ : (1, 0)

{SL(m;R), GL(m;R)} · SL(2;R)

((R + R1,1 ⊗ Rm×2))⊕ sl(2;R)
v : (2m, 2m)
u : (1, 2) and n′ : (0, 1)

{SL(m/2;H), GL(m/2;H)} · SL(1;H)

((R + Hm/2,m/2))⊕ sl(1;H)
v : (2m, 2m)
u : (3, 0) and n′ : (0, 1)

Sp(k/2, `/2) ·GL(2;R)

((R + R1,1 ⊗R Hk/2,`/2))⊕ sl(2;R)
v : (2m, 2m)
u : (1, 3) and n′ : (0, 1)

. . . Table 6.1 continued on next page
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Table 6.1 continued from previous page . . .
Group H, Algebra n Signatures
Sp(m/2;R) ·GL(1;H)
((h2m;C))⊕ sl(2;R)

v : (2m, 2m)
u : (1, 2) and n′ : (0, 1)

19
{SU(k, `), U(k, `), U(1)Sp(k/2, `/2)}·
·U(r, s), k + ` = m, r + s = 2

((h2m;C))⊕ ((h2;C))

v : (2kr + 2`s, 2ks + 2`r)⊕ (2r, 2s)
u : 0 and n′ : (1, 0)⊕ (1, 0)

{SL(m;R), GL(m;R)} ·GL(2;R)
((R + R2m,2m))⊕ ((R + R2,2))

v : (2m, 2m)⊕ (2, 2)
u : 0 and n′ : (1, 0)⊕ (1, 0)

R+ · Sp(k/2, `/2) ·GL(2;R)

((ImC + C2k,2` ⊗R R1,1))⊕ ((ImC + R2,2))

v : (2m, 2m)⊕ (2, 2)
u : 0 and n′ : (1, 0)⊕ (1, 0)

U(1)Sp(m/2;R) · U(r, s)
((h2m;C))⊕ ((h2;C))

v : (2m, 2m)⊕ (2r, 2s)
u : 0 and n′ : (1, 0)⊕ (1, 0)

20
{SU(k, `), U(k, `), U(1)Sp( k

2 ,
`
2 )} · SU(a, b)·

·{SU(r, s), U(r, s), U(1)Sp( r
2 ,

s
2 )}

((h2m;C))⊕ ((h2n;C)), k+`=m,a+b=2,r+s=n

v : (2(ak + b`), 2(a` + bk))⊕
(2(ar + bs), 2(as + br))

u : 0 and n′ : (1, 0)⊕ (1, 0)

{SU(k, `), U(k, `), U(1)Sp( k
2 ,

`
2 )} · SU(a, b)·

·U(1)Sp( n
2 ;R)}

((h2m;C))⊕ ((h2n;C))

v : (2(ak + b`), 2(a` + bk))⊕ (2n, 2n)
u : 0 and n′ : (1, 0)⊕ (0, 1)

U(1)Sp( m
2 ;R) · SU(a, b) · U(1)Sp( n

2 ;R)
((h2m;C))⊕ ((h2n;C))

v : (2m, 2m)⊕ (2n, 2n)
u : 0 and n′ : (0, 1)⊕ (0, 1)

{SL(m;R), GL(m;R)} · SL(2;R)·
·{SL(n;R), GL(n;R),R+Sp( r

2 ,
s
2 )}

((h2m;C))⊕ ((h2n;C))

v : (2m, 2m)⊕ (2n, 2n)
u : 0 and n′ : (0, 1)⊕ (0, 1)

R+Sp( k
2 ,

`
2 ) · SL(2;R) · R+Sp( r

2 ,
s
2 )

((h2m;C))⊕ ((h2n;C))
v : (2m, 2m)⊕ (2n, 2n)
u : 0 and n′ : (0, 1)⊕ (0, 1)

{SL(m/2;H), GL( m
2 ;H)} · SL(1;H)·

·{SL( n
2 ;H), GL( n

2 ;H),R+Sp( n
2 ;R)}

((R + H
m
2 ⊗R R1,1))⊕ ((R + R1,1 ⊗R H

n
2 ))

v : (2m, 2m)⊕ (2n, 2n)
u : 0 and n′ : (0, 1)⊕ (0, 1)

R+Sp( m
2 ;R) · SL(1;H) · R+Sp( n

2 ;R)
((R + R2m,2m))⊕ ((R + R2n,2n))

v : (2m, 2m)⊕ (2n, 2n)
u : 0 and n′ : (0, 1)⊕ (0, 1)

21
{SU(k, `), U(k, `), U(1)Sp( k

2 ,
`
2 )} · SU(a, b)·

·U(r, s), k+`=m,a+b=2,(r,s)=(4,0) or (2,2)

((h2m;C))⊕ ((h8;C))⊕ R2r−2+s,s

v : (4k, 4`)⊕
⊕(2ar + 2bs, 2as + 2br)

u : (2r − 2 + s, s)
n′ : (1, 0⊕ (1, 0)

{SL(m;R), GL(m;R)} · SL(2;R) ·GL(4;R)
((R + R2m,2m))⊕ ((R + R8,8))⊕ R3,3

v : (2m, 2m)⊕ (8, 8)
u : (3, 3) and n′ : (0, 1)⊕ (0, 1)

{SL( m
2 ;H), GL( m

2 ;H)} · SL(1;H) ·GL(2;H)

((R + H
m
2 ,

m
2 ))⊕ ((R + H2,2))⊕ R5,1

v : (2m, 2m)⊕ (8, 8)
u : (5, 1) and n′ : (0, 1)⊕ (0, 1)

Sp(k/2, `/2) ·GL(2;R) ·GL(4;R)
((h2m;C))⊕ ((R + R8,8))⊕ R3,3

v : (4k, 4`)⊕ (8, 8)
u : (3, 3) and n′ : (0, 1)⊕ (0, 1)

Sp( m
2 ;R) · U(a, b) · U(r, s)

((R + R2m,2m))⊕ ((h8;C))⊕ R2r−2+s,s

v : (2m, 2m)⊕
⊕(2ar + 2bs, 2as + 2br)

u : (2r − 2 + s, s)
n′ : (0, 1)⊕ (1, 0)

Sp( m
2 ;R) ·GL(1;H) ·GL(2;H)

((R + R2m,2m))⊕ ((R + H2,2))⊕ R5,1
v : (2m, 2m)⊕ (8, 8)
u : (5, 1) and n′ : (0, 1)⊕ (0, 1)

22 U(a, b) · U(r, s),
(a,b)=(2,0) or (1,1)
(r,s)=(4,0) or (2,2)

((h8;C)) + R2r−2+s,s + su(a, b)

v : (ar + bs, as + br)
u : (2r − 2 + s, s)⊕ (2a− 1, 2b)
n′ : (1, 0)

GL(2;R) ·GL(4;R)
((R + R8,8))⊕ R3,3 ⊕ sl(2;R)

v : (8, 8)
u : (3, 3)⊕ (1, 2) and n′ : (0, 1)

GL(1;H) ·GL(2;H)
((R + H2,2))⊕ R5,1 ⊕ sl(1;H)

v : (8, 8)
u : (5, 1)⊕ (3, 0) and n′ : (0, 1)

23
U(k, `) · U(a, b) · U(r, s)
(k,`),(r,s)=(4,0) or (2,2); and (a,b)=(2,0) or (1,1)

R2k−2+`,` ⊕ ((h8;C))⊕ ((h8;C))⊕ R2r−2+s,s

v : (ak + b`, a` + bk)⊕
⊕(ar + bs, as + br)

u : (2k − 2 + `, `)⊕ (2r − 2 + s, s)
n′ : (1, 0)⊕ (1, 0)

GL(4;R) ·GL(2;R) ·GL(4;R)
R3,3 ⊕ ((R + R8,8))⊕ ((R + R8,8))⊕ R3,3

v : (8, 8)⊕ (8, 8)
u : (3, 3)⊕ (3, 3)
n′ : (0, 1)⊕ (0, 1)

GL(2;H) ·GL(1;H) ·GL(2;H)
R5,1 ⊕ ((R + H2,2))⊕ ((R + H2,2))⊕ R5,1

v : (8, 8)⊕ (8, 8)
u : (5, 1)⊕ (5, 1)
n′ : (0, 1)⊕ (0, 1)

. . . Table 6.1 continued on next page
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Table 6.1 continued from previous page . . .
Group H, Algebra n Signatures

24
U(1) · SU(k, `) · U(1), (k,`)=(4,0) or (2,2)

((h4;C))⊕ ((h4;C))⊕ R2k−2+`,`

v : (2k, 2`)⊕ (2k, 2`)
u : (2k − 2 + `, `)
n′ : (1, 0)⊕ (1, 0)

R+ · SL(4;R) · R+

((R + R4,4))⊕ ((R + R4,4))⊕ R3,3
v : (4, 4)⊕ (4, 4)
u : (3, 3) and n′ : (0, 1)⊕ (0, 1)

25
{{1}, U(1)} · SU(k, `) · {{1}, U(1)}
((h4;C)) + Rk(k−1)+`(`−1),2k`, k+`=4

v : (2k, 2`)
u : (k(k − 1) + `(`− 1), 2k`)
n′ : (1, 0)

{{1}, R+} · SL(4;R) · {{1}, R+}
((R + R4,4))⊕ R6,6

v : (4, 4)
u : (6, 6) and n′ : (0, 1)

All the spaces Gr/Hr = (Nr o Hr)/Hr, corresponding to entries of
Table 5.2, are weakly symmetric Riemannian manifolds except entry 11
with Hr = Sp(m) × Sp(n), entry 12 with Hr = Sp(m), entry 13 with
Hr = Spin(7)× ({1} or SO(2), and entry 25 with Hr = ({1} or U(1)).
In those four cases Gr/Hr is not weakly symmetric. See [22, Theorem
15.4.12].

We now extract special signatures from Table 6.1. In order to avoid
redundancy we consider SO(n) only for n = 3, SU(n) and U(n) only
for n = 2, and Sp(n) only for n = 1.

Corollary 6.2. The Lorentz cases, signature of the form (p − 1, 1)
in Table 6.1, all are weakly symmetric. In addition to their invariant
Lorentz metrics, all except H = GL(1;R) in Case 1 and H = R+ ·
SL(2;R) · R+ in Case 3 have invariant weakly symmetric Riemannian
metrics. They are

Case 1. H = U(n) with metric on G/H of signature (n2 + 2n− 1, 1),
H = GL(1;R) with metric on G/H of signature (2, 1).

Case 2. H = U(4) with metric on G/H of signature (26, 1).
Case 3. H = U(1) · SU(n) · U(1) with metric on G/H of signature

(n2 +n+ 1, 1), H = R+ ·SL(2;R) ·R+ with metric on G/H of signature
(3, 1).

Case 4. H = SU(4) with metric on G/H of signature (20, 1).
Case 6. H = S(U(4)×U(n)) with metric on G/H of signature (8n+

6, 1).
Case 8. H = U(1) · Sp(n) · U(1) with metric on G/H of signature

(8n+ 1, 1)
Case 9. H = Sp(1) · Sp(n) · U(1) with metric on G/H of signature

(8n+ 3, 1)
Case 14. H = U(1) ·Spin(7) with metric on G/H of signature (22, 1)
Case 15. H = U(1) ·Spin(7) with metric on G/H of signature (23, 1)
Case 16. H = U(1) · Spin(8) ·U(1) with metric on G/H of signature

(33, 1)
Case 17. H = U(1)·Spin(10) with metric on G/H of signature (42, 1)
Case 18. H = {SU(m), U(m), U(1)Sp(m/2)} · SU(2) with metric on

G/H of signature (4m+ 3, 1)
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Case 19. H = {SU(m), U(m), U(1)Sp(m/2)} · U(2) with metric on
G/H of signature (4m+ 5, 1)

Case 20. H = {SU(m), U(m), U(1)Sp(m/2)} ·SU(2) · {SU(n), U(n),
U(1)Sp(n/2)} with metric on G/H of signature (4m+ 4n+ 1, 1)

Case 21. H = {SU(n), U(n), U(1)Sp(n2 )} · SU(2) · U(4) with metric
on G/H of signature (4n+ 23, 1).

Case 22. H = U(2) · U(4) with metric on G/H of signature (25, 1)
Case 23. H = U(4) · U(2) · U(4) with metric on G/H of signature

(45, 1)
Case 24. H = U(1) · SU(4) · U(1) with metric on G/H of signature

(23, 1)
Case 25. H = (U(1)·)SU(4)(·SO(2)) with metric on G/H of signa-

ture (20, 1)

Corollary 6.3. The complexifications of the Lorentz cases listed in
Corollary 6.2 all are of trans–Lorentz signature (p − 2, 2). The trans–
Lorentz cases, signature of the form (p−2, 2) in Table 6.1, all are weakly
symmetric and are as follows.

Case 1. H = GL(1;R) with metric on G/H of signature (1, 2).
Case 3. H = U(1) · SU(n) · U(1) with metric on G/H of signature

(n2 +n, 2), H = U(1) ·SU(1, 1) ·U(1) with metric on G/H of signature
(6, 2), H = R+ · SL(2;R) · R+ with metric on G/H of signature (2, 2)

Case 8. H = U(1) · Sp(n) · U(1) with metric on G/H of signature
(8n, 2)

Case 16. H = U(1) · Spin(8) ·U(1) with metric on G/H of signature
(32, 2)

Case 19. H = {SU(m), U(m), U(1)Sp(m/2)} · U(2) with metric on
G/H of signature (4m+ 4, 2)

Case 20. H =
{SU(m), U(m), U(1)Sp(m/2)} · SU(2)·
·{SU(n), U(n), U(1)Sp(n/2)} with metric on G/H

of signature (4m+ 4n, 2)
Case 21. H = {SU(n), U(n), U(1)Sp(n2 )} · SU(2) · U(4) with metric

on G/H of signature (4n+ 22, 2).
Case 23. H = U(4) · U(2) · U(4), metric on G/H of signature (44, 2)
Case 24. H = U(1) ·SU(4) ·U(1), metric on G/H of signature (22, 2)
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