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Abstract Weexamine the structure of the Levi componentMA in aminimal parabolic
subgroup P = MAN of a real reductive Lie group G and work out the cases where
M is metabelian, equivalently where p is solvable. When G is a linear group we verify
that p is solvable if and only if M is commutative. In the general case M is abelian
modulo the center ZG , we indicate the exact structure of M and P , and we work
out the precise Plancherel Theorem and Fourier Inversion Formulae. This lays the
groundwork for comparing tempered representations of G with those induced from
generic representations of P .

Keywords Parabolic subgroup · Plancherel formula · Fourier inversion formula

1 Introduction

Let G be a real reductive Lie group and P = MAN a minimal parabolic subgroup.
Later we will be more precise about conditions on the structure of G, but first we
recall the unitary principal series representations of G. They are the induced represen-
tations πχ,ν,σ = IndGP (ηχ,ν,σ ) defined as follows. First, ν is the highest weight of an
irreducible representation ην of the identity component M0 of M . Second, χ is an irre-
ducible representation of the M-centralizer ZM (M0) that agrees with ην on the center
ZM0 = ZM (M0)∩ M0 of M0. Third, σ is a real linear functional on the Lie algebra a
of A, in other words eiσ is a unitary character on A. Write ηχ,ν for the representation
χ ⊗ ην of M , and let ηχ,ν,σ denote the representation man �→ eiσ (a)ηχ,ν(m) of P .
These data define the principal series representation πχ,ν,σ = IndGP (ηχ,ν,σ ) of G.
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Now consider a variation in which an irreducible unitary representation of N is
incorporated. A few years ago, we described Plancherel almost all of the unitary
dual ̂N in terms of strongly orthogonal roots ([16,17]). Using those “stepwise square
integrable” representations πλ of N we arrive at representations ηχ,ν,σ,λ of P and
πχ,ν,σ,λ = IndGP (ηχ,ν,σ,λ) ofG. The representationsπχ,ν,σ,λ have not yet been studied,
at least in terms of their relation to tempered representations and harmonic analysis
on G. In this paper, we lay some of the groundwork for that study.

Clearly this is much simpler when M is commutative modulo the center ZG . Then
there is a better chance of finding a clear relation between theπχ,ν,σ,λ and the tempered
representation theory of G. In this paper, we see just when M is commutative mod
ZG . That turns out to be equivalent to solvability of P , and leads to a straightforward
construction both of the Plancherel Formula and the Fourier Inversion Formula for
P and of the principal series representations of G. It would also be interesting to see
whether solvability of P simplifies the operator-theoretic formulation [1] of stepwise
square integrability.

It will be obvious to the reader that if any parabolic subgroup of a real Lie group
has commutative Levi component, then that parabolic is a minimal parabolic. For this
reason, we only deal with minimal parabolics.

The concept of “stepwise square integrable” representation is basic to this note and
to many of the references after 2012. It came out of conversations with Maria Laura
Barberis concerning the application of square integrability [10] to her workwith Isabel
Dotti on abelian complex structures. The first developments were [16] and [17], and
we follow the notation in those papers.

2 Lie Algebra Structure

Let g be a real reductive Lie algebra. In other words g = g′ ⊕ z, where g′ = [g, g] is
semisimple and z is the center of g . As usual, g

C
denotes the complexification of g ,

so g
C

= g′
C

⊕ z
C
, direct sum of the respective complexifications of g′ and z . Choose

a Cartan involution θ of g and decompose g = k + s into (±1)-eigenspaces of θ . Fix
a maximal abelian subspace a ⊂ s and let m denote the k-centralizer of a. Let t be
a Cartan subalgebra of m, so h := t + a is a “maximally split” Cartan subalgebra
of g.

We denote root systems by 	(g
C
, h

C
), 	(m

C
, t

C
), and 	(g, a). Choose consistent

positive root subsystems 	+(g
C
, h

C
), 	+(m

C
, t

C
), and 	+(g, a). In other words, if

α ∈ 	(g
C
, h

C
) then α ∈ 	+(g

C
, h

C
) if and only if either (i) α|a 
= 0 and α|a ∈

	+(g, a), or (ii) α|a = 0 and α|t
C

∈ 	+(m
C
, t

C
). We write �(g

C
, h

C
), �(m

C
, t

C
),

and �(g, a) for the corresponding simple root systems. Note that

�(g, a) = {ψ |a | ψ ∈ �(g
C
, h

C
) and ψ |a 
= 0} and

�(m
C
, t

C
) = {ψ |t

C
| ψ ∈ �(g

C
, h

C
) and ψ |a = 0}. (2.1)

If g is the underlying structure of a complex simple Lie algebra l then g
C

∼= l ⊕ l and
�(g

C
, h

C
) is the union of the simple root systems of the two summands. In that case

�(g, a) looks like the simple root system of l, but with every root of multiplicity 2.
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Solvability, Structure, and Analysis... 769

On the group level, the centralizer ZG(a) = ZG(A) = M × A where A = exp(a)
and M = ZK (A).

Lemma 2.1 The following conditions are equivalent: (1) ifα ∈ �(g
C
, h

C
) thenα|a 
=

0, (2) the Lie algebra m of M is abelian, and (3) m is solvable.

Proof If (1) fails we have ψ ∈ �(g
C
, h

C
) such that ψ |a = 0, so 0 
= ψ |t

C
∈

�(m
C
, t

C
). Then m

C
contains the simple Lie algebra with simple root ψ |t

C
, and

(3) fails. If (3) fails then (2) fails. Finally suppose that (2) fails. Since m
C

= t
C

+
∑

α∈	(m
C

,t
C

) mα , the root system	(m
C
, t

C
) is not empty. In particular�(m

C
, t

C
) 
=

∅, and (2.1) provides ψ ∈ �(g
C
, h

C
) with ψ |a = 0, so (1) fails. �

Decompose the derived algebra as a direct sum of simple ideals, g′ = ⊕

gi . Then
the minimal parabolic subalgebras p = m + a + n of g decompose as direct sums
p = z⊕⊕

pi where pi = mi +ai +ni is a minimal parabolic subalgebra of gi . Thusm
is abelian (resp. solvable) if and only if each of the mi is abelian (resp. solvable). The
classification of real reductive Lie algebras g with m abelian (resp. solvable) is thus
reduced to the case where g is simple. This includes the case where g is the underlying
real structure of a complex simple Lie algebra.

The Satake diagram for �(g
C
, h

C
) is the Dynkin diagram, using the arrow con-

vention rather than the black dot convention, with the following modifications. If ψ ′
and ψ ′′ have the same non-zero restriction to a then the corresponding nodes on the
diagram are joined by a two-headed arrow. In the case where g is complex this joins
two roots that are complex conjugates of each other. If ψ |a = 0 then the correspond-
ing node on the diagram is changed from a circle to a black dot. Condition (1) of
Lemma 2.1 says that the Satake diagram for �(g

C
, h

C
) has no black dots. Combining

the classification with Lemma 2.1 we arrive at

Theorem 2.2 Let g be a simple real Lie algebra and let p = m+ a+ n be a minimal
parabolic subalgebra. Let t be a Cartan subalgebra ofm, so h := t+a is a maximally
split Cartan subalgebra of g. Then the following conditions are equivalent: (i) m is
abelian, (ii) m is solvable, (iii) a contains a regular element of g, (iv) g

C
has a Borel

subalgebra stable under complex conjugation of g
C
over g, and (v) g appears on the

following list.

1. Cases h = a and m = 0 (called split real forms or Cartan normal forms): g is one
of sl( + 1; R), so(,  + 1), sp(; R), so(, ), g2,A1A1 , f4,A1C3 , e6,C4 , e7,A7 , or
e8,D8 . In this case, since h = a, the restricted roots all have multiplicity 1.

2. Cases where g is the underlying real structure of a complex simple Lie algebra:
g is one of sl( + 1; C), so(2 + 1; C), sp(; C), so(2; C), g2, f4, e6, e7, or e8 .
Here h = ia + a and m = ia, and the restricted roots all have multiplicity 2.

3. Four remaining cases:
(3a) g = su(,  + 1) with Satake diagram . In this case

	(g, a) is of type B , the long indivisible roots have multiplicity 2, the short
indivisible roots have multiplicity 1, and the divisible roots also have multi-
plicity 1.
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770 J. A. Wolf

(3b) g = su(, ) with Satake diagram . In this case

	(g, a) is of type C , the long restricted roots have multiplicity 1, and the
short ones have multiplicity 2.

(3c) g = so( − 1,  + 1) with Satake diagram . In this

case 	(g, a) is of type B−1 , the long restricted roots have multiplicity 1, and
the short ones have multiplicity 2.

(3d) g = e6,A1A5 with Satake diagram . In this case 	(g, a) is of

type F4 , the long restricted roots have multiplicity 1, and the short ones have
multiplicity 2.

(These real Lie algebras are often called the Steinberg normal forms of their
complexifications.)

Corollary 2.3 Let g be a simple real Lie algebra and let p = m+ a+ n be a minimal
parabolic subalgebra withm abelian. Let t be a Cartan subalgebra ofm, so h := t+a
is a maximally split Cartan subalgebra of g.

If g 
= su(,  + 1) then 	(g, a) is non-multipliable, in other words if α ∈ 	(g, a)
then 2α /∈ 	(g, a).

If g = su(,  + 1) , let α1, . . . , α2 be the simple roots of

	+(g
C
, h

C
) in the usual order andψi = αi |a . Then the multipliable roots in	+(g, a)

are just the 1
2βu = (ψu + . . . ψ) = (αu + · · · + α)|a for 1 � u � ; there

βu = 2(ψu + · · · + ψ) = (αu + · · · + α2−u+1)|a .

3 Structure of the Minimal Parabolic Subgroup

As in Section 2, g is a real simple Lie algebra, p = m + a + n is a minimal parabolic
subalgebra, and we assume that m is abelian. G is a connected Lie group with Lie
algebra g and P = MAN is the minimal parabolic subgroup with Lie algebra p. In this
section, we work out the detailed structure of M and P , essentially by adapting the
results of K. D. Johnson ([5,6]). We move the commutativity criteria of Theorem 2.2
from m to M when G is linear and describe the metabelian (in fact abelian mod ZG)
structure of M for G in general.

We use the following notation. ˜G is the connected simply connected Lie group
with Lie algebra g; G

C
is the connected simply connected complex Lie group with

Lie algebra g
C
; G ′ is the analytic subgroup of G

C
with Lie algebra g; and G and G

C

are the adjoint groups of G and G
C
. G ′ is called the algebraically simply connected

group for g. We write ˜P = ˜M˜A˜N ⊂ ˜G, P ′ = M ′A′N ′ ⊂ G ′, and P = MAN ⊂ G
for the corresponding minimal parabolic subgroups, aligned so that ˜G → G ′ maps
˜M → M ′, ˜A ∼= A′, and ˜N ∼= N ′ ; G ′ → G maps M ′ → M , A′ ∼= A, and N ′ ∼= N ;
and G → G maps M → M , A ∼= A, and N ∼= N .
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Solvability, Structure, and Analysis... 771

3.1 The Linear Case

In order to discuss M/M0, we need the following concept from [5].

r = r(g) is the number of white dots in the Satake diagram of g (3.1)

not adjacent to a black dot and not attached to another dot by an arrow.

However, we only need it for the case where m is abelian, so there are no black dots.
In fact, running through the cases of Theorem 2.2, we have the following.

Proposition 3.1 Let G be a connected Lie group with Lie algebra g, let P = MAN
be a minimal parabolic subgroup of G, and assume that m is abelian. Then r(g) is
given by

1. Cases h = a and m = 0: then r(g) = dim h, the rank of g.
2. Cases where g is the underlying real structure of a complex simple Lie algebra:

then r(g) = 0.
3. Four remaining cases:
(3a) Case g = su(,  + 1): then r(g) = 0.
(3b) Case g = su(, ): then r(g) = 1.
(3c) Case g = so( − 1,  + 1): then r(g) =  − 2.
(3d) Case g = e6,A1A5 : then r(g) = 2.

The first and second assertions in the following Proposition are mathematical folk-
lore; we include their proofs for continuity of exposition. The third part is from [5].
Recall that g satisfies the conditions of Theorem 2.2.

Proposition 3.2 Let G be a connected Lie group with Lie algebra g, let P = MAN
be a minimal parabolic subgroup of G, and assume that m is abelian. Let G ′ be the
algebraically simply connected group for g.

(1) G is linear if and only if G ′ → G factors into G ′ → G → G,
(2) if G is linear with minimal parabolic P = MAN, then M = F × M0 where

F ⊂ (exp(ia) ∩ K ) is an elementary abelian 2-group, and
(3) M ′ = F ′ × M ′0 where F ′ ∼= Z


2, and if G is linear then F is a quotient of F ′.

Proof If G is linear it is contained in its complexification, which is covered by G
C
;

(1) follows.
Let G be linear. The Cartan involution θ of G extends to is complexification Gc

and defines the compact real forms gu := k + is and Gu of g
C
and Gc . Here the

complexification McAc of MA is the centralizer of a in Gc . Its maximal compact
subgroup is the centralizer of the torus exp(ia) in the compact connected groupGu , so
it is connected. ThusM0 exp(ia) is the centralizer of exp(ia) inGu . Now the centralizer
M of a in K is (M0 exp(ia))∩K = M0(exp(ia)∩K ). Thus M = (exp(ia)∩K ) ·M0.

By construction, θ preserves exp(ia) ∩ K . If x ∈ (exp(ia) ∩ K ) then θ(x) = x
because x ∈ K and θ(x) = x−1 because x ∈ exp(a

C
), so x = x−1. Now exp(ia) ∩ K

is an elementary abelian 2-group, so exp(ia) ∩ K = F × (exp(ia) ∩ M0) for an
elementary abelian 2-subgroup F , and (2) follows.

Statement (3) is Theorem 3.5 in Johnson’s paper [5]. �
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772 J. A. Wolf

Now we have a characterization of the linear case.

Theorem 3.3 Let G be a connected real reductive Lie group and P = MAN a
minimal parabolic subgroup. If G is linear, then M is abelian if and only if m is
abelian, and the following conditions are equivalent: (1) M is abelian, (2) M is
solvable, and (3) P is solvable.

Proof SinceG is linear it has formG ′/Z whereG ′ is its algebraically simply connected
covering group, the analytic subgroup of G

C
for g. If M ′ is abelian then its Lie

algebra m is abelian. Conversely suppose that m is abelian. Then M0 is abelian and
Proposition 3.2(2) ensures that M is abelian. We have proved that if G is linear then
M is abelian if and only if m is abelian.

Statements (1) ⇒ (2) ⇒ (3) are immediate so we need to only prove (3) ⇒ (1).
If P is solvable then M is solvable so m is abelian by Theorem 2.2, and M is abelian
as proved just above. �

3.2 The Finite Groups Dn and Dg

In order to deal with the non-linear cases, we need certain finite groups that enter into
the description of the component groups of minimal parabolics. Those are the Dn for
g classical or of type g2 , and Dg for the other exceptional cases.

Let {e1, . . . , en} be an orthonormal basis of R
n . Consider the multiplicative sub-

group

Dn = {±ei1 . . . ei2 | 1 � i1 < · · · < i2 � n} (3.2)

of decomposable even invertible elements in the Clifford algebra of R
n . It is con-

tained in Spin(n) and has order 2n , and we need it for g classical. Denote Dn =
{diag(±1, . . . ,±1) | det diag(±1, . . . ,±1) = 1} ∼= Z

n−1
2 . Then Dn is the image of

Dn in SO(n) under the usualmap (vector representation) v : Spin(n) → SO(n). Here
{±1} is the center and also the derived group of Dn , and Dn ∼= Dn/{±1}. Also, Dn

is related to the 2-tori of Borel and Serre [3] and to 2-torsion in integral cohomology
[2]. Note that D3 is isomorphic to the quaternion group {±1,±i,± j,±k}.

As usual we write ̂Dn for the unitary dual of Dn . It contains the 2n−1 characters
that factor through Dn . Those are the 1-dimensional representations

εi1,...,i2 : diag(a1, . . . , an) �→ ai1ai2 . . . ai2 . (3.3)

There are also representations of degree > 1:

If n = 2k even let σ± denote the restriction of the half-spin representations from

Spin(n) to Dn .

If n = 2k + 1 odd let σ denote the restriction of the spin representation from

Spin(n) to Dn .

(3.4)
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Solvability, Structure, and Analysis... 773

Note that deg σ± = 2k−1 for n = 2k and deg σ = 2k for n = 2k + 1. These
representations enumerate ̂Dn , as follows.Wewill need this for the Plancherel formula
for P .

Proposition 3.4 ([6, Section 3]) The representations σ± of D2k and σ of D2k+1 are
irreducible, and

If n = 2k even then ̂Dn = {σ+ , σ− , εi1,...,i2 | 1 � i1 < · · · < i2 � n and

0 �  < k}.
If n = 2k + 1 odd then ̂Dn = {σ , εi1,...,i2 | 1 � i1 < · · · < i2 � n and

0 �  � k}.

(3.5)

Nowwe describe the analogs of the Dn for the split exceptional Lie algebras of types
f4 , e6 , e7 , or e8 . Following [6, Section 8] the natural inclusions, f4 ⊂ e6 ⊂ e7 ⊂ e8
exponentiate to inclusions

˜ZE8,D8
⊂ ˜F4,C1C3 ⊂ ˜E6,C4 ⊂ ˜KE7,A7

⊂ ˜E8,D8 ,

where ˜ZE8,D8
is the center of ˜E8,D8 and the others are split real simply connected

exceptional Lie groups. For the first inclusion, note that the maximal compact sub-
groups satisfy

˜KF4,C1C3
⊂ ˜KE6,C4

⊂ ˜KE7,A7
⊂ ˜KE8,D8

given by

(Sp(1) × Sp(3)) ⊂ Sp(4) ⊂ SU (8) ⊂ Spin(16)

and ˜ZE8,D8
= {1, e1 ·e2 · · · · ·e16} ∼= Z2 in the spin group using Clifford multiplication.

Let U7 denote the group of permutations of {1, 2, . . . , 8} generated by products
of 4 commuting transpositions, e.g., by τ := (12)(34)(56)(78) and its conju-
gates in the permutation group, viewed as a subgroup ∼= Z

3
2 of SU (8). Let V7

be the group generated by ω1 := i I , ω2 := diag(−1,−1, 1, 1, 1, 1,−1,−1),
ω3 := diag(−1,−1, 1, 1,−1,−1, 1, 1), andω4 := diag(−1, 1,−1, 1,−1, 1,−1, 1),
viewed as a subgroup ∼= Z4 × Z

3
2 of SU (8). Now let U6 denote the subgroup

{1, (13)(24)(57)(68), (15)(26)(37)(48), (17)(28)(37)(48)} ⊂ U7, so U6 ∼= Z2
2 and

let V6 denote the subgroup of V7 generated by ω1ω4 , ω2 , and ω3 . Finally, let W4
denote the group generated by {τω1 , ω2 , ω3 , τω4}.
Proposition 3.5 ([6, Section 9] Define W6 = U6V6 ∪ τω1U6V6 , W7 = U7V7, and
W8 = W7 ∪ τW7 . Then

1. W4 is a group of order 25 with [W4,W4] = {±1} ∼= Z2 , W4/[W4,W4] ∼= Z
4
2 , and

W4 has center ZW4 = {±1,±ω2 ,±ω3 ,±ω2ω3}. The action of W4 on C
8 , as a

subgroup of Sp(4), breaks into the sum of 4 irreducible inequivalent 2-dimensional
subspaces C

2
j , distinguished by the action of ZW4 . Thus the unitary dual ̂W4 =

{w4,1 , w4,2 , w4,3 , w4,4 , ε1, . . . , ε16}, where the w4, j are the representations on
theC

2
j and the ε j are the (1-dimensional) representations that annihilate [W4,W4].
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774 J. A. Wolf

2. W6 is a group of order 27 with [W6,W6] = {±1} ∼= Z2 and W6/[W6,W6] ∼= Z
6
2 .

Let w6 = w|W6 , where w is the (vector) representation of Sp(4) on C
8. Then w6

is irreducible and ̂W6 = {w6 , ε1 , . . . , ε64} where the ε j are the (1-dimensional)
representations that annihilate [W6,W6].

3. W7 is a group of order 28 with derived group [W7,W7] = ˜ZE8,D8
, and

W7/[W7,W7] ∼= Z
7
2 . Let w7 = w|W7 , where w is the (vector) representation

of SU (8) on C
8. Then w7 and w∗

7 are inequivalent irreducible representations
of W7 , and the unitary dual ̂W7 = {w7 , w∗

7 , ε′
1 , . . . , ε′

128} where the ε′
j are the

(1-dimensional) representations that annihilate [W7,W7].
4. W8 is a group of order 29 with [W8,W8] = ˜ZE8,D8

and W8/[W8,W8] ∼= Z
8
2 . Let

w8 = w|W8 , where w is the (vector) representation of Spin(16) on C
16. Then w8

is irreducible and ̂W8 = {w8 , ε′′
1 , . . . , ε′′

256} where the ε′′
j are the (1-dimensional)

representations that annihilate [W8,W8].

3.3 The General Case

As before, G is a connected real simple Lie group with minimal parabolic P = MAN
such that m is abelian. Recall that ˜G is the universal covering group of G; G ′ is the
algebraically simply connected Lie group with Lie algebra g; and G is the adjoint
group. Also, ˜P , P ′, P , and P are the respective minimal parabolics. We specialize the
summary section of [6] to our setting.

(a) ˜M = ˜F × ˜M0, where ˜F is discrete, and if g is the split real form of g
C
then

˜M = ˜F discrete,
(b) ˜F is infinite if and only if G/K is a tube domain (hermitian symmetric space of

tube type),
(c) r(g) = 0 ⇔ ˜M is connected ⇔ M ′ is connected,
(d) if r(g) = 1 then G/K is a tube domain and ˜F ∼= Z,
(e) if r(g) > 1 and G/K is a tube domain then G ′ = Sp(n; R) and ˜M = ˜F ∼=

Z
r(g)−1
2 × Z, and

( f ) if r(g) > 1 and G/K is not a tube domain then ˜F is a non-abelian group of order
2r(g)+1.

Now we combine this information with Theorems 2.2 and 3.1, as follows. We use
su(1, 1) = sp(1; R) = sl(2; R), and so(2, 3) = sp(2; R).

Proposition 3.6 Let G be a connected simple Lie group with Lie algebra g, let P =
MAN be a minimal parabolic subgroup of G, and assume that m is abelian. Retain
the notation ˜G, ˜P, and ˜M = ˜F × ˜M0 as above.

1. Cases h = a, where G is a split real Lie group and r(g) = rank g. Then ˜M = ˜F.
(1a) If ˜M is infinite then g = sp(n; R), where n � 1 and r(g) = n. In that
case ˜M ∼= Z

n−1
2 × Z.

(1b) If ˜M is finite then ˜F is a non-abelian (but metabelian) group of order
2r(g)+1. In those cases

∗ sl(n; R), n = 3 or n > 4: ˜M ∼= Dn from [6, Proposition 17.1].
∗ so(,  + 1) and so(, ),  � 3: ˜M ∼= D from [6, Proposition 17.5].
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Solvability, Structure, and Analysis... 775

∗ g2,A1A1 : ˜K = Sp(1) × Sp(1) and ˜M ∼= D3 from [6, Proposition 10.4].
∗ f4,A1C3 : ˜K = Sp(1)× Sp(3) and ˜M ∼= W4 (Proposition 3.5 above) from

[6, Proposition 9.6].
∗ e6,C4 : ˜K = Sp(4) and ˜M ∼= W6 (Proposition 3.5 above) from

[6, Proposition 9.5].
∗ e7,A7 : ˜K = SU (8) and ˜M ∼= W7 (Proposition 3.5 above) from

[6, Proposition 9.3].
∗ e8,D8 : ˜K = Spin(16) and ˜M ∼= W8 (Proposition 3.5 above) from

[6, Proposition 9.4].
2. Cases where g is the underlying real structure of a complex simple Lie algebra.

Then r(g) = 0, ˜F = {1}, ˜G = G ′ (so G is linear), and ˜M = M ′ is a torus group.
3. The four remaining cases:

(3a) g = su(,  + 1): r(g) = 0, ˜F = {1} and ˜M ∼= U (1)−1 × R from
[6, Proposition 17.3].

(3b) g = su(, ): r(g) = 1, ˜F ∼= Z and ˜M ∼= U (1)−1 × Z from
[6, Proposition 17.4].

(3c) g = so( − 1,  + 1),  
= 1: r(g) =  − 2, and
∗ if  
= 3 then ˜F ∼= D−1 and ˜M ∼= D−1×R from [6, Proposition 17.5],
∗ if  = 3 and then ˜F ∼= Z and ˜M ∼= Z × R from [6, Proposition 17.6].

(3d) g = e6,A1A5 : r(g) = 2, ˜F ∼= D3 and ˜M ∼= D3 × Spin(8) from [6, §16]
and [5, Theorem 3.5]

4 Stepwise Square Integrable Representations of the Nilradical

In this section, we recall the background for Fourier Inversion on connected simply
connected nilpotent Lie groups, and its application to nilradicals ofminimal parabolics.
In Section 5,we use it to describe “generic” representations and the Plancherel Formula
on the minimal parabolic. Then in Section 6 we come to the Fourier Inversion Formula
on the parabolic. In the last section (the Appendix), we will run through the cases of
Theorem 2.2 making explicit the Plancherel Formula and Fourier Inversion Formula
for those nilradicals.
The basic decomposition is

N = L1L2 . . . Lm, where

(a) each factor Lr has unitary representations that are square integrable

modulo its center Zr ,

(b) each Lr = L1L2 . . . Lr is a normal subgroup of N with

Nr = Nr−1 � Lr semidirect,

(c) decompose lr = zr + vr and n = s + v as vector direct sums where

s = ⊕ zr and v = ⊕ vr ; then [lr , zs] = 0 and [lr , ls] ⊂ v for r > s. (4.1)
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We will need the notation

(a) dr = 1
2 dim(lr/zr ) so 1

2 dim(n/s) = d1 + · · · + dm , and

c = 2d1+···+dmd1!d2! . . . dm !
(b) bλr : (x, y) �→ λ([x, y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . . Zm = Z1 × · · · × Zm where Zr is the center of Lr

(d) P : polynomial P(λ) = Pf(bλ1)Pf(bλ2) . . . Pf(bλm ) on s∗

(e) t∗ = {λ ∈ s∗ | P(λ) 
= 0}
(f) πλ ∈ ̂N where λ ∈ t∗ : irreducible unitary rep. of N = L1L2 . . . Lm .

(4.2)

As exp : n → N is a polynomial diffeomorphism, theSchwartz spaceC(N ) consists
of all C∞ functions f on N such that f · exp ∈ C(n), the classical Schwartz space
of all rapidly decreasing C∞ functions on the real vector space n. The general result,
which we will specialize, is [16]

Theorem 4.1 Let N be a connected simply connected nilpotent Lie group that satisfies
(4.1). Then Plancherel measure for N is concentrated on {[πλ] | λ ∈ t∗} where [πλ]
denotes the unitary equivalence class of πλ . If λ ∈ t∗, and if u and v belong to the
representation space Hπλ of πλ, then the coefficient fu,v(x) = 〈u, πν(x)v〉 satisfies

|| fu,v||2L2(N/S)
= ||u||2||v||2

|P(λ)| . (4.3)

The distribution character �πλ of πλ satisfies

�πλ( f ) = c−1|P(λ)|−1
∫

O(λ)

̂f1(ξ)dνλ(ξ) for f ∈ C(N ), (4.4)

where c is given by (4.2)(a); C(N ) is the Schwartz space; f1 is the lift f1(ξ) =
f (exp(ξ)); ̂f1 is its classical Fourier transform; O(λ) is the coadjoint orbit
Ad∗(N )λ = v∗ + λ; and dνλ is the translate of normalized Lebesgue measure from
v∗ to Ad∗(N )λ. The Plancherel Formula on N is

L2(N ) =
∫

t∗
Hπλ

̂⊗H∗
πλ

|P(λ)|dλ where Hπλ is the representation space of πλ

(4.5)

and the Fourier Inversion Formula is

f (x) = c
∫

t∗
�πλ(rx f )|P(λ)|dλ for f ∈ C(N ) with c as in (4.2)(a). (4.6)

Definition 4.2 The representations πλ of (4.2(f)) are the stepwise square integrable
representations of N relative to (4.1). �
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Nilradicals of minimal parabolics fit this pattern as follows. Start with the Iwasawa
decomposition G = K AN . Here we use the root order of (2.1) so n is the sum of
the positive a-root spaces in g. Since 	(g, a) is a root system, if γ ∈ 	(g

C
, h

C
) and

γ |a ∈ 	+(g, a) then γ ∈ 	+(g
C
, h

C
). Define β1 to be the maximal root, βr+1 a

maximum among the positive roots orthogonal to {β1, . . . , βr }, etc. This constructs
a maximal set {β1, . . . , βm} of strongly orthogonal positive restricted roots. For 1 �
r � m define

	+
1 = {α ∈ 	+(g, a) | β1 − α ∈ 	+(g, a)} and

	+
r+1 = {α ∈ 	+(g, a)\(	+

1 ∪ · · · ∪ 	+
r ) | βr+1 − α ∈ 	+(g, a)}. (4.7)

Then

	+
r ∪ {βr } = {α ∈ 	+ | α ⊥ βi for i < r and 〈α, βr 〉 > 0}. (4.8)

Note: if βr is divisible then
1
2βr ∈ 	+

r ; See Corollary 2.3. Now define

lr = gβr +
∑

	+
r
gα for 1 � r � m. (4.9)

Thus n has an increasing foliation by ideals

nr = l1 + l2 + · · · + lr for 1 � r � m. (4.10)

The corresponding group level decomposition N = L1L2 . . . Lm and the semidirect
product decompositions Nr = Nr−1 � Lr satisfy all the requirements of (4.1).

5 Generic Representations of the Parabolic

In this section, G is a connected real reductive Lie group, not necessarily linear, and
the minimal parabolic subgroup P = MAN is solvable. In other words, we are in the
setting of Theorems 3.3 and 4.1. Recall t∗ = {λ = (λ1 + · · · + λm) ∈ s∗ | each λr ∈
gβr with Pflr (λr ) 
= 0}. For each λ ∈ t∗, we have the stepwise square integrable
representation πλ of N . Now we look at the corresponding representations of MAN .
As before, the superscript 0 denotes identity component.

Theorem 3.3 shows that Ad(MA) is commutative. Also, Ad(M0A) acts C irre-
ducibly on each complexified restricted root space (gα)

C
by [14, Theorem 8.13.3] .

But Ad(M0A) preserves each gα , so it is irreducible there. Thus, for each α ∈ 	(g, a),
either Ad(M0) is trivial on gα and dim

R
gα = 1, or Ad(M0) is non-trivial on gα and

dim
R
gα = 2. In the latter case Ad(M0)|gα must be the circle group of all proper

rotations of gα . A glance at Theorem 2.2 makes this more explicit on the gβr .

Lemma 5.1 In cases (1) and (3) of Theorem 2.2, each dim
R
gβr = 1, so Ad∗(M0)

is trivial on each gβr . In case (2) each dim
R
gβr = 2, so Ad∗(M0) acts on gβr as a

circle group SO(2).
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Recall the notation ˜M = ˜F × ˜M0 from Section 3.1 where p : ˜G → G is the universal
cover and ˜P = ˜M˜A˜N is p−1(P). Note M = F · M0 where F = p(˜F). Combining
[17, Lemma 3.4] with [17, Proposition 3.6] and specializing to the case of m abelian,
we have

Lemma 5.2 When m is abelian, Ad∗(˜F) acts trivially on s∗. Then in particular,
Ad∗(F)|s∗ is trivial and Ad∗(M)|s∗ = Ad∗(M0)|s∗ .

Now combine Lemmas 5.1 and 5.2:

Proposition 5.3 In cases (1) and (3) of Theorem 2.2,Ad∗(M) is trivial on s∗. In case
(2) of Theorem 2.2,Ad∗(M) acts non-trivially as a circle group on each g∗

βr
, thus acts

almost effectively as a torus group on s∗.

Fix λ ∈ t∗. By Proposition 5.3 its Ad∗(M)-stabilizer is all of M in cases (1) and
(3) of Theorem 2.2, and in case (2) it has form

M� = FM0� where M0� = {x ∈ M0 | Ad(x)|s = 1}. (5.1)

This is independent of the choice of λ ∈ t∗. Thus the kernel of the action of Ad(M0)

on s∗ is the codimension m subtorus of M0 with Lie algebra m� = √−1{ξ ∈ a |
every βr (ξ) = 0}.
Since Ad∗(A) acts on gβr by positive real scalars, given by the real character eβr ,

we have a similar result for A: the Ad∗(A)-stabilizer of any λ ∈ t∗ is

A� = {exp(ξ) | ξ ∈ a and every βr (ξ) = 0}. (5.2)

Its Lie algebra is a� = {ξ ∈ a | every βr (ξ) = 0}. Combining (5.1) and (5.2) we
arrive at

Lemma 5.4 The stepwise square integrable representationsπλ of N all have the same
MA-stabilizer M�A� on the unitary dual ̂N.

Specialize [17, Lemma 3.8] and [17, Lemma 5.4] to πλ and M�A�N . The Mackey
obstruction ([7], [9], or see [8]) vanishes as in [11] and [13]. Now πλ extends to an
irreducible unitary representation π̃λ of M�A�N on the representation space Hπλ of
πλ . Compare [4]. Consider the unitarily induced representations

πχ,α,λ := Ind MAN
M�A�N (χ ⊗ eiα ⊗ π̃λ) for χ ∈ ̂M� , α ∈ a∗�, and λ ∈ t∗. (5.3)

Note thatχ is a (finite-dimensional) unitary representation of themetabelian groupM�
and that the representation space ofχ⊗eiα⊗π̃λ isHχ ̂⊗ Ĉ⊗Hπλ . So the representation
space of πχ,α,λ is

Hπχ,α,λ ={L2 functions f : MAN → Hχ ̂⊗Hπλ |
f (xman) = δ(a)−1/2e−iα(log a)(χ(m)−1 ⊗ π̃λ(man)−1)( f (x)),

x ∈ MAN ,man ∈ M�A�N }.
(5.4)
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Unitarity of πχ,α,λ requires the δ(a)−1/2 term, as we will see when we discuss
Dixmier–Pukánszky operators.

Definition 5.5 The πχ,α,λ of (5.3) are the generic irreducible unitary representations
of MAN.

Now, specializing [17, Theorem 5.12],

Theorem 5.6 Let G be a connected real reductive Lie group and P = MANaminimal
parabolic subgroup. Suppose that P is solvable. Then the Plancherelmeasure forMAN
is concentrated on the set of all generic unitary representation classes [πχ,α,λ] ∈ M̂AN
and

L2(MAN) =
∫

χ∈̂M�

(∫

α∈a∗�

(∫

λ∈t∗
Hπχ,α,λ

̂⊗H∗
πχ,α,λ

|P(λ)|dλ

)

dα

)

deg(χ)dχ.

6 Fourier Inversion on the Parabolic

In this section, as before, G is a connected1 real reductive Lie group whose minimal
parabolic subgroup P = MAN is solvable. We work out an explicit Fourier Inversion
Formula forMAN . It uses the generic representations ofDefinition 5.5 and an operator
to compensate non-unimodularity. That operator is the Dixmier–Pukánszky Operator
on MAN and its domain is the Schwartz space C(MAN ) of rapidly decreasing C∞
functions.

The kernel of the modular function δ of MAN contains MN and is given on A as
follows.

Lemma 6.1 [17, Lemmas 4.2 & 4.3] Let ξ ∈ a. Then 1
2 (dim lr + dim zr ) ∈ Z for

1 � r � m and

(i) the trace of ad (ξ) on lr is
1
2 (dim lr + dim zr )βr (ξ),

(ii) the trace of ad (ξ) on n and on p is 1
2

∑

r (dim lr + dim zr )βr (ξ), and

(iii) the determinant of Ad(exp(ξ)) on n and on p is
∏

r exp(βr (ξ))
1
2 (dim lr+dim zr ).

The modular function δ = Det · Ad : man �→ ∏

r exp(βr (log a))
1
2 (dim lr+dim zr ).

Recall the quasi-center determinant Dets∗(λ) := ∏

r (βr (λ))dim gβr . It is a poly-
nomial function on s∗, and ([17, Proposition 4.7]) the product Pf · Dets∗ is an
Ad(MAN )-semi-invariant polynomial on s∗ of degree 1

2 (dim n+dim s) and of weight
equal to that of the modular function δ.

1 These results extendmutatismutandis to all real reductiveLie groupsG such that (a) theminimal parabolic
subgroup of G0 is solvable, (b) if g ∈ G then Ad(g) is an inner automorphism of g

C
, and (c) G has a closed

normal abelian subgroup U such that (c1) U centralizes the identity component G0; (c2) UG0 has finite
index in G; and (c3) U ∩G0 is co-compact in the center of G0. The extension is relatively straightforward
using themethods of [12] as described in [12, Introduction] and [12, Section 1]. For continuity of exposition,
we the leave details on that to the interested reader.
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Our fixed decomposition n = v + s gives N = VS where V = exp(v) and S =
exp(s). Now define

D : Fourier transform of Pf · Dets∗ , acting on MAN = MAVS by acting on S.

(6.1)

See [17, Section 1] for a discussion of the Schwartz space C(MAN).

Theorem 6.2 ([17, Theorem 4.9]) D is an invertible self-adjoint differential opera-
tor of degree 1

2 (dim n + dim s) on L2(MAN) with dense domain C(MAN), and it is
Ad(MAN)-semi-invariant of weight equal to the modular function δ . In other words,
|D| is a Dixmier–Pukánszky Operator on MAN with domain C(MAN).

For the Fourier Inversion Formula we also need to know the Ad∗(MA)-orbits on t∗.

Proposition 6.3 The Ad∗(MA)-orbits on t∗ are the following.
In cases (1) and (3) of Theorem 2.2, the number of Ad(MA)∗-orbits on t∗ is 2m.

Fix non-zero νr ∈ gβr . Then the orbits are the

O(ε1,...,εm ) = {λ = λ1 + · · · + λm | λr ∈ R
+εrνr for

1 � r � m where each εr = ±1}.

In case (2) of Theorem 2.2, there is just one Ad(MA)∗-orbit on t∗, i.e., Ad(MA)∗ is
transitive on t∗.

Proof The assertions follow from Proposition 5.3, as follows. In case (2) of Theo-
rem 2.2, where dim gβr = 2, Ad∗(M) acts on s∗ by independent circle groups on the
g∗
βr

while Ad∗(A) acts on s∗ by independent positive scalar multiplication on the g∗
βr
.

In cases (1) and (3) of Theorem 2.2, where dim gβr = 1, Ad∗(M) acts trivially on s∗
while Ad∗(A) acts on s∗ by independent positive scalar multiplication on the g∗

βr
. �

We combine Lemma 5.4, Theorem 5.6, Theorem 6.2, and Proposition 6.3 for the
Fourier Inversion Formula. We need notation from Proposition 6.3. For cases (1) and
(3) of Theorem 2.2 we fix non-zero νr ∈ gβr ; then for each ε = (ε1, . . . , εm) we have
the orbit Oε. As usual we write x for left translate, (xh)(y) = h(x−1y) and ry for
right translate (ryh)(x) = h(xy). Using the structure of M as a quotient of ˜M by a
subgroup of the center of ˜G, from Proposition 3.6, [17, Theorem 6.1] specializes as
follows.

Theorem 6.4 Let G be a real reductive Lie group whose minimal parabolic subgroup
P = MAN is solvable. Given a generic representation πχ,α,λ ∈ M̂AN, its distribution
character is tempered and is given by

�πχ,α,λ( f ) = traceπχ,α,λ( f )

=
∫

M
trace χ(m)

∫

A
eiα(log a)�πλ((ma)−1 f )da dm for f ∈ C(MAN).
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where �πλ is given by Theorem 4.1. In Cases (1) and (3) of Theorem 2.2 the Fourier
Inversion Formula is

f (x) = c
∫

χ∈ ̂M

(

∫

α∈a∗♦

∑

ε

(∫

λ∈Oε

�πχ,α,λ(D(r(x) f ))|Pf(λ)|dλ

)

dα

)

deg(χ) dχ

where c > 0 depends on (4.2)(a) and normalizations of Haar measures. In Case (2)
of Theorem 2.2, the Fourier Inversion Formula is

f (x) = c
∑

χ ∈̂M♦

(

∫

α∈a∗♦

(∫

λ∈t∗
�πχ,α,λ(D(r(x) f ))|Pf(λ)|dλ

)

dα

)

where again, c > 0 depends on (4.2)(a) and normalization of Haar measures.
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7 Appendix: Explicit Decompositions

One can see the decompositions of Section 2 explicitly. This is closely related to the
computations in [15, Section 8].As noted inCorollary 2.3, the only case ofTheorem2.2
where there is any divisibility is g = su(, +1), and in that case the only divisibility
is given by the

{ 1
2βr , βr

} ⊂ 	+(g, a). For ease of terminology we say that 	(g, a)
is non-multipliable if α ∈ 	(g, a) implies 2α /∈ 	(g, a), multipliable otherwise.

We first consider the multipliable case g = su(, +1) . Here

ψi = αi |a, where {α1, . . . , α2} are the simple roots of 	+(g
C
, h

C
) in the usual order.

The multipliable roots in 	+(g, a) are just the 1
2βr = (αr + · · · + α)|a , 1 � r � ,

where βr = 2(ψr + · · · + ψ) = (αr + · · · + α2−r+1)|a . If α + α′ = βr then,
either α = α′ = 1

2βr , or one of α, α′ has form γr,u = ψr + ψr+1 + · · · + ψu ,
while the other is γ ′

r,u = ψr + ψr+1 + · · · + ψu + 2(ψu+1 + · · · + ψ). Now lr =
gβr + g 1

2βr
+ ∑

r�u�n(gγr,u + gγ ′
r,u

). The conditions of (4.1) follow by inspection.
For the rest of this section, we assume that g 
= su(,  + 1), in other words,

following Corollary 2.3, that 	(g, a) is non-multipliable.
First suppose that	(g, a) is of type A−1: . Thenm =

[/2] and βr = ψr + ψr+1 + · · · + ψ−r . If α , α′ ∈ 	+(g, a) with α + α′ = βr
then one of α , α′ must have form γr,s := ψr + · · · + ψs and the other must be
γ ′
r,s := ψs+1 +· · ·+ψ−r . Thus lr = gβr +∑

r�s<−r (gγr,s + gγ ′
r,s

) . The conditions
of (4.1) follow by inspection.

Next suppose that 	(g, a) is of type Bn : . Then β1 =
ψ1 + 2(ψ2 + · · · + ψn), β2 = ψ1, β3 = ψ3 + 2(ψ4 + · · · + ψn), β4 = ψ3, etc. If r is
even, βr = ψr−1 and lr = gβr .

Now let r be odd, βr = ψr +2(ψr+1+· · ·+ψn). If α, α′ ∈ 	+(g, a)with α+α′ =
βr then one possibility is that one of α , α′ has form γr,u := ψr + ψr+1 + · · · + ψu

and the other is γ ′
r,u := ψr+1 + · · · + ψu + 2(ψu+1 + · · · + ψn) with r < u < n.

Another possibility is that one of α , α′ is γr,u − ψr , while the other is γ ′
r,u + ψr .
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A third is that one of α , α′ is γr,n := ψr + ψr+1 + · · · + ψn , while the other is
γ ′
r,n := ψr+1 + · · · + ψn . Then lr is the sum of gβr with the sum of all these possible
gα + gα′ , and the conditions of (4.1) follow by inspection.

Let	(g, a) be of typeCn : . Thenβr = 2(ψr+
. . . ψn−1) + ψn for 1 � r < n, and βn = ψn . If α + α′ = βr with r < n then
one of α, α′ has form γr,u = ψr + ψr+1 + · · · + ψu , while the other is γ ′

r,u =
ψr + ψr+1 + · · · + ψu + 2(ψu+1 + · · · + ψn−1) + ψn , r � u < n. Note that
γr,n−1 = ψr + ψr+1 + · · · + ψn−1 and γ ′

r,n−1 = ψr + ψr+1 + · · · + ψn . Now
lr = gβr + ∑

r�u<n(gγr,u + gγ ′
r,u

). The conditions of (4.1) follow by inspection.

Let 	(g, a) be of type Dn : . Then β1 = ψ1 + 2(ψ2 +
· · · + ψn−2) + ψn−1 + ψn , β2 = ψ1 , β3 = ψ3 + 2(ψ4 + · · · + ψn−2) + ψn−1 + ψn ,
β4 = ψ3 , etc., until r = n − 3.

If n is even then m = n, βn−3 = ψn−3 + 2ψn−2 + ψn−1 + ψn , βn−2 = ψn−3 ,
βn−1 = ψn−1, and βn = ψn . Then, if r � n − 2 is even we have βr = ψr−1 . Thus
lr = gβr for n even and either r even or r = n − 1.

If n is odd then m = n − 1, βn−2 = ψn−2 + ψn−1 + ψn , and βn−1 = ψn−2 . Thus
βr = ψr−1 and lr = gβr for n odd and r even.

That leaves the cases where r is odd and r 
= n − 1, so βr = ψr + 2(ψr+1 +
· · · + ψn−2) + ψn−1 + ψn . If α + α′ = βr , one possibility is that one of α, α′
is of the form γr,u := ψr + (ψr+1 + · · · + ψu) with r + 1 � u � n − 2, while
the other is γ ′

r,u := (ψr+1 + · · · + ψu) + 2(ψu+1 + · · · + ψn−2) + ψn−1 + ψn ,
or that one of α, α′ is of the form γr,u − ψr , while the other is γ ′

r,u + ψr . A third
possibility is that one of α, α′ is γr,n−1 := ψr + ψr+1 + · · · + ψn−1, while the other
is γ ′

r,n−1 := ψr+1 + · · · + ψn−2 + ψn . The fourth possibility is that one of α, α′ is
γr,n−1 − ψn−1 + ψn , while the other is γ ′

r,n−1 + ψn−1 − ψn . Then lr is the sum of
gβr with the sum of all these possible gα + gα′ , and the conditions of (4.1) follow by
inspection.

Let 	(g, a) be of type G2 . Then β1 = 3ψ1 + 2ψ2 and β2 = ψ1. If

α + α′ = β1 then either one of α, α′ is 3ψ1 + ψ2 and the other is ψ2 , or one of α, α′
is 2ψ1 +ψ2 and the other isψ1 +ψ2 . Thus l1 = gβ1 + (g3ψ1+ψ2 +gψ2)+ (g2ψ1+ψ2 +
gψ1+�2) and l2 = gβ2 . The conditions of (4.1) follow.

Suppose that 	(g, a) is of type F4 . Then β1 = 2ψ1 +
3ψ2 + 4ψ4 + 2ψ4, β2 = ψ2 + 2ψ3 + 2ψ4, β3 = ψ2 + 2ψ3, and β4 = ψ2. Thus
lr = gβr + ∑

(γ,γ ′)∈Sr (gγ + gγ ′), where

S1 = {(ψ1, ψ1 + 3ψ2 + 4ψ3 + 2ψ4), (ψ1 + ψ2, ψ1 + 2ψ2 + 4ψ3 + 2ψ4),

(ψ1 + ψ2 + ψ3, ψ1 + 2ψ2 + 3ψ3 + 2ψ4), (ψ1 + ψ2 + 2ψ3, ψ1 + 2ψ2 + 2ψ3 + 2ψ4),

(ψ1 + ψ2 + ψ3 + ψ4, ψ1 + 2ψ2 + 3ψ3 + ψ4), (ψ1 + 2ψ2 + 2ψ3, ψ1 + ψ2 + 2ψ3 + 2ψ4),

(ψ1 + ψ2 + 2ψ3 + ψ4, ψ1 + 2ψ2 + 2ψ3 + ψ4);
S2 = {{ψ4, ψ2 + 2ψ3 + ψ4}, {ψ3 + ψ4, ψ2 + ψ3 + ψ4}}; S3 = {ψ3, ψ2 + ψ3}; and S4 = ∅.

The conditions of (4.1) follow.
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Suppose that	(g, a) is of type E6 . Then the strongly orthogonal

roots βi are given by β1 = ψ1+2ψ2 +2ψ3+3ψ4+2ψ5+ψ6 , β2 = ψ1+ψ3+ψ4+
ψ5 + ψ6, , β3 = ψ3 + ψ4 + ψ5 and β4 = ψ4 . Now lr = gβr + ∑

(γ,γ ′)∈Sr (gγ + gγ ′),
where

S1 = {(ψ2, ψ1 + ψ2 + 2ψ2 + 3ψ4 + 2ψ5 + ψ6), (ψ2 + ψ4, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6),

(ψ2 + ψ3 + ψ4, ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6), (ψ2 + ψ4 + ψ5, ψ1 + ψ2 + 2ψ3 + 2ψ4

+ψ5 + ψ6), (ψ1 + ψ2 + ψ3 + ψ4, ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6), (ψ2 + ψ3 + ψ4 + ψ5, ψ1

+ ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6), (ψ2 + ψ4 + ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5, ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6), (ψ2 + ψ3 + 2ψ4 + ψ5, ψ1 + ψ2

+ ψ3 + ψ4 + ψ5 + ψ6), (ψ2 + ψ3 + ψ4 + ψ5 + ψ6, ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5)};
S2 = {(ψ1, ψ3 + ψ4 + ψ5 + ψ6, ψ6, ψ1 + ψ3 + ψ4 + ψ5), (ψ1 + ψ3, ψ4 + ψ5 + ψ6,

ψ5 + ψ6, ψ1 + ψ3 + ψ4)};
S3 = {(ψ3, ψ4 + ψ5), (ψ5, ψ3 + ψ4)}; and S4 = ∅.

The conditions of (4.1) follow.

Next, suppose that 	(g, a) is of type E7 . Then the strongly

orthogonal roots are β1 = 2ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7 , β2 =
ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7 , β3 = ψ7 , β4 = ψ2 + ψ3 + 2ψ4 + ψ5 , β5 = ψ2 ,
β6 = ψ3, and β7 = ψ5 . Now lr = gβr + ∑

(γ,γ ′)∈Sr (gγ + gγ ′), where

S1 = {(ψ1, ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3, ψ1 + 2ψ2 + 2ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5 + ψ6, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6),

(ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5, ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6),

(ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5 + ψ6, ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6)},
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while

S2 = {(ψ6, ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7), (ψ5 + ψ6, ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7),

(ψ6 + ψ7, ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6), (ψ4 + ψ5 + ψ6, ψ2 + ψ3+ψ4+ψ5+ψ6+ψ7),

(ψ5+ψ6+ψ7, ψ2+ψ3+2ψ4+ψ5+ψ6), (ψ2 + ψ4 + ψ5 + ψ6, ψ3 + ψ4 + ψ5 + ψ6 + ψ7),

(ψ3 + ψ4 + ψ5 + ψ6, ψ2 + ψ4 + ψ5 + ψ6 + ψ7), (ψ4 + ψ5 + ψ6 + ψ7, ψ2 + ψ3

+ψ4 + ψ5 + ψ6)};
S4 = {(ψ4, ψ2 + ψ3 + ψ4 + ψ5), (ψ2 + ψ4, ψ3 + ψ4 + ψ5), (ψ3 + ψ4, ψ2 + ψ4 + ψ5),

(ψ4 + ψ5, ψ2 + ψ3 + ψ4)};

and S3 = S5 = S6 = S7 = ∅. The conditions of (4.1) follow.
Finally, suppose that 	(g, a) is of type E8 . Then β1 =

2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 + 4ψ6 + 3ψ7 + 2ψ8 , β2 = 2ψ1 + 2ψ2 + 3ψ3 +
4ψ4 + 3ψ5 + 2ψ6 + ψ7 , β3 = ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7 , β4 = ψ7 ,
β5 = ψ2 + ψ3 + 2ψ4 + ψ5 , β6 = ψ2 , β7 = ψ3 , and β8 = ψ5 . Now lr = gβr +
∑

(γ,γ ′)∈Sr (gγ + gγ ′), where

S4 = S6 = S7 = S8 = ∅;
S5 = {(ψ4, ψ2 + ψ3 + ψ4 + ψ5), (ψ2 + ψ4, ψ3 + ψ4 + ψ5),

(ψ3 + ψ4, ψ2 + ψ4 + ψ5), (ψ4 + ψ5, ψ2 + ψ3 + ψ4)};
S3 = {(ψ6, ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7), (ψ5 + ψ6, ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7),

(ψ6 + ψ7, ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6), (ψ4 + ψ5 + ψ6, ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7),

(ψ5 + ψ6 + ψ7, ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6), (ψ2 + ψ4 + ψ5 + ψ6, ψ3 + ψ4

+ ψ5 + ψ6 + ψ7),

(ψ3 + ψ4 + ψ5 + ψ6, ψ2 + ψ4 + ψ5 + ψ6 + ψ7), (ψ4 + ψ5 + ψ6 + ψ7, ψ2 + ψ3

+ ψ4 + ψ5 + ψ6)};

S1 = {(ψ8, 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 + 4ψ6 + 3ψ7 + ψ8),

(ψ7 + ψ8, 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 + 4ψ6 + 2ψ7 + ψ8),

(ψ6 + ψ7 + ψ8, 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ4 + ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 3ψ2 + 4ψ3 + 5ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ2 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 2ψ2 + 4ψ3 + 5ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 3ψ2 + 3ψ3 + 5ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ1 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, ψ1 + 3ψ2 + 3ψ3 + 5ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 2ψ2 + 3ψ3 + 5ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, ψ1 + 2ψ2 + 3ψ3 + 5ψ4 + 4ψ5 + 3ψ6

+ 2ψ7 + ψ8), (ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 4ψ5

+ 3ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7 + ψ8, ψ1 + 2ψ2 + 3ψ3

+ 4ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8), (ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7 + ψ8, 2ψ1 + 2ψ2

+ 3ψ3 + 4ψ4 + 3ψ5 + 3ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7 + ψ8,

ψ1 + 2ψ2 + 2ψ3 + 4ψ4 + 4ψ5 + 3ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6
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+ψ7 + ψ8, ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 3ψ6 + 2ψ7 + ψ8), (ψ2 + ψ3 + 2ψ4 + 2ψ5

+ 2ψ6 + ψ7 + ψ8, 2ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + 2ψ7 + ψ8),

(ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7 + ψ8, ψ1 + 2ψ2 + 2ψ3 + 4ψ4 + 3ψ5 + 3ψ6

+ 2ψ7 + ψ8), (ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7 + ψ8, ψ1 + 2ψ2 + 3ψ3 + 4ψ4

+ 3ψ5 + 2ψ6 + 2ψ7 + ψ8), (ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + 2ψ7 + ψ8, 2ψ1 + 2ψ2 + 3ψ3

+ 4ψ4 + 3ψ5 + 2ψ6 + ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6 + ψ7 + ψ8,

ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 3ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7

+ψ8, ψ1 + 2ψ2 + 2ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5

+ 2ψ6 + 2ψ7 + ψ8, ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7 + ψ8), (ψ1 + 2ψ2 + 2ψ3

+ 3ψ4 + 2ψ5 + ψ6 + ψ7 + ψ8, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 3ψ6 + 2ψ7 + ψ8),

(ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7 + ψ8, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6

+ 2ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + 2ψ7 + ψ8, ψ1 + 2ψ2 + 2ψ3 + 4ψ4

+ 3ψ5 + 2ψ6 + ψ7 + ψ8), (ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7 + ψ8, ψ1 + ψ2

+ 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7 + ψ8,

ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + 2ψ7 + ψ8), (ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6

+ 2ψ7 + ψ8, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7 + ψ8)};

while

S2 = {(ψ1, ψ1 + 2ψ2 + 3ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3, ψ1 + 2ψ2 + 2ψ3 + 4ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 3ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5 + ψ6, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7, ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6),

(ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5, ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + 2ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7, ψ1 + ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6),

(ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5 + ψ6, ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + 2ψ5 + ψ6, ψ1 + ψ2 + 2ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7),

(ψ1 + ψ2 + ψ3 + 2ψ4 + ψ5 + ψ6 + ψ7, ψ1 + ψ2 + 2ψ3 + 2ψ4 + 2ψ5 + ψ6)}.
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