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We study Riemannian coverings ϕ : M̃ → Γ\M̃ where M̃ is a normal homogeneous 
space G/K1 fibered over another normal homogeneous space M = G/K and K is 
locally isomorphic to a nontrivial product K1×K2. The most familiar such fibrations 
π : M̃ → M are the natural fibrations of Stiefel manifolds SO(n1 +n2)/SO(n1) over 
Grassmann manifolds SO(n1+n2)/[SO(n1) ×SO(n2)] and the twistor space bundles 
over quaternionic symmetric spaces (= quaternion-Kaehler symmetric spaces = Wolf 
spaces). The most familiar of these coverings ϕ : M̃ → Γ\M̃ are the universal 
Riemannian coverings of spherical space forms. When M = G/K is reasonably well 
understood, in particular when G/K is a Riemannian symmetric space or when 
K is a connected subgroup of maximal rank in G, we show that the Homogeneity 
Conjecture holds for M̃ . In other words we show that Γ\M̃ is homogeneous if and 
only if every γ ∈ Γ is an isometry of constant displacement. In order to find all 
the isometries of constant displacement on M̃ we work out the full isometry group 
of M̃ , extending Élie Cartan’s determination of the full group of isometries of a 
Riemannian symmetric space. We also discuss some pseudo-Riemannian extensions 
of our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Some years ago I studied Riemannian covering spaces S → Γ\S where S is homogeneous. I conjectured 
that Γ\S is homogeneous if and only if every γ ∈ Γ is an isometry of constant displacement (now usually 
called Clifford translations or Clifford–Wolf isometries) on S. I’ll call that the Homogeneity Conjecture. This 
paper proves the conjecture for a class of normal Riemannian homogeneous spaces M̃ = G/K1 that fiber over 
homogeneous spaces M = G/K where K1 is a local direct factor of K. The principal examples are those for 
which K is the fixed point set of an automorphism of G and the Lie algebra k = k1⊕k2 with dim k1 �= 0 �= k2. 
Those include the cases where G/K is an hermitian symmetric space, or a Grassmann manifold of rank > 1, 
or a quaternion-Kaehler symmetric space (Wolf space), one of the irreducible nearly-Kaehler manifolds of 
F4, E6, E7 or E8, or everybody’s favorite 5-symmetric space E8/A4A4. See [35] and [36] for a complete list.
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For lack of a better term I’ll refer to such spaces M̃ = G/K1 as isotropy–split homogeneous spaces and 
to the fibration π : M̃ → M = G/K as an isotropy–splitting fibration.

Here we use isotropy–splitting fibrations π : M̃ → M as a bootstrap device to study Riemannian coverings 
ϕ : M̃ → Γ\M̃ . Specifically, π is the projection given by G/K1 → G/K with K = K1K2 where M and M̃
are normal Riemannian homogeneous spaces of the of the same group G and each dimKi > 0. In particular, 
π : M̃ → M is a principal K2-bundle. The point is to choose the splitting of K so that M is reasonably well 
understood. The most familiar example is the case where M̃ is a Stiefel manifold and M is the corresponding 
Grassmann manifold. More generally we study the situation where

G is a compact connected simply connected Lie group,

K = K1K2 where the Ki are closed connected subgroups of G such that

(i) K = (K1 ×K2)/(K1 ∩K2), (ii) k2 ⊥ k1 and (iii) dim k1 �= 0 �= dim k2 ,

the centralizers ZG(K1) = ZK1K̃2 and ZG(K2) = ZK2K̃1 with K1 = K̃1
0

and K2 = K̃2
0
, and

M = G/K and M̃ = G/K1 are normal Riemannian homogeneous spaces of G.

(1.1)

Thus we may assume that the metrics on M and M̃ are the normal Riemannian metrics defined by the 
negative of the Killing form of G. Note that M̃ and M are simply connected, because G is simply connected 
and K1 and K are connected.

Lemma 1.2. There is no nonzero G-invariant vector field on M . In other words, if m = k⊥ then ad g(k)|m
has no nonzero fixed vector.

Proof. The centralizer ZG(K) is finite by (1.1). �
Lemma 1.2 is of course obvious whenever rankK = rankG, in other words when the Euler characteristic 

χ(M) �= 0. The point here is that it holds as well when rankK < rankG.
Important examples of M include the irreducible Riemannian symmetric spaces G/K with K not simple, 

the irreducible nearly-Kaehler manifolds of F4, E6, E7 or E8, and the very interesting 5-symmetric space 
E8/A4A4. We will list these examples in detail and work out the precise structure of the group I(M̃) of 
all isometries of M̃ . That is Theorem 3.12, and Corollary 3.5 identifies all the Killing vector fields on M̃ of 
constant length. Killing vector fields of constant length are the infinitesimal version of isometries of constant 
displacement. After that we come to the main result, Theorem 5.6, which identifies all the isometries of 
constant displacement on M̃ . Applying it to a Riemannian covering M̃ → Γ\M̃ we prove the Homogeneity 
Conjecture for isotropy–split manifolds. Then we sketch the mathematical background and current state for 
the Homogeneity Conjecture.

In Section 2 we view (compact) isotropy–splitting fibrations from the viewpoint of the Borel–de Siebenthal 
classification ([4], or see [32]) of pairs (G, K) where G is a compact connected simply connected simple Lie 
group and K is a maximal subgroup of equal rank in G. This yields an explicit list. We then run through 
the cases where G/K is a compact irreducible Riemannian symmetric space with rankK < rankG; the only 
ones that yield isotropy–splitting fibrations are the fibrations of real Stiefel manifolds over odd dimensional 
oriented real Grassmann manifolds. These are examples with which one can calculate explicitly, and to 
which our principal results apply.

In Section 3 we work out the full group of isometries of M̃ . The method combines ideas from Élie Cartan’s 
description of the full isometry group of a Riemannian symmetric space, Carolyn Gordon’s work on isometry 
groups of noncompact homogeneous spaces, and a theorem of Silvio Reggiani. The result is Theorem 3.12. 
One consequence, Corollary 3.5, is a complete description of the Killing vector fields of constant length 
on M̃ .
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Section 4 is a digression in which we show that an appropriate form of Theorem 3.12 holds in the equal 
rank case without the need for an isotropy–splitting fibration.

In Section 5 we study isometries of constant displacement on M̃ in the equal rank case, in other words 
when the Euler–Poincaré characteristic χ(M) �= 0. In that setting we give a classification of homogeneous 
Riemannian coverings M̃ → Γ\M̃ . The arguments are modeled in part on those of the group manifold 
case of Riemannian coverings S → Γ\S in [30]. The result is Theorem 5.6, which is the principal result 
of this paper. The main application is Corollary 5.7, which applies Theorem 5.6 to Riemannian coverings 
M̃ → Γ\M̃ .

In Section 6 we study isometries of constant displacement on M̃ when χ(M) = 0. We work out a 
modification of the proof of Theorem 5.6, proving Theorem 6.1, which characterizes the isometries of constant 
displacement on M̃ for χ(M) = 0.

In Section 7 we specialize Theorem 5.6 to the case where M is a compact irreducible Riemannian sym-
metric space. From the classification and the isotropy–splitting requirement, the only cases are the natural 
fibrations of Stiefel manifolds over odd dimensional oriented real Grassmann manifolds. There we charac-
terize the isometries of constant on M̃ by a matrix calculation.

In Section 8 we apply our results on constant displacement isometries to the Homogeneity Conjecture. 
The main result of this paper, Theorem 8.1, proves the conjecture for M̃ when rankK = rankG, and also 
when M is a Riemannian symmetric space. In particular it proves the conjecture for M̃ when M̃ → M is one 
of the fibrations described in Section 2. We then describe the current state of the art for the Homogeneity 
Conjecture, its infinitesimal variation, and its extension to Finsler manifolds. Earlier work had proved it 
in many special cases, for example for Riemannian symmetric spaces, and its validity for isotropy–split 
manifolds extends our understanding of the area.

In Section 9 we show how our results on compact isotropy–split manifolds carry over (or, rather, often 
do not carry over) to the noncompact case. There we see that M̃ is pseudo-Riemannian and we can’t talk 
about isometries of constant displacement. Thus, in that setting, we concentrate on the isometry group 
and on Killing vector fields of constant length. Of special interest here is the case where the base M of 
the isotropy–splitting fibration M̃ → M is a Riemannian symmetric space of noncompact type, but other 
cases of special interest are those for which the “compact dual” isotropy–splitting fibration M̃u → Mu has 
3-symmetric or 5-symmetric base.

2. Some special classes of isotropy–splitting fibrations

In this section we describe a number of interesting examples of isotropy–splitting fibrations M̃ → M . 
Those are examples with which one can calculate explicitly, and to which our principal results apply.

Fix a compact connected simply connected Lie group G and a maximal connected subgroup K with 
rankK = rankG. The Borel–de Siebenthal classification of all such pairs (G, K) is in [4], or see [32].

We recall that classification. We may assume that G is simple. Fix a maximal torus T ⊂ K of G and a 
positive root system Δ+(gC, tC). Express the maximal root β =

∑
ψ∈ΨG

nψψ where ΨG is the simple root 
system for Δ+(gC, tC). The coefficients nψ are positive integers, and the possibilities for k correspond to the 
simple roots ψ0 for which either nψ0 = 1 or nψ0 > 1 with nψ0 prime. Fix one such, ψ0, and write n0 for nψ0 .

If n0 = 1 the simple root system ΨK = ΨG \{ψ0}. This is the case where G/K is an hermitian symmetric 
space. If n0 > 1 then ΨK = (ΨG \ {ψ0}) ∪ {−β}. In this case either n0 = 2 and G/K is a non-hermitian 
symmetric space, or n0 = 3 and G/K is a nearly-Kaehler manifold, or n0 = 5 and G/K = E8/A4A4.

If DG is the Dynkin diagram of g then the diagram DK of k is obtained as follows. If n0 = 1 then delete 
the vertex ψ0 from DG. If n0 > 1 the delete the vertex ψ0 and adjoin the vertex −β. The simple root(s) 
not orthogonal to β, in other words the attachment points for −β to DG, may or may not disconnect DG. 
If there is disconnection then K splits into the form K1K2 of interest to us.
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2.1. Hermitian symmetric space base

If n0 = 1 then K = SK ′ where S is a circle group and K ′ = [K, K] is semisimple. The corresponding 
fibrations are

G/K ′ → G/K circle bundle over a compact hermitian symmetric space and

G/S → G/K principal K ′-bundle over a compact hermitian symmetric space.

In addition, if g = su(s + t) we can have k′ = su(s) ⊕ su(t), leading to fibrations

SU(s + t)/SU(s) → SU(s + t)/S(U(s)U(t)) and SU(s + t)/U(s) → SU(s + t)/S(U(s)U(t)),

SU(s + t)/SU(t) → SU(s + t)/S(U(s)U(t)) and SU(s + t)/U(t) → SU(s + t)/S(U(s)U(t)).

2.2. Quaternion-Kaehler symmetric space base

If n0 = 2 then K is simple except in the cases

G/K = SO(s + t)/SO(s)SO(t) with 2 < s � t and st even,

G/K = Sp(s + t)/Sp(s)Sp(t) with 1 � s � t,

G/K = G2/A1A1 , F4/A1C3 , E6/A1A5 , E7/A1D6 or E8/A1E7 .

In the SO cases, G/K is a quaternion-Kaehler symmetric space for s = 3 and for s = 4. In the Sp cases 
G/K is a quaternion-Kaehler symmetric space for s = 1. In the exceptional group cases G/K always is a 
quaternion-Kaehler symmetric space.

2.3. Nearly-Kaehler 3-symmetric space base

If n0 = 3 then either K is simple and G/K = G2/A2 or E8/A8, or K is not simple and G/K is one of the 
nearly-Kaehler manifolds F4/A2A2, E6/A2A2A2, E7/A2A5 or E8/A2E6. In the F4 case one of the A2 is given 
by long roots and the other is given by short roots. In each case we have k = a2⊕ k′′ where the a2 is given by 
long roots. The 3-symmetry on G/K is given by one of the central elements of exp(a2) = SU(3). It defines 
the almost-complex structure on G/K, which satisfies the nearly-Kaehler condition. The corresponding 
fibrations are

G/K ′′ → G/K principal SU(3)-bundle and G/SU(3) → G/K principal K ′′-bundle.

2.4. 5-symmetric space base

If n0 = 5 then G/K = E8/A4A4, where the first A4 acts on the complexified tangent space by a sum of 5
dimensional representations and the second A4 acts by a sum of 10 dimensional representations. This leads 
to two different principal SU(5)-bundles E8/SU(5) → E8/SU(5)SU(5).

2.5. Odd real Grassmann manifold base

The Borel–de Sibenthal classification, just described, gives the classification of irreducible compact Rie-
mannian symmetric spaces S with Euler characteristic χ(S) �= 0. There are other symmetric spaces to 
which our results will apply, corresponding to the isotropy–split fibrations π : M̃ → M where the base M
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is an irreducible compact Riemannian symmetric space G/K such that rankG > rankK. According to the 
classification of symmetric spaces, the only such G/K are

SU(n)/SO(n), SU(2n)/Sp(n), SO(2s+2t+2)/[SO(2s+1)×SO(2t+1)], E6/F4, E6/Sp(4), (K×K)/diag(K).

Note that SU(4)/SO(4) = SO(6)/[SO(3) ×SO(3)]. Thus the only such symmetric spaces G/K that satisfy 
(1.1) are the oriented real Grassmann manifolds SO(2s + 2t + 2)/[SO(2s + 1) × SO(2t + 1)]. Thus the 
corresponding fibrations are

π : M̃ → M given by G/K1 → G/K1K2 where

G = SO(2s + 2t + 2)/SO(2s + 1),K1 = SO(2s + 1) and K2 = SO(2t + 1).

The odd spheres are completely understood ([28] and [32]), and in any case they do not lead to isotropy–split 
fibrations, so we put those cases aside and assume s, t > 0.

3. The isometry group of M̃

We look at an isotropy–splitting fibration π : M̃ → M , given by G/K1 → G/K in (1.1). As noted there 
we assume that the metrics on M and M̃ are the normal Riemannian metrics defined by the negative of 
the Killing form of G. Now we work out the isometry groups I(M̃).

Lemma 3.1. The right action of K̃2 on M̃ , given by r(k2)(gK1) = gK1k
−1
2 = gk−1

2 K1, is a well defined 
action by isometries. The fiber of π : M̃ → M through gK1 is r(K2)(gK1).

Let F denote the fiber r(K2)(1K1) of π : M̃ → M, so gF is the fiber π−1(gK). (3.2)

We have larger (than G) transitive groups of isometries of M̃ given by

G̃ = G× r(K̃2) and G̃0 = G× r(K2) acting by (g, r(k2)) : xK1 
→ g(xK1)k−1
2 = gxk−1

2 K1 . (3.3)

Every g̃ = (g, r(k2)) ∈ G̃ sends fiber to fiber in M̃ → M and induces the isometry g : M → M of M .
Specializing a theorem of Reggiani [25, Corollary 1.3] we have

Theorem 3.4. Suppose that the Riemannian manifold M̃ = G/K1 is irreducible. Then G̃0 is the identity 
component I0(M̃) of its isometry group.

Corollary 3.5. Suppose that the Riemannian manifold M̃ = G/K1 is irreducible.

(1) The algebra of all Killing vector fields on M̃ is g̃ = g ⊕ dr(k2).
(2) The set of all constant length Killing vector fields on M̃ is l ⊕ dr(k2) where l = {ξ ∈ g |

ξ defines a constant length Killing vector field on M̃}.
(3) l = {ξ ∈ g | ξ defines a constant length Killing vector field on M}.
(4) If rankK = rankG then l = 0, so the set of all constant length Killing vector fields on M̃ is dr(k2). 

That applies in particular to the special classes of Sections 2.1 through 2.4.

Proof. The first assertion is immediate from Theorem 3.4. For the second assertion, dr(k2) consists of 
Killing vector fields of constant length on M̃ because every ξ ∈ dr(k2) is centralized by the transitive 
isometry group G.
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For the third assertion, let ξ be a Killing vector field of constant length on M̃ . Using Theorem 3.4 express 
ξ = ξ′ + ξ′′ where ξ′ ∈ g and ξ′′ ∈ dr(k2). The fibers of π : M̃ → M are just the orbits of r(K2) and are 
group manifolds, so ξ′′ is a Killing vector field of constant length on M̃ . Further, ξ′ ⊥ ξ′′ at every point 
of M̃ . Now ξ′ is a Killing vector field of constant length on M̃ . It follows that ξ′ is a Killing vector field of 
constant length on M as well.

For the fourth assertion, let rankK = rankG, so the Euler–Poincaré characteristic χ(M) > 0. Then the 
vector field ξ′ (of the argument for (3) just above) must have a zero on M . Thus ξ′ = 0 and ξ = ξ′′ ∈
dr(k2). �
Corollary 3.6. Every isometry of M̃ normalizes r(K2) and thus sends fiber to fiber in π : M̃ → M .

Now we start to extend this to a structure theorem for the full isometry group I(M̃) under the constraint 
of (1.1).

The normalizer of K1 in G also normalizes the centralizer of K1, thus normalizes K2 and thus normal-
izes K. That shows

Lemma 3.7. The normalizer of K1 in G is contained in the normalizer of K in G.

Now we follow the basic idea of É. Cartan’s determination of the holonomy group and then the isometry 
group of a Riemannian symmetric space ([6], [7]; or see [32]). Write Out(G) for the quotient Aut(G)/Int(G)
of the automorphism group by the normal subgroup of inner automorphism, and similarly Out(K1) =
Aut(K1)/Int(K1). We also need the relative group

Out(G,K1) =
{
α ∈ Aut(G) | α(K1) = K1}/{α ∈ Int(G) | α(K1) = K1} ⊂ Out(G,K). (3.8)

The inclusion in (3.8) follows because K1 is a local direct factor of K. In many cases Out(G, K1) = Out(G, K)
because k2 is the g-centralizer of k1 and k1 � k2. But there are exceptions, such as orthocomplementation 
(which exchanges the two factors of K) in the cases of Stiefel manifold fibrations

SO(2k)/SO(k) → SO(2k)/[SO(k) × SO(k)],

SU(2k)/U(k) → SU(2k)/S(U(k) × U(k)) and

Sp(2k)/Sp(k) → Sp(2k)/[Sp(k) × Sp(k)].

There are other exceptions, including E6/[A2A2A2], but neither F4/A2A2 nor E8/A4A4 is an exception.

Lemma 3.9. Suppose that rankK = rankG. Let α ∈ Aut(G) preserve K1 (and thus also K2 so α(K) = K). 
Then the following conditions are equivalent: (i) α|K is an inner automorphism of K, (ii) as an isometry, 
α ∈ I0(M), and (iii) as an isometry, α ∈ I0(M̃).

Proof. Suppose that α|K is an inner automorphism. Then we have k0 ∈ K such that α(k) = k0kk
−1
0 for 

every k ∈ K. Thus α′ := Ad(k−1
0 ) · α is an isometry of M that belongs to the same component of I(M)

as α. Let T be a maximal torus of K that contains k0. Then α′ := Ad(k−1
0 ) · α is an isometry of M that 

belongs to the same component I0(M)α as α. Now α′(t) = t for every t ∈ T so there is an element t0 ∈ T

such that α′(g) = t0gt
−1
0 for every g ∈ G. Consequently α′′ := Ad(t−1

0 ) · α′ is the identity in I(M) and 
belongs to the same component of I(M) as α. It follows that α′′ is the identity in I(M̃) and belongs to the 
same component of I(M̃) as α. Thus, as an isometry, α ∈ I0(M) and α ∈ I0(M̃). We have shown that (i) 
implies (ii) and (iii).

Suppose that α|K is an outer automorphism. Then α ∈ I(M) represents a non-identity component 
of the isotropy subgroup at 1K, i.e. α /∈ I0(M). In view of Corollary 3.6 we have a natural continuous 
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homomorphism of I(M̃) to I(M) that maps I0(M̃) onto I0(M). Thus α /∈ I0(M̃). We have shown that if 
(i) fails then (ii) and (iii) fail. Thus (ii) implies (i) and (iii) implies (i). That completes the proof. �

We reformulate Lemma 3.9 as

Lemma 3.10. Let rankK = rankG. Let H̃ denote the isotropy subgroup of I(M̃) at the base point x̃0 = 1K1. 
Then the identity component H̃0 is K1 · {(k2, r(k2)) ∈ G̃ | k2 ∈ K2} and

H̃ =
⋃

α∈Out(G,K1) ,β∈Out(G,K2)
K1α ·

{
(k2, r(k2)) ∈ G̃ | k2 ∈ K̃2β

}

Given α, α′ ∈ Out(G, K1) and β, β′ ∈ Out(G, K2), the components K1α ·
{
(k2, r(k2)) ∈ G̃ | k2 ∈ K̃2β

}
=

K1α ·
{
(k2, r(k2)) ∈ G̃ | k2 ∈ K̃2β

}
if and only if both α = α′ and β = β′ modulo inner automorphisms.

Proof. The fiber F = r(K2)x̃0 is the group manifold K/K1, and H̃ preserves F by Corollary 3.5. The 
isotropy subgroup of I(F ) at x̃0 has identity component diag(K2) = {(k2, r(k2)) ∈ G̃ | k2 ∈ K2}. The 
group diag(K2) is connected and is contained in H̃ because it leaves x̃0 fixed, so diag(K2) ⊂ H̃0. Also 
K1 = G ∩ H̃ ⊂ H̃0. It follows that H̃0 = K1 · diag(K2), as asserted.

The inclusion 
⋃

α∈Out(G,K1) ,β∈Out(G,K2) K1α ·
{
(k2, r(k2)) ∈ G̃ | k2 ∈ K̃2β

}
⊂ H̃ is clear.

Now let h ∈ H̃. Then h(F ) = F by Corollary 3.6, so conjugation by h gives an automorphism β of 
diag(K2) = {(k2, r(k2)) ∈ G̃ | k2 ∈ K2}, and we view β as an element of Out(G, K2). Furthermore, 
conjugation by h gives an automorphism α of G and we view α as an element of Out(G, K1). Thus H̃ is 
contained in 

⋃
α∈Out(G,K1) ,β∈Out(G,K2) K1α ·

{
(k2, r(k2)) ∈ G̃ | k2 ∈ K̃2β

}
, and they are equal, as asserted.

Finally, the last statement is immediate from Lemma 3.9. �
We now define two subgroups of isometry groups by

G† =
⋃

α∈Out(G,K1)
Gα ⊂ I(M) and G̃† =

⋃
α∈Out(G,K1) ,β∈Out(G,K2)

Gα · r(K2)β ⊂ I(M̃). (3.11)

Here gα acts on M by xK 
→ gα(x)K and on M̃ by xK1 
→ gα(x)K1, and r(k2)β acts on M̃ by xK1 
→
xβ(k2)−1K1.

Theorem 3.12. Let π : M̃ → M be an isotropy–split fibration as in (1.1). Suppose that rankK = rankG. 
Then the identity component I0(M̃) = G̃0 and the full isometry groups I(M̃) = G̃†.

Proof. The first statement repeats Theorem 3.4. As G is transitive on M̃ one has I(M̃) = GH̃, and the 
assertion follows from Lemma 3.10. �
4. Digression: the isometry group without a splitting fibration

Theorem 3.12 holds without the splitting fibration. That result is useful and we indicate it here.
A “degenerate” form of Lemma 3.9 holds as follows: Let A be a compact connected semisimple Lie group 

and B a closed connected subgroup of maximal rank. Let N = A/B, coset space with the normal Riemannian
metric from the negative of the Killing form of A. Let α be an automorphism of A that preserves B. Then 
α|B is an inner automorphism of B if and only if, as an isometry, α ∈ I0(N). The proof is immediate from 
the proof of Lemma 3.9.

Next, a “degenerate” form of Lemma 3.10 holds as follows: Let H denote the isotropy subgroup of I(N)
at the base point 1K. Then H =

⋃
H0α. Given α, α′ ∈ Out(A, B) the components H0α = H0α′
α∈Out(A,B)
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if and only if α = α′ modulo inner automorphisms. The argument follows by specializing the proof of 
Lemma 3.10

Finally, a “degenerate” form of Theorem 3.12 holds as follows: Let A be a compact connected semisimple 
Lie group and B a closed connected subgroup of maximal rank. Let N = A/B, coset space with the normal 
Riemannian metric from the negative of the Killing form of A. Then I0(N) is given by Theorem 3.4 and, 
in view of the remarks just above, I(N) =

⋃
α∈Out(A,B) Aα.

We summarize these comments as

Theorem 4.1. Let A be a compact connected semisimple Lie group and B a closed connected subgroup of 
maximal rank. Let N = A/B, coset space with the normal Riemannian metric from the negative of the 
Killing form of A. Then I0(N) is given by Theorem 3.4 and I(N) =

⋃
α∈Out(A,B) Aα.

5. Isometries of constant displacement: case χ(M) �= 0

Fix an isotropy–splitting fibration π : M̃ → M as in (1.1). In this section we look at isometries of 
constant displacement on M̃ = G/K1 where the Euler–Poincaré characteristic χ(M) �= 0, in other words 
where rankK = rankG. Then χ(M) = |WG|/|WK | > 0 where W denotes the Weyl group. Some important 
examples are the isotropy–splitting fibrations described in Sections 2.1, 2.2, 2.3 and 2.4.

In Section 6 we will look at cases where χ(M) = 0, and in Section 7 we will consider the remaining cases 
where M is an irreducible Riemannian symmetric space.

Lemma 5.1. If rankK = rankG and g̃ = (g, r(k2)) ∈ G̃ then there is a fiber xF = π−1(xK) of M̃ → M

that is invariant under the action of g̃ on M̃ .

Proof. Every element of the compact connected Lie group G̃ belongs to a maximal torus, thus is conjugate 
to an element of K × r(K2), and consequently has a fixed point on M . �

We need an observation concerning the geodesics in M̃ and F .

Lemma 5.2. The isotropy–split manifold M̃ is a geodesic orbit space, i.e. every geodesic is the orbit of a 
one-parameter subgroup of G. The fiber F of M̃ → M is totally geodesic in M̃ and also is a geodesic orbit 
space. Every geodesic of M̃ tangent to F is of the form t 
→ exp(tξ)x with x ∈ F and ξ ∈ k2.

Proof. Recall that M̃ is a normal homogeneous space relative to the group G and the Riemannian metric 
given by the negative of the Killing form κ of G. Write g = k1 + m1 where m1 = k⊥1 relative to κ. Write 
〈 · , · 〉 for −κ. It is positive definite on g. If ξ, η, ζ ∈ m1 then ad (ξ) is antisymmetric relative to 〈 · , · 〉 so 
0 = 〈[ξ, η], ζ〉 + 〈η, [ξ, ζ]〉 = 〈[ξ, η]m1 , ζ〉 + 〈η, [ξ, ζ]m1〉. In other words (see [18, Definition 1.3]),

the G-homogeneous space M̃ is naturally reductive relative to G and g = k1 + m1 . (5.3)

If ξ ∈ m1 now ([19] or see [18]) t 
→ exp(tξ) ·1K1 is a geodesic in M̃ . In particular M̃ is a geodesic orbit space 
and F is totally geodesic in M̃ . But F is a Riemannian symmetric space under K2 × r(K2) with the metric 
obtained by restriction of 〈 · , · 〉. Thus every geodesic of M̃ tangent to F at 1K1 has form t 
→ exp(tξ)(1K1)
with ξ ∈ k2. As K2 acts transitively on F with finite kernel every geodesic in F has form t 
→ exp(tξ)x with 
x ∈ F and ξ ∈ k2. �

Our principal results, starting with Proposition 5.4 just below, will depend on a certain flat rectangle 
argument. The idea is that we have two commuting Killing vector fields ξ1 and ξ2, typically ξ2 ∈ dr(k2)
and ξ1 ∈ g, such that ξ1 ⊥ k1 and both g × r(k2) = exp(ξ1 + ξ2) and r(k2) = exp(ξ2) have the same 
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constant displacement. Then the exp(t1ξ1 + t2ξ2)(1K1), for 0 � ti � 1, form a flat rectangle. There r(k2) is 
displacement along one side while g × r(k2) is displacement along the diagonal. Since these displacements 
are the same we argue that ξ1 = 0.

Proposition 5.4. Suppose that rankK = rankG. Let Γ be a subgroup of G̃ such that every γ ∈ Γ is an 
isometry of constant displacement on M̃ . Then Γ ⊂ (ZG × r(K2)) where ZG denotes the center of G.

Note: Proposition 5.4 applies in particular to the isotropy–split fibrations M̃ → M described in Sections 2.1
through 2.4.

Proof. Let γ = (g, r(k2)) ∈ Γ. By Lemma 5.1 and conjugacy of maximal tori in G, we have h ∈ G such that 
γ(hF ) = hF . Since both ZG × r(K2) and “constant displacement” are fixed under Ad(G) we may replace γ
by its Ad(G)-conjugate (h−1, 1)(g, r(k2))(h, 1), which preserves F and still consists of isometries of constant 
displacement. That done, γ ∈ (K1K2 × r(K2)).

The group K1 fixes the base point x̃0 = 1K1 ∈ M̃ . If k ∈ K2 then K1kx̃ = kK1x̃ = kx̃. Now K1 fixes 
every point of F , so γ|F ∈ (K2 × r(K2)). As F is totally geodesic in M̃ , γ|F is an isometry of constant 
displacement on F . Now [29, Theorem 4.5.1] says that either γ|F ∈ (K2 × r({1})) or γ|F ∈ r(K2).

Suppose that γ|F = zk2 ∈ ZGK2. Then γ = zk1k2 and also has constant displacement on F , hence on M̃ . 
Let Ti ⊂ Ki be a maximal torus, so T := T1T2 is a maximal torus of K, and thus of G. Replace γ by a 
conjugate and assume γ = zk2 ∈ ZGT2. Lemma 5.2 gives us ξ ∈ t2 such that exp(tξ) · 1K1 , 0 � t � 1, is the 
minimizing geodesic in M̃ from 1K1 to zk2K1. In particular the (constant) displacement of γ = zk2 is ||ξ||. 
Let w belong to the Weyl group W (G, T ), say w = Ad(s)|t where s normalizes T . Then w(γ) = szk2s

−1

has the same constant displacement ||ξ|| as does γ. Note that w(γ) · 1K1 = exp(w(ξ)) · 1K1. Decompose 
w(ξ) = w(ξ)′ + w(ξ)′′ where w(ξ)′ ∈ t1 and w(ξ)′′ ∈ t2. Then exp(w(ξ)) · 1K1 = exp(w(ξ)′′) · 1K1 so 
||w(ξ)′′|| = ||w(ξ)||. This says w(ξ) ∈ t2 for every w ∈ W (G, T ). But W (G, T ) acts irreducibly on t, 
so an orbit �= 0 cannot be confined to a proper subspace. This contradicts γ = k2 ∈ K2. We conclude 
γ ∈ (ZG × r(K2)).

We have just shown that every γ ∈ Γ is Ad(G)-conjugate to an element of ZG × r(K2). As G centralizes 
both ZG and r(K2) it follows that Γ ⊂ (ZG × r(K2)). �

Proposition 5.4 holds whether or not the maximal rank subgroup K of G is a maximal subgroup, describ-
ing the groups of isometries of constant displacement on M̃ that are contained in the identity component 
I0(M̃). Next, we look in the other components of I(M̃). That will require an understanding of the full 
isometry group I(M).

Lemma 5.5. Suppose that rankK = rankG. Let α ∈ Out(G, K1) and γ ∈ G̃α such that both γ and γ2 are 
isometries of constant displacement on M̃ . Then α|K1 is an inner automorphism of K1 and γ ∈ (ZG×r(K2)).

Proof. Let γ = (α·g) ×(r(k2) ·β) as in (3.11) and Theorem 3.12, using α·g = α(g) ·α. Exactly as in the proof 
of Proposition 5.4 we may assume that (g × r(k2) · β)F = F . Now gF = F and γ(F ) = (α · g)(F ) = α(F ). 
But αK1 = K1 and (1.1) together imply α(K2) = K2. Thus α(K) = K, in other words 1K is a fixed point 
for α on G/K; equivalently, α(F ) = F . Now γ(F ) = F . As F is totally geodesic in M̃ , γ|F has constant 
displacement on F , so γ|F ∈ r(K2). In particular β = 1 and γ ∈ ((α · ZGK1) × r(K2)).

Now we argue along the lines of the proof of Proposition 5.4. Both γ and r(k2) have the same constant 
displacement (call it c) on F , thus on M̃ . Following de Siebenthal [26] we have an α-invariant maximal torus 
T1 ⊂ K1 such that (after a K1-conjugation) αk1 ∈ αTα

1 where Tα
1 is the fixed point set of α on T1. Express 

αk1 = α · exp(ξ1) where ξ1 ∈ tα1 . Let T2 be a maximal torus of K2 such that k2 = exp(ξ2) for some ξ2 ∈ t2. 
Let ξ = ξ1 + ξ2. We may assume the ξi chosen so that α · exp(tξ) · 1K1, 0 � t � 1, is a minimizing geodesic 
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from 1K1 to γ(1K1). Then exp(tξ2) · 1K1, 0 � t � 1, also is a minimizing geodesic from 1K1 to γ(1K1). 
Now the corresponding vector fields dα(η) and η2 on M̃ satisfy ||dα(η)|| = c = ||η2|| at every point of M̃ .

If ξ1 �= 0 then, as we move a little bit away from 1K1 in some direction orthogonal to F , ||dα(η1)||
increases from 0. That increase in ||dα(η1)|| would cause an increase in ||dα(η)|| because dα(η1) and dα(η2)
would remain close to orthogonal. We conclude ξ1 = 0. Now γ = α × r(k2). Again, if α �= 1 then, as we 
move away from 1K1 in some direction, the displacement of α would increase from 0, and that would cause 
an increase in the displacement of γ. We conclude that α is inner and γ ∈ ZG × r(K2). �

Finally we come to the main result of this section.

Theorem 5.6. Suppose that rankK = rankG. If Γ is a group of isometries of constant displacement on M̃
then Γ ⊂ (ZG × r(K2)) where ZG denotes the center of G. Conversely, if Γ ⊂ (ZG × r(K2)) then every 
γ ∈ Γ is an isometry of constant displacement on M̃ .

Proof. Γ ⊂ I(M̃), so Theorem 3.12 says Γ ⊂ G̃† =
⋃

α∈Out(G,K1,K2) G̃α. Lemma 5.5 implies Γ ⊂ G̃, and 
from Proposition 5.4 we conclude that Γ ⊂ (ZG×r(K2)). Conversely, if Γ ⊂ (ZG×r(K2)) then G centralizes 
Γ so every γ ∈ Γ is of constant displacement. �
Corollary 5.7. Let M̃ → Γ\M̃ be a Riemannian covering whose deck transformation group Γ consists of 
isometries of constant displacement. Then Γ ⊂ (ZG × r(K2)) and Γ\M̃ is homogeneous.

6. Isometries of constant displacement: case χ(M) = 0

In this section we study the cases where χ(M) = 0, in other words where rankK < rankG. We know 
that the identity component I0(M̃) = G × r(K2) by Theorem 3.4. We will prove the following analog of 
Proposition 5.4 for rankK < rankG. This uses an argument of Cámpoli [5].

Theorem 6.1. Let π : M̃ → M as in (1.1) with χ(M) = 0. If Γ is a group of isometries of constant 
displacement on M̃ , and if Γ ⊂ I0(M̃), then Γ ⊂ (ZG × r(K2)). Conversely if Γ ⊂ (ZG × r(K2)) then every 
γ ∈ Γ is an isometry of constant displacement on M̃ .

Proof. Let γ = (g, r(k2) ∈ Γ. It descends to an isometry g of M . If g has a fixed point on M , in other words 
if it preserves a fiber of π : M̃ → M , then the argument of Proposition 5.4 proves γ ∈ ZG × r(K2). Now 
suppose that g does not have a fixed point on M .

Let t → σ(t) denote the minimizing geodesic in M̃ from 1K1 to γ(1K1). Then σ(t) = exp(tξ)(1K1) where 
ξ = ξ1 + dr(ξ2) with ξ1 ∈ g, ξ1 ⊥ k1, and ξ2 ∈ k2. Here ξ1 belongs to the Lie algebra t1 of a maximal torus 
T1 of G such that t1 = t′1 + t′′1 where ξ ∈ t′1, t′1 ⊥ k1, and t′′1 is the Lie algebra of a maximal torus of K1. The 
isometry γ has constant displacement equal to ||ξ1 + dr(ξ2)||. Note that ξ1 �= 0 because g does not have a 
fixed point on M .

Every conjugate of γ has the same constant displacement. In particular if w belongs to the Weyl group 
W (G, T1) then ||ξ1 + dr(ξ2)|| = ||p(w(ξ1)) + dr(ξ2)|| where p : t1 → t′1 is orthogonal projection. As ξ1 ⊥
dr(ξ2) ⊥ p(w(ξ1))|| it follows that ||ξ1|| = ||p(w(ξ1))||. From that, w(ξ1) ∈ t′1 for every w ∈ W (G, T1). But 
W (G, T1) acts irreducibly on t1 so it cannot preserve the subspace t′1. This implies ξ1 = 0. That contradicts 
the assumption that g has no fixed point on M . In other words, γ ∈ (ZG×r(K2)), as asserted. The theorem 
follows. �

In the next section we look at the special case of Stiefel manifold fibrations over odd dimensional Grass-
mann manifolds.
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7. Isotropy–split bundles over odd real Grassmannians

In this section we extend the theory described in Sections 3, 5 and 6 to include isotropy–split bundles 
π : M̃ → M where the base M is an irreducible compact Riemannian symmetric space G/K such that 
rankG > rankK. According to the classification, the only such G/K are

SU(n)/SO(n), SU(2n)/Sp(n), SO(2s+2+2t)/[SO(2s+1)×SO(1+2t)], E6/F4, E6/Sp(4), (K×K)/diag(K).

Note that SU(4)/SO(4) = SO(6)/[SO(3) ×SO(3)]. Thus the only such symmetric spaces G/K that satisfy 
(1.1) are the oriented real Grassmann manifolds SO(2s + 2t + 2)/[SO(2s + 1) × SO(2t + 1)] of odd real 
dimension. Thus we look at

π : M̃ → M given by G/K1 → G/K1K2 where

G = SO(2s + 2 + 2t),K1 = SO(2s + 1) and K2 = SO(1 + 2t).
(7.1)

The odd spheres are completely understood ([28] and [32]), and in any case they do not lead to isotropy–split 
fibrations, so we put those cases aside and assume s, t > 0.

Theorem 3.4 and the first three statements of Corollary 3.5 are valid here. We still have the relative 
groups (3.8) and the isometry groups (3.11), but neither K1 nor K2 has an outer automorphism. However, 
following Cartan, the symmetry s at the base point 1K of G/K gives another component of I(M̃). In fact 
it is clear that s =

(
I2s+1 0

0 −I1+2t

)
. Thus

Proposition 7.2. The full isometry group I(M̃) is the 2-component group O(2s + 2 + 2t) × r(SO(1 + 2t)). 
The set of all constant length Killing vector fields on M̃ is dr(so(1 + 2t)).

Lemma 7.3. Every element of sI0(M̃) has a fixed point on M .

Proof. If g ∈ I0(M̃) then the matrix sg has determinant −1. Let R(θ) denote the rotation matrix (
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
. Then R2s+2+2t has an orthonormal basis {ei} in which sg has matrix

diag{R(θ1), . . . , R(θs), 1,−1, R(θ′1), . . . , R(θ′t)}.

Now Span {e1, . . . , e2s+1} is the fixed point. �
Combining Theorem 6.1 with Proposition 7.2 and Lemma 7.3 we have

Theorem 7.4. Let π : M̃ → M as in (7.1). If Γ is a group of isometries of constant displacement on the 
Stiefel manifold M̃ then Γ ⊂ ({±I} × r(SO(1 + 2t))). Conversely if Γ ⊂ ({±I} × r(SO(1 + 2t))) then every 
γ ∈ Γ is an isometry of constant displacement on M̃ .

Now, as in Corollary 5.7, we have

Corollary 7.5. Let π : M̃ → M be the isotropy–split fibration (7.1). Let M̃ → Γ\M̃ be a Riemannian covering 
whose deck transformations γ ∈ Γ have constant displacement. Then Γ ⊂ ({±I} × r(SO(1 + 2t))) and Γ\M̃
is a Riemannian homogeneous space.
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8. Applications to the homogeneity conjecture

The background to the Homogeneity Conjecture consists of three papers from the 1960’s concerning 
Riemannian coverings S → Γ\S where S is a Riemannian homogeneous space. The first one, [27], studies 
the case where S has constant sectional curvature and classifies the quotients Γ\S that are Riemannian
homogeneous. There it is shown that if Γ\S is homogeneous then every γ ∈ Γ is of constant displacement. 
The second one, [28], also for the case of constant sectional curvature, shows that if every γ ∈ Γ is of 
constant displacement then Γ\S is homogeneous. The third one, [29], extends these results to symmetric 
spaces: Let S be a connected simply connected Riemannian symmetric space and S → Γ\S a Riemannian
covering; then Γ\S is homogeneous if and only if every γ ∈ Γ is of constant displacement. Thus

Homogeneity Conjecture. Let S be a connected simply connected Riemannian homogeneous space and S →
Γ\S a Riemannian covering. Then Γ\S is homogeneous if and only if every γ ∈ Γ is of constant displacement.

We note that one direction of the Homogeneity Conjecture is easy: If Γ\S is homogeneous then I0(Γ\S)
lifts to a subgroup G of I(S), and G normalizes Γ by construction. Then G centralizes Γ because G is 
connected and Γ is discrete. Also, G is transitive on S because Γ\S is homogeneous. If x, y ∈ S and γ ∈ Γ
choose g ∈ G with y = gx. Then the displacement δγ(x) = dist(x, γx) = dist(gx, gγx) = dist(gx, γgx) =
dist(y, γy) = δγ(y). Thus if Γ\S is homogeneous then every γ ∈ Γ is of constant displacement. The hard 
part is the converse.

Since the Homogeneity Conjecture was proved for S Riemannian symmetric, some other cases of the 
conjecture have been proved. The latest cases are those of Corollaries 5.7 and 7.5:

Theorem 8.1. Let M̃ → M be an isotropy–splitting fibration and let M̃ → Γ\M̃ be a Riemannian covering. 
Suppose that rankK = rankG, or that M is a Riemannian symmetric space, or that Γ ⊂ I0(M̃). Then 
Γ\M̃ is homogeneous if and only if every γ ∈ Γ is an isometry of constant displacement.

Now we try to describe the broader mathematical context of Theorem 8.1. There are five lines of research 
there: (i) decreasing the number of case by case verifications of [29], (ii) dealing with nonpositive curvature 
and bounded isometries, (iii) additional special cases where S is compact, (iv) Killing vector fields of constant 
length, and (v) extension of these results from Riemannian to Finsler manifolds.

Concerning case by case verifications. My proof [29] of the Homogeneity Conjecture for symmetric spaces 
involved a certain amount of case by case verification. Some of this was simplified later by Freudenthal [17]
and Ozols ([22], [23], [24]) with the restriction that Γ be contained in the identity component of the isometry 
group.

Nonpositive curvature and bounded isometries. This approach was implicit in the treatment of sym-
metric spaces of noncompact type in [27] and [29], and extended in [31] to all Riemannian manifolds S of 
non-positive sectional curvature. The idea is to apply an isometry γ of bounded displacement to a geodesic 
σ and see that σ and γ(σ) bound a flat totally geodesic strip in S. This was extended later by Druetta 
[16] to manifolds without focal points. Further evidence for the Homogeneity Conjecture was developed by 
Dotti, Miatello and the author in [15] for Riemannian manifolds that admit a transitive semisimple group 
of isometries that has no compact factor, and by the author in [34] for Riemannian manifolds that admit a 
transitive exponential solvable group of isometries. Here also see [30].

Killing vector fields of constant length. The infinitesimal version of isometries of constant displacement 
is that of Killing vector fields of constant length. This topic seems to have been initiated by Berestovskii 
and Nikonorov in ([1], [2], [3]), and was further developed by Nikonorov ([20], [21]), and by Podestà, myself 
and Xu ([37], [38], [39]). Also see Corollary 3.5 above.
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Finsler extensions. If (M, F ) is a Finsler symmetric space, say M = G/K where G is the identity 
component of the (Finsler) isometry group, then there is a G-invariant Riemannian metric ds2 on M such 
that (M, ds2) is Riemannian symmetric with the same geodesics as (M, F ). See [33, Theorem 11.6.1] and 
the discussion in [33, §11.6]. Deng and I proved the Homogeneity Conjecture for Finsler symmetric spaces 
in [8] by reduction to the Riemannian case. Further, Deng and others in his school, especially Xu, have done 
a lot on isometries of constant displacement and on Killing vector fields of constant length; for example see 
[9], [10], [11], [12], [13] and [14]. The arguments involving reduction to the Riemannian case usually depend 
on very technical computations. In [8], for example, one has to prove the Berwald condition in order to get 
around the lack of a de Rham decomposition for Finsler manifolds.

9. Isotropy–splitting fibrations over noncompact spaces

In this section we examine our theory of isotropy–splitting fibrations π : M̃ → M in the setting in 
which the base M is noncompact. For example M could be the noncompact dual of one of the Riemannian
symmetric spaces of Section 2, or a certain variation for the 3-symmetric and 5-symmetric spaces.

Here is the basic problem with noncompact base manifolds. Recall that M = G/K and M̃ = G/K1 carry 
the normal metrics defined by the negative −κ of the Killing form of g. Then −κ cannot be definite on k⊥1 , 
for k1 cannot be a maximal compactly embedded subalgebra. So we are forced to either restrict attention to 
the setting of compact Riemannian manifolds M and M̃ , or expand attention to the situation where M̃ is a 
noncompact pseudo-Riemannian manifold. At that point we modify the compact manifold definition (1.1)
for isotropy–splitting fibrations π : M̃ → M , replacing “compact” by “reductive” and dealing with the lack 
of a general de Rham decomposition for pseudo-Riemannian manifolds:

G is a connected real reductive linear algebraic group with GC simply connected,

K = K1K2 where the Ki are closed connected reductive algebraic subgroups of G such that

(i) K = (K1 ×K2)/(K1 ∩K2), (ii) k2 ⊥ k1 and (iii) dim k1 �= 0 �= dim k2 ,

the centralizers ZG(K1) = ZK1K̃2 and ZG(K2) = ZK2K̃1 with K1 = K̃1
0

and K2 = K̃2
0
, and

M = G/K and M̃ = G/K1 are normal pseudo-Riemannian homogeneous spaces of G.

(9.1)

As before we may assume that the metrics on M and M̃ are the normal pseudo-Riemannian metrics defined 
by the negative of the Killing form of G.

9.1. Noncompact Riemannian symmetric base

A particularly interesting case is where M = G/K is an irreducible Riemannian symmetric space of 
noncompact type. We list all such isotropy–splitting fibrations π : M̃ → M , given by G/K1 → G/K with 
rankK = rankG. There of course M = G/K is the noncompact dual of one of the fibrations of Section 2 over 
a compact symmetric space of nonzero Euler characteristic. The ones with hermitian symmetric space base 
are characterized by K = SK ′ where S is a circle group and K ′ = [K, K] is semisimple. The corresponding 
fibrations are

G/K ′ → G/K circle bundle over a bounded symmetric domain and

G/S → G/K principal K ′-bundle over bounded symmetric domain.

In addition, if g = su(s, t) then k′ = su(s) ⊕ su(t), leading to fibrations
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SU(s, t)/SU(s) → SU(s, t)/S(U(s)U(t)) and SU(s, t)/U(s) → SU(s, t)/S(U(s)U(t)),

SU(s, t)/SU(t) → SU(s, t)/S(U(s)U(t)) and SU(s, t)/U(t) → SU(s, t)/S(U(s)U(t)).

When the base M = G/K is a nonhermitian symmetric space, K is simple except in the cases

G/K = SO0(s, t)/SO(s)SO(t) with 2 < s � t and st even,

G/K = Sp(s, t)/Sp(s)Sp(t) with 1 � s � t,

G/K = G2,A1A1/A1A1 , G/K = F4,A1C3/A1C3 , E6,A1A5/A1A5 , E7,A1D6/A1D6 or E8,A1E7/A1E7 .

In the SO cases, G/K is a quaternion-Kaehler symmetric space for s = 3 and for s = 4. In the Sp cases 
G/K is a quaternion-Kaehler symmetric space for s = 1. In the exceptional group cases G/K always is a 
quaternion-Kaehler symmetric space.

Finally we list the isotropy–splitting fibrations π : M̃ → M , given by G/K1 → G/K with rankK <

rankG. There M = G/K is the noncompact dual of an odd dimensional real Grassmann manifold SO(2s +
2 + 2t)/[SO(2s + 1)SO(1 + 2t)] with s, t > 1, leading to the fibrations

G/K = SO0(2s + 1, 1 + 2t)/SO(2s + 1) → SO0(2s + 1, 1 + 2t)/[SO(2s + 1)SO(1 + 2t)] and

G/K = SO0(2s + 1, 1 + 2t)/SO(1 + 2t) → SO0(2s + 1, 1 + 2t)/[SO(2s + 1)SO(1 + 2t)]

with s, t > 1.

9.2. Compact Riemannian dual fibration

Given (G, K1, K2) as in (9.1), there is a Cartan involution θ of G that preserves each Ki and restricts 
on it to a Cartan involution. That defines the compact Cartan dual triple (Gu, Ku

1 , K
u
2 ) and the compact 

Riemannian isotropy–splitting fibration πu : M̃u → Mu, given by Gu/Ku
1 → Gu/Ku

1 K
u
2 , as in (1.1). Several 

pseudo-Riemannian isotropy–splitting fibrations π : M̃ → M can define the same πu : M̃u → Mu. We say 
that π : M̃ → M is associated to πu : M̃u → Mu.

One special case is the one where G, K1 and K2 each is the underlying real structure of a complex Lie 
group. Then G = Gu

C
, K1 = (K1)uC and K2 = (K2)uC.

For each of the isotropy–splitting fibrations πu : M̃u → Mu that satisfies (1.1) we find all associated 
pseudo-Riemannian isotropy–splitting fibrations π : M̃ → M in the tables of [35] and [36]. Here, for example, 
are the ones for n0 = 3, corresponding to the nearly-Kaehler base spaces of Section 2.3, taken from [36, 
Table 7.13].

• For M̃u → Mu where Mu = F4/A2A2, M can be Mu or one of

F4,B4/[SU(1, 2)SU(3)] , F4,C1C3/[SU(3)SU(1, 2)],

F4,C1C3/[SU(1, 2)SU(1, 2)] or FC

4 /[SL(3;C)SL(3;C)].

• For M̃u → Mu where Mu = E6/A2A2A2, M can be Mu or one of

E6/A1A5/[SU(1, 2)SU(3)SU(3)], E6/A1A5/[SU(1, 2)SU(1, 2)SU(3)],

E6,D5T 1/[SU(1, 2)SU(1, 2)SU(3)], or EC

6 /[SL(3;C)SL(3;C)SL(3;C)].

• For M̃u → Mu where Mu = E7/A2A5, M can be Mu or one of
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E7,A1D6/[SU(1, 2)SU(1, 5)], E7,A1D6/[SU(3)SU(2, 4)], E7,A1D6/[SU(1, 2)SU(2, 4)],

E7,E6T 1/[SU(1, 2)SU(1, 5)], E7,E6T 1/[SU(3)SU(3, 3)], or EC

7 /[SL(3;C)SL(6;C)].

• For M̃u → Mu where Mu = E8/A2E6, M can be Mu or one of

E8,A1E7/[SU(1, 2)E6], E8,A1E7/[SU(1, 2)E6,D5T 1 ],

E8,A1E7/[SU(3)E6,A1A5 ], or EC

8 /[SL(3;C)EC

6 ].

9.3. Isometries and Killing vector fields

We use the notation (9.1). As in the compact case we have

G̃ := G× r(K2) is connected and algebraic, and acts on M̃ by (g, r(k2)) : xK1 
→ gxk−1
2 K1 . (9.2)

Theorem 3.4 extends to the pseudo-Riemannian setting as follows.

Proposition 9.3. If M̃ is irreducible then the isometry group of M̃ has identity component I0(M̃) = G̃.

Proof. Evidently G̃ acts by isometries on M̃ , and by hypothesis M̃ is an affine algebraic variety. Now suppose 
that G̃ � L where L is a closed connected algebraic subgroup of I(M̃). Let Lred denote a maximal reductive 
subgroup of L that contains G̃, so G̃ ⊂ Lred. The compact real forms G̃u ⊂ Lred,u, and Theorem 3.4 ensures 
that G̃u = I0(M̃u) = Lred,u. Thus G̃ is a maximal reductive subgroup of L.

Let H denote the isotropy subgroup of L at 1K1. It contains K̃1 := K1 × {(k2, r(k2)) | k2 ∈ K2}, the 
isotropy subgroup of G̃ at 1K1, and K̃1 is its maximal reductive subgroup. Let Lunip denote the unipotent 
radical of L. Since Lunip is a normal subgroup of L its orbits satisfy Lunip(gK1) = gLunip(K1). Thus 
M̃ → Lunip\M̃ would be a fiber space if the Lunip-orbits on M̃ were closed submanifolds. To get around 
that problem let N denote the categorical quotient Lunip\\M̃ . We can view it as the base space of the 
fibration whose fibers are the closures of the Lunip-orbits on M̃ . The (transitive) action of G̃ on M̃ descends 
to a smooth transitive action of G̃ on N . The action of L descends as well. Write N = G̃/Q where Q
contains K̃1. Then K̃1L

unip is the isotropy subgroup of L on N and Q = G̃ ∩ (K̃1L
unip) = K̃1. This says 

M̃ → Lunip\\M̃ is one to one. In other words the action of Lunip on M̃ is trivial. As L acts effectively by 
its definition, Lunip = {1}. Now L = Lred = G̃. �

In the pseudo-Riemannian setting we don’t have a good notion for the displacement of an isometry, but 
we still have its infinitesimal analog. We define constant length for a vector field to mean constant inner 
product with itself relative to the invariant pseudo-Riemannian metric. Fix a Cartan involution θ of G̃ that 
preserves G, K1, K and K̃1. We say that an element ξ ∈ g̃ is elliptic if dθ(Ad(g)ξ) = Ad(g)ξ for some g ∈ G, 
hyperbolic if dθ(Ad(g)ξ) = −Ad(g)ξ, for some g ∈ G. In other words ξ is elliptic if all the eigenvalues of 
ad (ξ) are pure imaginary, hyperbolic if all the eigenvalues of ξ are real. Here is the noncompact base analog 
of Corollary 3.5:

Corollary 9.4. Suppose that the pseudo-Riemannian manifold M̃ = G/K1 is irreducible.

(1) The algebra of all Killing vector fields on M̃ is g̃ = g ⊕ dr(k2).
(2) The set of all constant length Killing vector fields on M̃ is l ⊕ dr(k2) where l = {ξ ∈ g |

ξ defines a constant length Killing vector field on M̃}.
(3) l = {ξ ∈ g | ξ defines a constant length Killing vector field on M}.
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(4) If rankK = rankG and ξ ∈ l then ξ is Ad(G)-conjugate to an element of k and the corresponding 
Killing vector field has norm ||ξgK1 || = 0 at every point gK1 ∈ M̃ . In particular l does not contain a 
nonzero elliptic element nor a nonzero hyperbolic element.

(5) If rankK = rankG and K is compact, then l = 0, so dr(k2) is the set of all constant length Killing 
vector fields on M̃ .

Proof. The first statement is immediate from Theorem 9.3, so we turn to the second and third.
If ξ is a Killing vector field on M̃ then ξ ∈ g ⊕dr(k2). Decompose ξ = ξ′ + ξ′′ with ξ′ ∈ g and ξ′′ ∈ dr(k2). 

Then ξ′′ has constant length because the corresponding vector field on M̃ is invariant under the transitive 
isometry group G. The vector fields of ξ′ and ξ′′ are orthogonal at 1K1. It follows that they are orthogonal 
at every point of M̃ because ξ′ is orthogonal to the fibers of M̃ → M at every point of M̃ . If ξ has constant 
length now ξ′ also has constant length. That proves the second statement. In the argument just above, ξ
and ξ′ define the same Killing vector field on M . The third statement follows.

Now suppose rankK = rankG and let ξ ∈ l. Using a Cartan involution of g we write ξ = ξell + ξhyp
where ξell is elliptic and ξhyp is hyperbolic. Recall that we are using the negative of the Killing form of g
for the pseudo-Riemannian metrics both on M̃ and M . If the square length ||ξ||2 > 0 on M̃ then ξell never 
vanishes on M , contradicting rankK = rankG. If ||ξ||2 < 0 then ξhyp never vanishes on M , contradicting 
rankK = rankG. Thus ||ξ||2 = 0 on M̃ , and thus on M . As above ξ has a zero on M , in other words some 
Ad(G)-conjugate of ξ belongs to k. Thus ξ ∈ k with length ||ξ|| = 0 at every point of M̃ In particular, if 
K is compact then ξ is elliptic, so ξ = 0 and dr(k2) is the set of all constant length Killing vector fields 
on M̃ . �
Corollary 9.5. Suppose that M̃ is irreducible. Then every isometry of M̃ sends fiber to fiber in the isotropy–
split fibration M̃ → M , and thus induces an isometry of M .

Proof. In view of Corollary 9.4(2) and 9.4(4), and because we have a Cartan involution θ of G̃ such that 
θ(K2) = K2, the tangent space to the fiber r(K2)(gK1) is the span of all vector fields ξe + ξh where 
ξe ∈ dr(k2) is elliptic and ξh ∈ dr(k2) is hyperbolic. �

Now we can look for the full isometry group of M̃ . In fact the result is very close to results in [15, 
Section 2], and the way we use it is contained in [15, Section 2], but the argument here is closer to the 
structure of the isotropy–splitting fibration. Let

Out(G,K1) = {α ∈ Out(G) | α(K1) = K1 and α|K1 ∈ Out(K1)} ⊂ Out(G,K). (9.6)

We define two subgroups of isometry groups as in (3.11) by

G† =
⋃

α∈Out(G,K1)
Gα ⊂ I(M) and G̃† =

⋃
α∈Out(G,K1) ,β∈Out(G,K2)

Gα · r(K2)β ⊂ I(M̃). (9.7)

As before, gα acts on M by xK 
→ gα(x)K and on M̃ by xK1 
→ gα(x)K1, and r(k2)β acts on M̃ by 
xK1 
→ xβ(k2)−1K1.

Theorem 9.8. Let π : M̃ → M be an isotropy–split fibration as in (9.1). Suppose rankK = rankG. Then 
the identity component I0(M̃) = G̃ and the full isometry group I(M̃) = G̃†.

Proof. As G̃ is a reductive linear algebraic group every component of Aut(G̃) contains an elliptic element. 
Thus every component of Aut(G̃) has an element in common with Aut(G̃u). Corollary 9.5 carries this 
down to M . That gives injections I(M̃)/I0(M̃) ↪→ I(M̃u)/I0(M̃u) and I(M)/I0(M) ↪→ I(Mu)/I0(Mu), 
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so Lemmas 3.9 and 3.10 extend to our pseudo-Riemannian setting. Our assertions follow by combining 
Theorem 3.12 with Proposition 9.3. �

While don’t have a notion of constant displacement here, we can at least study homogeneity for pseudo-
Riemannian coverings by M̃ .

Corollary 9.9. Let π : M̃ → M be an isotropy–split fibration as in (9.1). Suppose rankK = rankG. Let p
denote the projection G̃† → G† of I(M̃) into I(M).

(1) Let γ ∈ I(M̃) such that p(γ) is elliptic and the centralizer of γ is transitive on M̃ . Then p(γ) ∈ ZG.
(2) Consider a pseudo-Riemannian covering M̃ → Γ\M̃ such that p(Γ) has compact closure in I(M) (for 

example such that p(Γ) is finite). Then Γ\M̃ is homogeneous if and only if p(Γ) ⊂ ZG.

Proof. Let J denote the centralizer of p(γ) in G†. Then g = j + k. As p(γ) is semisimple gu = ju + ku so Ju

is transitive on Mu. Also, p(γ) ∈ Gu because it is elliptic. Now p(γ) has constant displacement on Mu and 
the assertion follows from Theorem 5.6. �
9.4. Isotropy–Split fibrations over odd indefinite symmetric spaces

We now deal with the cases where rankK < rankG and M = G/K is a pseudo-Riemannian symmetric 
space. Here we follow the lines of Section 7.

According to the classification, the only compact irreducible Riemannian symmetric spaces Gu/Ku with 
rankK < rankG are

SU(n)/SO(n), SU(2n)/Sp(n), SO(2s + 2 + 2t)/[SO(2s + 1) × SO(1 + 2t)], E6/F4, E6/Sp(4),

(Ku ×Ku)/diag(Ku).

The only ones of these spaces for which Ku splits are the odd dimensional oriented real Grassmann manifolds 
SO(2s + 2 + 2t)/[SO(2s + 1) × SO(1 + 2t)] with s, t � 1. Thus we look at

π : M̃ → M given by G/K1 → G/K1K2 where G = SO0(2s + 1, 1 + 2t),

K1 = SO0(u, v) and K2 = SO0(a, b)
(9.10)

with conditions u + a = 2s + 1 and v + b = 1 + 2t for the signature of R2s+1,1+2t, and u + v = 2s + 1 and 
a + b = 1 + 2t for Ku

1 = SO(2s + 1) and Ku
2 = SO(1 + 2t). Here a determines u, v and b, so in fact

K1 = SO0(2s + 1 − a, a) and K2 = SO0(a, 1 + 2t− a) for 0 � a � min(2s + 1, 1 + 2t).

The symmetry of the pseudo-Riemannian symmetric space M is ρ = Ad
(

I2s+1 0
0 −I1+2t

)
. If a is even then 

K1 has outer automorphism σ1,a = Ad
(

I2s 0
0 −1

)
and K2 has outer automorphism σ2,a = Ad

(
−1 0
0 I2t

)
; then 

ρ and σ2,a belong to the same component of O(2s + 1, 1 + 2t). If a is odd then K1 has outer automorphism 

τ1,a = Ad
(

−1 0
0 I2s

)
and K2 has outer automorphism τ2,a = Ad

(
I2t 0
0 −1

)
; then ρ and τ1,a belong to the same 

component of O(2s + 1, 1 + 2t). Combining this with Corollary 9.5, we have

Proposition 9.11. The full isometry group I(M̃) = (O(2s + 1, 1 + 2t) × r(SO(a, 1 + 2t− a))).

The proof of Corollary 9.9 is valid for our isotropy–split fibrations (9.10), except that we reduce to 
Theorem 7.4 instead of Theorem 5.6. Thus:
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Corollary 9.12. Let π : M̃ → M be one of the isotropy–split fibrations (9.10). Let p denote the projection 
G̃† → G† from I(M̃) to O(2s + 1, 1 + 2t).

(1) If γ ∈ I(M̃) such that p(γ) is elliptic and the centralizer of γ is transitive on M̃ . Then p(γ) = ±I.
(2) Consider a pseudo-Riemannian covering M̃ → Γ\M̃ such that p(Γ) has compact closure (for example 

such that p(Γ) is finite or p(Γ) ⊂ K). Then Γ\M̃ is homogeneous if and only if p(Γ) ⊂ {±I}.
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