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Abstract. In a series of recent papers ([19], [20], [22], [23]) we extended the
notion of square integrability, for representations of nilpotent Lie groups, to that
of stepwise square integrability. There we discussed a number of applications
based on the fact that nilradicals of minimal parabolic subgroups of real reduc-
tive Lie groups are stepwise square integrable. In Part I we prove stepwise square
integrability for nilradicals of arbitrary parabolic subgroups of real reductive Lie
groups. This is technically more delicate than the case of minimal parabolics.
We further discuss applications to Plancherel formulae and Fourier inversion for-
mulae for maximal exponential solvable subgroups of parabolics and maximal
amenable subgroups of real reductive Lie groups. Finally, in Part II, we extend
a number of those results to (infinite dimensional) direct limit parabolics. These
extensions involve an infinite dimensional version of the Peter-Weyl Theorem,
construction of a direct limit Schwartz space, and realization of that Schwartz
space as a dense subspace of the corresponding L? space.
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PART I: FINITE DIMENSIONAL THEORY

1. Stepwise Square Integrable Representations

There is a very precise theory of square integrable representations of nilpotent Lie
groups due to Moore and the author [9]. It is based on the Kirillov’s general rep-
resentation theory [4] for nilpotent Lie groups, in which he introduced coadjoint
orbit theory to the subject. When a nilpotent Lie group has square integrable rep-
resentations its representation theory, Plancherel and Fourier inversion formulae,
and other aspects of real analysis, become explicit and transparent.

Somewhat later it turned out that many familiar nilpotent Lie groups have
foliations, in fact semidirect product towers composed of subgroups that have
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square integrable representations. These include nilradicals of minimal parabolic
subgroups, e.g. the group of strictly upper triangular real or complex matrices. All
the analytic benefits of square integrability carry over to stepwise square integrable
nilpotent Lie groups.

In order to indicate our results here we must recall the notions of square
integrability and stepwise square integrability in sufficient detail to carry them
over to nilradicals of arbitrary parabolic subgroups of real reductive Lie groups.

A connected simply connected Lie group N with center Z is called square
integrable, or is said to have square integrable representations, if it has unitary
representations T whose coefficients f,,(z) = (u, 7(x)v) satisfy |f..| € L*(N/Z).
C.C. Moore and the author worked out the structure and representation theory of
these groups [9]. If N has one such square integrable representation then there is
a certain polynomial function Pf(\) on the linear dual space 3* of the Lie algebra
of Z that is key to harmonic analysis on N. Here Pf()) is the Pfaffian of the
antisymmetric bilinear form on n/3 given by by(z,y) = A([z,y]). The square
integrable representations of N are the m, (corresponding to coadjoint orbits
Ad*(N)A) where A € 3* with Pf(\) # 0, Plancherel almost irreducible unitary
representations of N are square integrable, and, up to an explicit constant, |Pf(\)]
is the Plancherel density on the unitary dual N at 7. Concretely,

Theorem 1.1. [9] Let N be a connected simply connected nilpotent Lie group
that has square integrable representations. Let Z be its center and v a vector
space complement to 3 in n, so v* = {y en* |y, =0}. If f is a Schwartz class
function N — C and x € N then

f@)=c [ On(mAPIOYar (1)

where ¢ = d'2¢ with 2d = dimn/3 , r.f is the right translate (r.f)(y) = f(yz),
and © 1s the distribution character

0., (f) = ¢ PEN)[ ! /O | F@an@© for s <cv) (1.2)

Here fy is the lift f1(§) = f(exp(§)) of f from N to n, 1 is its classical Fourier
transform, O(\) is the coadjoint orbit Ad*(N)X = v*+ X, and dvy is the translate
of normalized Lebesgue measure from v* to Ad*(N)A.

More generally, we will consider the situation where

N =L,Ly...L,_1L,, where
(a) each factor L, has unitary reps with coefficients in L*(L,/Z,),
(b) each N, := Ly1Ly...L, is normal in N with N, = N,_; x L,
(c) if r = s then [[,,35] =0

(1.3)

The conditions of (1.3) are sufficient to construct the representations of interest to
us here, but not sufficient to compute the Pfaffian that is the Plancherel density.
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For that, in the past we used the strong computability condition

Decompose [, = 3, + v, and n = s + v (vector space direct) where

1.4
s =®d3, and b = D o,; then [[., ] C v, for r > s. (1.4)

The problem is that the strong computability condition (1.4) can fail for some
non-minimal real parabolics, but we will see that, for the Plancherel density, we
only need the weak computability condition

Decompose [, = [ @ [I', direct sum of ideals, where [ C 3, and v, C [; then
[l L] C I+ v for r > s.

(1.5)
where we retain [, =3, + v, and n=s5+0v.
In the setting of (1.3), (1.4) and (1.5) it is useful to denote
a) d, = 3 dim(l./3,) so 1 dim(n/s) = Zd,, and ¢ = 224 . dy1d,! . . . d,,!
b) by, : (z,y) = \.([z,y]) viewed as a bilinear form on [,./3,
c)S=201Zy... 2y = Zy X -+ X Zy, where Z, is the center of L, (1.6)

(
(
(
(d) P : polynomial P(\) = Pf(by,)Pf(by,)...Pf(by,) on s*
()  ={res" | P(A) # 0}

(f)

f) m, € N where A € t* : irreducible unitary representation, as follows.

Construction 1.2. [20] Given A € t*, in other words A = A\; + -+ + A,
where A, € 3, with each Pf(b).) # 0, we construct 7, € N by recursion on m.
If m = 1 then 7, is a square integrable representation of N = L;. Now as-
sume m > 1. Then we have the irreducible unitary representation my, ..y, , of
LyLy... Ly . and (1.3(c)) shows that L,, stabilizes the unitary equivalence class
of T, 4 4a,,_, - Since L, is topologically contractible the Mackey obstruction van-
ishes and 7y, +..4a extends to an irreducible unitary representation W;l A
on N on the same Hilbert space. View the square integrable representation 7,
of L,, as a representation of N whose kernel contains LiLs...L,,_1. Then we

_ T P~
define ), = Ta ot A O A -

m—1

Definition 1.3.  The representations my of (1.6(f)), constructed just above, are
the stepwise square integrable representations of N relative to the decomposition
(1.3). If N has stepwise square integrable representations relative to (1.3) we will
say that N is stepwise square integrable.

Remark 1.4.  Construction 1.2 of the stepwise square integrable representations
7y uses (1.3(c)), [lr,3s) = 0 for r > s, so that L, stabilizes the unitary equivalence
class of my, 4.4, . The condition (1.4), [l,,[s] C v for r > s, enters the picture
in proving that the polynomial P of (1.6(d)) is the Pfaffian Pf = Pf, of b, on
n/s. However we don’t need that, and the weaker (1.5) is sufficient to show that
P is the Plancherel density. See Theorem 1.6 below.
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Lemma 1.5. [20] Assume that N has stepwise square integrable representa-
tions. Then Plancherel measure is concentrated on the set {m\ | A € t*} of all
stepunse square integrable representations.

Theorem 1.1 extends to the stepwise square integrable setting, as follows.

Theorem 1.6. Let N be a connected simply connected nilpotent Lie group
that satisfies (1.3) and (1.5). Then Plancherel measure for N is concentrated
on {my | A et} If X et*, and if u and v belong to the representation space H,
of mx, then the coefficient f,,(x) = (u,m,(z)v) satisfies

[[ul]?[|v][*
| fuollizvs) = —pan— - (1.7)
L2(N/S) |P(/\)|

The distribution character ©,, of 7y satisfies

0., (f) = ¢ POV /O B for < (18)

~

where C(N) is the Schwartz space, f1 is the lift f1(€) = f(exp(§)), fi is its
classical Fourier transform, O(\) is the coadjoint orbit Ad*(N)A = v* + X, and
dvy s the translate of normalized Lebesgue measure from v* to Ad*(N)\. The
Plancherel formula on N is

fl)=c / O, (ref) PV for f € C(N). (1.9)

Theorem 1.6 is proved in [20] for groups N that satisfy (1.3) together with
(1.4). We will need it for (1.3) together with the somewhat less restrictive (1.5).
The only point where the argument needs a slight modification is in the proof
of (1.7). The action of L,, on Iy 4+ --- + [,,_1 is unipotent, so there is an L,,-
invariant measure preserving decomposition N,,/Sy, = (L1/Z1) X -+ X (Np/Zm).
u 2 v 2
||‘1|3|f(||)\)|||
of square integrable representations. By induction on m, | fuﬂ,ﬁ:2 (NowrSm1)) =

|Pf(/\|1|7)‘.|_|.2f|,|f72|/\|171)| for N,,_;. Let ©' be the extension of 7 € m: to N,,. Let

< oo of coefficients

The case m = 1 is the property |fu,v|%2(L1/Z1) =
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u,v € H and write v, for 7T1\1+---+/\m_1<y)v' Let v/, v € H

T+ A1 Txm *

| fusr waw 12 (nys) = / [T s (@9)0) I 7, (9)0) Pd(2S,)

_ / ol 7r ( / >
Lm/Zm, Nm—1/Sm—1

[ R ([ o, (o P@s )d
Lin/Zm, Nm—1/Sm—1

_ / 7y, (y ( / )
Lm/Zm

_ [ful?||vy |2
|Pf(>\1)...Pf()\m1)|/ P [(u', 7r,, (y)v >| d(yZm)

d(y

U ﬂ-:r\ﬁn.)\m, ( ) | d xSm 1

(ty Ty oA (2)0) [Pd (25 21) ) d(y

m 1/Sm 1

/112 112
B [ Gl / o (2 T || A T
[PIA)- PE(An—1)] Nm/Zm|< ()0 d(yZm) IPE(A1) ... PE(\n)]

Thus Theorem 1.6 is valid as stated.

The first goal of this note is to show that if N is the nilradical of a parabolic
subgroup ) of a real reductive Lie group, then N is stepwise square integrable,
specifically that it satisfies (1.3) and (1.5), so that Theorem 1.6 applies to it. That
is Theorem 4.5. The second goal is to examine applications to Fourier analysis
on the parabolic ) and several important subgroups, such as the maximal split
solvable subgroups and the maximal amenable subgroup of ). The third goal is
to extend all these results to direct limit parabolics in a certain class of infinite
dimensional real reductive Lie groups.

In Section 2 we recall the restricted root machinery used in [20] to show
that nilradicals of minimal parabolics are stepwise square integrable. In Section 3
we make a first approximation to refine that machinery to apply it to general
parabolics. That is enough to see that those parabolics satisfy (1.3), and to
construct their stepwise square integrable representations. But it not quite enough
to compute the Plancherel density. Then in Section 4 we introduce an appropriate
modification of the earlier stepwise square integrable machinery. We prove (1.5)
in general and use the result to compute the Plancherel density and verify the
estimates and inversion formula of Theorem 1.6 for arbitrary parabolic subgroups
of real reductive Lie groups. The main result is Theorem 4.5.

In Section 5 we apply Theorem 4.5 to obtain explicit Plancherel and Fourier
inversion formulae for the maximal exponential solvable subgroups AN in real
parabolic subgroups Q = M AN , following the lines of the minimal parabolic case
studied in [22]. The key point here is computation of the Dixmier-Pukénszky
operator D for the group AN. Recall that D is a pseudo-differential operator
that compensates lack of unimodularity in AN.

There are technical obstacles to extending our results to non-minimal parabol-
ics Q = M AN, many involving the orbit types for noncompact reductive groups
M, but in Section 6 we do carry out the extension to the maximal amenable sub-
groups (M N K)AN. This covers all the maximal amenable subgroups of G that
satisfy a certain technical condition [§].
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That ends Part I: Finite Dimensional Theory. We go on to Part II: Infinite
Dimensional Theory.

In Section 7 we discuss infinite dimensional direct limits of nilpotent Lie
groups and the setup for studying direct limits of stepwise square integrable
representations. Then in Section 8 we introduce the machinery of propagation,
which will allow us to deal with nilradicals of direct limit parabolics.

In Section 9 we apply this machinery to an L? space for the direct limit
nilradicals. This L? space is formed using the formal degree inherent in stepwise
square integrable representations, and it is not immediate that its elements are
functions. But we also introduce a limit Schwartz space, based on matrix coeffi-
cients of C'*° vectors for stepwise square integrable representations. It is a well
defined LF (limit of Fréchet) space, sitting naturally in the L? space, and we can
view that L? space as its Hilbert space completion. That is Proposition 9.8. We
follow it with a fairly explicit Fourier Inversion Formula, Theorem 9.10.

In Section 10 we work out the corresponding results for the maximal expo-
nential locally solvable subgroup AN of the direct limit parabolic Q = MAN. We
have to be careful about the Schwartz space and the lack of a Dixmier-Pukanszky
operator in the limit, but the results of Section 9 to extend from N to AN.
See Proposition 10.4 and Theorem 10.6. In Section 11 we develop similar results
for the maximal lim-compact subgroup U of M, carefully avoiding the analytic
complications that would result from certain classes of Type II and Type III rep-
resentations.

In Section 12 we fit the results of Sections 9 and 11 together for an analysis
of the L? space, the Schwartz space, and the Fourier Inversion formula, for the
limit group UN in the parabolic Q = M AN . Finally, in Section 13, we combine
the results of Sections 10 and 12 for the corresponding results on the maximal
amenable subgroup UAN of the limit parabolic ). See Proposition 13.2 and
Theorem 13.4.

2. Specialization to Minimal Parabolics

In order to prove our result for nilradicals of arbitrary parabolics we need to study
the construction that gives the decomposition N = L{Ls ... L,, of 1.3 and the form
of the Pfaffian polynomials for the individual the square integrable layers L, .

Let G be a connected real reductive Lie group, G = KAN an Iwasawa
decompsition, and ) = M AN the corresponding minimal parabolic subgroup.
Complete a to a Cartan subalgebra h of g. Then h = t+ a with t =hNe. Now
we have root systems

e A(gc, be): roots of ge relative to he (ordinary roots),
e A(g,a): roots of g relative to a (restricted roots),
o Ay(g,a) ={a € Ag,a) | 2a ¢ A(g,a)} (nonmultipliable restricted roots).

The choice of n is the same as the choice of a positive restricted root systen
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A*(g,a). Define

B1 € AT(g,a) is a maximal positive restricted root and
Bri1 € AT (g, a) is a maximum among the roots of A*(g, a) (2.1)
orthogonal to all 8; with i < r

The resulting roots (we usually say root for restricted root) 8., 1 < r < m,

are mutually strongly orthogonal, in particular mutually orthogonal, and each
Br € Ag(g,a). For 1 =< r < m define

Al ={a € AT(g,a)| 1 —a € AT(g,a)} and

Af = {0 e A @a\(AfU--UAD) | B —ac A(ga)). 0

We know [20, Lemma 6.1] that if o € AT(g,a) then either o € {f1,...,5n} or «
belongs to exactly one of the sets At .
The layers are are the

[T:gﬁT+ZA+gafor1§r§m (2.3)

Denote ) .
sg, is the Weyl group reflection in f, ,

o, A(g7 a) — A(g, a) by gr(a) _ _SBT(CY)- (2.4)

Then o, leaves f3, fixed and preserves Af. Further, if a,a’ € Al then a+ o is
a (restricted) root if and only if o/ = 0,.(«), and in that case a + o' = f3, .

From this it follows [20, Theorem 6.11] that N = Ly L, ... L,, satisfies (1.3)
and (1.4), so it has stepwise square integrable representations. Further [20, Lemma
6.4] the L, are Heisenberg groups in the sense that if A\, € 35 with Pf; (\.) # 0
then [./ker A\, is an ordinary Heisenberg group of dimension dimwv, + 1.

3. Intersection with an Arbitrary Real Parabolic

Every parabolic subgroup of G is conjugate to a parabolic that contains the
minimal parabolic ) = MAN. Let ¥ denote the set of simple roots for the
positive system AT (g,a). Then the parabolic subgroups of G that contain @ are
in one to one correspondence with the subsets ® C ¥, say Q¢ < P, as follows.
Denote W = {¢;} and set

red __ _ aly. L — .
Pt = {a = Z%G\Pnﬂ/zl € A(g,a) | n; = 0 whenever v; ¢ CD}

nil __ _ aly. + . .
[} _{Q_ZweﬁlnleEA (g,a)|nl>0forsomez/zl¢q>}.

7

(3.1)

Then, on the Lie algebra level, q¢ = mg + ag + ne where
ap = {6 caly() =0 forall € d} = o+,
Mg + agp is the centralizer of ag in g, so me has root system ®"°¢, and (3.2)

N = Z gni B0 nilradical of q¢ , sum of the positive ag-root spaces.
acd™?
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Since n= )" [, as given in (2.3) we have

=Y (aNk)=> <gﬁrmn¢ 3 gaﬂmp) (3.3)

As ad (m) is irreducible on each restricted root space, if a € {f,} U Af then
go Nng is 0 or all of g, .

Lemma 3.1.  Suppose gz, Nng =0. Then [, Nng =0.

Proof.  Since gg, Nng = 0, the root 3, has form » g nytp with each ny = 0
and ny =0 for ¢ ¢ ©. If @ € A it has form }_ . lytp with 0 = £ = ny
for each ¢ € V. In particular £, = 0 for ¢» ¢ ®. Now every root space of [, is
contained in my . In particular [, Nnge = 0. ]

Remark 3.2.  We can define a partial order on {5;} by: S;y1 > f; when the
set of positive roots of which ;1 is a maximum is contained in the corresponding
set for ;. This is only a consideration when one further disconnects the Dynkin
diagram by deleting a node at which —f; attaches, which doesn’t happen for type
A. If B; > B, in this partial order, and gg, Nng = 0, then gs, Nng = 0 as well,
so [;Nng = 0.

Lemma 3.3.  Suppose gg,Nng # 0. Define J, C A} by [.Nng = gs, +>; ga -
Decompose J, = J. U J! (disjoint) where J. = {a € J. | o,a € J,.} and
Sl ={a € J, | ova ¢ J;}. Then gg, + 30 8o belongs to a single ag-root
space in Mg , i.€. &loy = Brlag , for every a € J" .

Proof. Two restricted roots a = >, n¢; and o = >, {;¢; have the same
restriction to ag if and only if n; = ¢; for all ¢; ¢ ®. Now suppose a € J” and
o/ = o,a. Then n; > 0 for some ¢; ¢ ® but ¢; =0 for all ¢); ¢ &. Thus a and
B, = a+ o,.a have the same ;-coefficient n; = n; + ¢; for every ¢; ¢ ®. In other
words the corresponding restricted root spaces are contained in the same ag-root
space. [

Lemma 3.4. Suppose [, Nng # 0. Then the algebra [, N ng has center
9p. + Z]H go , and [ Nng = (g + ZJ;/ o) + (ZJ; 8a)). Further, I, Nng =

(ZJ;rga) (gﬁr <Zj,ga>) direct sum of ideals.

Proof. This is immediate from the statements and proofs of Lemmas 3.1
and 3.3. [ ]

Following the cascade construction (2.1) it will be convenient to define sets
of simple restricted roots

Uy =Vand Ve ={ eV |, 5)=0frl1=i= s} (3.4)

Note that W, is the simple root system for {a € A™(g,a) | o L §; for i <r}.

Lemma 3.5. Ifr>s then [, Nng, ga, + > 10a) =0.
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Proof.  Suppose that a € J”. Express a and o, as sums of simple roots,
say @ = Y. ng; and o,a = > liap; . Then, £; = 0 for all ¢, € ¥, N & and
Bs = > (n; + €;)Y; . In other words the coefficient of v, is the same for o and
B whenever ¢; € ¥, N ®". Now let v € ({8} UA}) N ®" where r > s, and
express v = > ¢;tb; . Then ¢;, > 0 for some 3, € (¥, N ®"!). Note ¥, C ¥, , so
ci, > 0 for some 3, € (¥, N ™) . Also, [I,,[,] C [, because 7 > s. If v+« is a
root then its v;,-coefficient is greater than that of 3, , which is impossible. Thus
~v 4 « is not a root. The lemma follows. |

We look at a particular sort of linear functional on > (gs, + > Jé,ga).
Choose A, € gj; such that by, is nondegenerate on >0 7, 8a - Set A= > A..
We know that (1.3(c)) holds for the nilradical of the minimal parabolic q that
contains q¢ . By Lemma 3.5 it follows that by (I, [s) = A([l., [s] = 0 for » > s. For
this particular type of A, the bilinear form by has kernel ) (ggs + > ga) and
is nondegenerate on »2 > ga - )

At this point, the decomposition Ng = (L; N Ng)(La N Ng) ... (Ly N Nog)
satisfies the first two conditions of (1.3):

(a) each factor L, N Ng has unitary representations with coefficients
in L?((L, N Ng)/(center)), and

(b) each N, N Ng := (L1 N Ng)... (L. N Ng) is a normal subgroup of Ng
with N, N Ng = (N,—1 N Ng) % (L, N Ng) semidirect.

With Lemma 3.5 this is enough to carry out Construction 1.2 of our representations
7y of Ng . However it is not enough for (1.3(c)) and (1.5). For that we will group
the L,NNg in such a way that (1.5) is immediate and (1.3(c)) follows from Lemma
3.5. This will be done in the next section.

4. Extension to Arbitrary Parabolic Nilradicals

In this section we address (1.3(c)) and (1.5), completing the proof that Ng has a
decomposition that leads to stepwise square integrable representations.

We start with some combinatorics. Denote sets of indices as follows. ¢; is
the first index of (1.3) (usually 1) such that |, 7# 0; define

I = {Z ’ 61'|a<1> = ﬁfh‘a@}'
Then ¢ is the first index of (1.3) such that go ¢ I, and 5, |a, # 0; define

Ig = {Z ’ ﬁ’i|aq> = /B(IQ‘WD}‘

Continuing, ¢, is the first index of (1.3) such that ¢, ¢ ([ U---U Ix_y) and
Bailae 7# 0; define

Iy = {Z | Bi|aq> = ﬁqk|aq>}
as long as possible. Write ¢ for the last index k that leads to a nonempty set I} .

Then, in terms of the index set of (1.3), I; U---U I, consists of all the indices i
for which f;]q, # 0.
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For 1 £ 7 < ¢ define
by =Y, (60ma) = (3 6N and ;=37 tes. (41)

i€l;
Lemma 4.1. If k 2 j then [lo, lo;] C lo;. For each index j, lg; and [T{)’j
are subalgebras of ne and lg ; is an ideal in [(TI,’J. :

Proof.  As we run along the sequence {fi, 32, ...} the coefficients of the simple
roots are weakly decreasing, so in particular the coefficients of the roots in W\ ®
are weakly decreasing. If r € I, s € I; and k > j now r > s. Using [[,, 5] C [,
(and thus [(I[, Nng), (I Nne)] C I, Nng) for r > s it follows that [lg 4, ls;] C lo;
for k> j.

Now suppose k = j. If r = s then [[,,[,] = gg,., so we may assume 7 > s,
and thus [[,, ;] C [y C lp ;. It follows that [lg 4, o ] C le; for k= 7.

Now it is immediate that [ ; and [11,7]- are subalgebras of ng and [ ; is an
ideal in [f, ;. n

Lemma 4.2.  If k> j then [log, lo] N3 cp 95 =0.

Proof.  This is implicit in Theorem 1.6, which gives (1.5), but we give a direct
proof for the convenience of the reader. Let g, C lp; and g, C [; with

(g, 8a] N Ziefj g3, # 0. Then [g,,0.] = g3 where g, C [, and g, C [;, so
gy = 98,—a C [, N1; = 0. That contradiction proves the lemma. ]

Given r € I; we use the notation of Lemma 3.3 to decompose

—_r " ! "
[ Nng = + " where . = g5 + Zﬂga and [/ =3 0o (4.2)
Here J| consists of roots a € A} such that g, + gs.—a C ne , and J! consists of
roots o € A such that g, C ng but gg.—o ¢ ne . For 1 < j < ¢ define

05 =D, (G5 + 1) (43)

and decompose

lp; = [&,J + [gm« where [&,7]. = Z [ and [%,j = Zielj (. (4.4)

IS

Lemma 4.3.  Recall [;’j =D iz;lon from (4.1). For each j, both 3o ; and g ;

are central ideals in ﬂb,j , and 3¢ 15 the center of lp ;.

Proof. Lemma 3.3 shows that al,, = fBils, Whenever i € [; and g, C I3 .
If [lp, 7] # 0 it contains some gs such that gs C [, and at least one of the
coefficients of § along roots of W\ ® is greater than that of ;. As g5 C I; that
is impossible. Thus I3 ; is a central ideal in [EJ . The same is immediate for
30 = Y er, (@5 + I7) . In particular 3¢ ; is central in [y ;. But the center of g ;
can’t be any larger, by definition of Iy ; . [
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Decompose

Ny = 3¢ + Vo where o = qu;,j , D = Z Vg ; and Vg = Z Z Ja - (45)
] J

J i€lj aed]

Then Lemma 4.3 gives us (1.5) for the lg;: lo; = I3 ; © lg; with I§ ; C 39, and
Vg ; C [éb,j'

Lemma 4.4.  For generic \; € 33 ; the kernel of by, on lg; is just 3o, in
other words by, 1is is nondegenerate on vg; =~ l6j/30,. In particular Le; has
square integrable representations.

Proof.  From the definition of [ ; , the bilinear form by, on ls; annihilates the
center 34 ; and is nondegenerate on vg ; . Thus the corresponding representation
Low of L ; has coefficients that are square integrable modulo its center. [ ]

Now we come to our first main result:

Theorem 4.5. Let G be a real reductive Lie group and ) a real parabolic
subgroup. Express Q) = Qg in the notation of (3.1) and (3.2). Then its nilradical
No has decomposition No = Lo 1Les ... Lo, that satisfies the conditions of (1.3)
and (1.5) as follows. The center Zy ; of Le; is the analytic subgroup for 3¢ ; and

(a) each Lo has unitary reps with coefficients in L*(Le;/Zs.;),
(b) each Ng j = Lo 1Ly ... Lo j is a normal subgroup of Ng

4.6
with No j = No j_1 X Lo ; semidirect, and (4.6)

(c) [lok: 30,5 =0 and [lo, o] C ve; + 15 ; for k> j.

In particular Ng has stepwise square integrable representations relative to the
decomposition No = Lo 1Lao ... Loy, and the results of Theorem 1.6, specifically
(1.7), (1.8) and (1.9), hold for Ng .

Proof. Statement (a) is the content of Lemma 4.4, and statement (b) follows
from Lemma 4.1. The first part of (¢), [lox,30,;] = 0 for k£ > j, is contained in
Lemma 4.3. The second part, [lg,ls ;] C 0s+ (3 ; for k> j, follows from Lemma
4.2. Now Theorem 1.6 applies. u

5. The Maximal Exponential-Solvable Subgroup AsNg

In this section we extend the considerations of [22, §4] from minimal parabolics to
the exponential-solvable subgroups AgNg of real parabolics Q¢ = MeAeNg. It
turns out that the of Plancherel and Fourier inversion formulae of Ng go through,
with only small changes, to the non-unimodular solvable group AgNg . We follow
the development in [22, §4].

Let H be a separable locally compact group of type I. Then [6, §1] the
Fourier inversion formula for H has form

Fla) = / trace 7(D(rs f))dpus () (5.1)

H
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where D is an invertible positive self adjoint operator on L?(H), conjugation semi-
invariant of weight equal to that of the modular function dpy , r.f is the right
translate y — f(yz), and p is a positive Borel measure on the unitary dual H.
When H is unimodular, D is the identity and (5.1) reduces to the usual Fourier
inversion formula for H. In general the semi-invariance of DD compensates any
lack of unimodularity. See [6, §1] for a detailed discussion including a discussion
of the domains of D and DY?. Here D ® y1 is unique up to normalization of Haar
measure, but (D, i) is not unique, except of course when we fix one of them, such
as in the unimodular case when we take D = 1. Given such a pair (D, u) we
refer to D as a Dizmier-Pukdnszky operator and to u as the associated Plancherel
measure.

One goal of this section is to describe a “best” choice of the Dixmier-
Pukanszky operator for Ag Ng in terms of the decomposition No = L 1La 2. .. Loy
that gives stepwise square integrable representations of Ng .

Let 6 = g, denote the modular function of Q¢ . Its kernel contains Mg Ng
because Ad(Ms) is reductive with compact center and Ad(Ng) is unipotent. Thus
d(man) = 6(a), and if £ € ag then d(exp(£)) = exp(trace (ad (£))). Note that ¢
also is the modular function for A Ng .

Lemma 5.1. Let £ € ap . Then each dimlg ; + dimze ; is even, and
(i) the trace of ad (§) on lo; is 5 dim(le; + dim e ;)5 (E) for any jo € I;,
(ii) the trace of ad () on ng, on ag+ne and on qe is %Zj(dim (o j+dim 3o ;)55 (£),

(iii) the determinant of Ad(exp(§)) on ng , on ag + ng ,
and on qg , is [; exp(B;, (£))2(dimle j+dimsa ;)

Proof. We use the notation of (4.2), (4.3) and (4.4). It is immediate that
dim [, 4+ dim(gg, + ') is even. Sum over r € [; to see that dimlg ; + dim e ; is
even.

The trace of ad(§) on [, N ng is (dimgg, )5 (§) on gs., and we add
3 2acs (dim ga)B,(€) for the pairs ga, g, € AF N @™ that pair into gg,, plus
> acsr(dim @) B, (§) since a € J implies afa, = B[, Now the trace of ad (¢)
on [, Nng is
(Ldim g, + 4 dim &+ dim )5,(€) = Ldim(L, 1 ng) + dim(gs, + )5, (€).
Summing over r € I; we arrive at assertion (i). Then sum over j for (ii) and
exponentiate for (iii). ]
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We reformulate Lemma 5.1 as
Lemma 5.2. The modular function 6 = 0g, of Qo = MeAsNg is
d(man) = Hj exp(f;, (log a))i(dim g, j+dimse ;)

The modular function da,ng, = 6| agNg » aNd OuyagNe = O|UgagNe Where Uy is a
maximal compact subgroup of Mg .

Consider semi-invariance of the polynomial P of (1.6(d)), which by defini-
tion is the product of factors Pfy, . Using (4.5) and Lemma 4.4, calculate with
bases of the v ; as in [22, Lemma 4.4] to arrive at

Lemma 5.3. Let £ € ag and a = exp(§) € Ag . Then

ad (§) P = (%Z] dim(ls ;/34,5)Bj (5)) P

and

Ad(@)P = (T (exp(B (€)1 p

J

Definition 5.4.  The quasi-center of ng is 5o = ). 3¢, . Fix a basis {e;} of
S5¢ consisting of ordinary root vectors, e; € go,. The quasi-center determinant
relative to the choice of {e,} is the function Det,, (X) = [], AM(e:) on s .

Let a € Ap and compute

(Ad(a)Dets, )(A) = Dete, (Ad*(a) ' A) = [, M(Ad(a)e).
Each e; € 34 ; is multiplied by exp(gj,(loga)). So

. (Ad(a)Dete, ) (A) = (TI; exp(Bj, (log @)™ ) Dety, (A) -

Lemma 5.5. If £ € agp then Ad(exp(§))Dets, = (H] eXp(@jO(f))dimm,j)Det%
where jo € I; .

Combining Lemmas 5.1, 5.2 and 5.5 we have

Proposition 5.6.  The product P - Detg, is an Ad(Qs)-semi-invariant polyno-
mial on sy of degree %(dim ng + dimsg) and of weight equal to the weight of the
modular function dq, .

Denote Vo = exp(vgy) and Se = exp(se). Then Vo x S — Ng, by
(v, s) — wvs, is an analytic diffeomorphism. Define

Dy : Fourier transform of P - Det,, acting on AN = AeVeSe

by acting on the Sg variable. (5:2)
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Theorem 5.7.  The operator Dy of (5.2) is an invertible self-adjoint differen-
tial operator of degree i(dimng + dimse) on L*(AeNs) with dense domain the
Schwartz space C(AeNg), and D := Dé’Q(Dém)* 15 a well defined invertible pos-
itive self-adjoint operator of the same degree %(dim ng + dimsg) on L*(AsNg)
with dense domain C(AeNg). In particular D is a Dizmier-Pukdnszky operator
on AgNe with domain equal to the space of rapidly decreasing C* functions.

Proof.  Since it is the Fourier transform of a real polynomial, Dy is a differential
operator that is self-adjoint on L?(AgNg) with dense domain C(AgNg). Thus D
is well defined, and is positive and self-adjoint as asserted. Now it remains only to
see that D (and thus D) are invertible.

Invertibility of D comes out of Dixmier’s theory of quasi-Hilbert algebras
[2] as applied by Kleppner and Lipsman to group extensions. Specifically, [5,
§6] leads to a Dixmier-Pukanszky operator, there called M. The quasi-Hilbert
algebra in question is defined on [5, pp. 481-482], the relevant transformations
M and Y are specified in [12, Theorem 1], and invertibility of M is shown in
[2, pp. 293-294]. Unwinding the definitions of M and Y in [5, §6] one sees that
the Dixmier-Pukénszky operator M of [5] is the same as our operator D. That
completes the proof. [ |

The action of ag on 3¢, is scalar, ad(«)( = Bj,(a)( where (as before)
Jo € I; . So the isotropy algebra (ag), is the same at every A € tj , given by
(ag)y = {a € ag | every Bj,(a) = 0}. Thus the (Ag)-stabilizer on t} is

Ay = {exp(a) | every Bj,(«) = 0}, independent of choice of A € t;.  (5.3)

Given A € tj, in other words given a stepwise square integrable represen-
tation 7w, where \ € s3 , we write 7r§ for the extension of 7, to a representation
of A% Ng on the same Hilbert space. That extension exists because A}, is a vector
group, thus contractible to a point, so H*(A%; C') = H*(point; C') = {1}, and the
Mackey obstruction vanishes. Now the representations of A Ng corresponding to
7y are the

e = Ind ‘:Z%Z (exp(i€) @ 1) (5.4)

where £ € (a;,)* and exp(if) : exp(a) := exp(i(«)) for a € al,. Note also that
Tae - Ad(an) = Taar )¢ for a € Ag and n € Ng . (5.5)

The resulting Plancherel formula (5.1), f(z) = [ trace m(D(r, f))dpg (), where
H = A@N@ s is

Theorem 5.8. Let Qo = Mo AsNo be a parabolic subgroup of the real reductive
Lie group G. Let D denote the Dizmier-Pukdnszky operator of (5.2). Let my\¢ €

AgNg as described in (5.4) and let O, . : h +— tracems¢(h) denote its distribution
character. Then © is a tempered distribution. If f € C(AeNg) and © € ApNg
then

TXE

Jo) = C/(afi))* </53>/Ad*(Aq>) @m@ (D(rxf))’PfO‘)‘d)‘) 0
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where ¢ = 20T Tdmq\dy) ... d,,! as in (1.6a) and m is the number of factors L,
m N, .

Proof.  We compute along the lines of the computation of [7, Theorem 2.7| and
[5, Theorem 3.2].

trace my »(Dh)

/ ) trace / (Dh)(z"'naz) - (7}, ® exp(ip))(na) dn da dx
Z‘EA@/A/ N<I>Al

/ trace / (Dh)(nz"taz) - (7} @ exp(i¢))(znz " a) dn da dz.
EA@/A/ N@A/

Now

/ trace my ¢ (Dh) do
(ap)

/ / trace / (Dh) (nmflax)(wj\ ® exp(i¢))(znz'a) dnda dx dé
b Jr€Agp /AL Ng A/,

/ /A trace / (Dh)(nx_lax)(w; ® exp(i¢))(znz~'a) dnda do dx
€A [AY Ng Al

<I>

T -1
[EGA@/A/ trace/ (Dh)(ﬂ)ﬂ)\(xnx )dndl‘
/ trace/ (D h)(n)(Ad(xil)'Wf\)(n)dnd;p
w€As /Al

/ trace (Ad(z 1) - wf\)(Dh)) dx
€A [AY

(5.6)

/ o Y xl). (D) trace (Ad(x ) - 7l) (h)da

/ Ad(z) - D) trace (Ad(z 1Y) - ) )(h) dz
zEAap/A’

/ 845 Ny () trace (Ad(z 1) W;)(h) dx
€As /A

_ / tracewd, (A)[PE(V)|dN.
NEAd* (Ag)A

Summing over A = Ad*(A4g)(\) € t*/Ad*(As) we now have

/ / trace x4 (Dh) de | dA
Xety /Ad* (As) (afp)*

- / ( / trace ], (h)|PECA )|d)\’> o (67
Nety/Ad* (As) NeAd* (Aa)\

_ A  trace m (h)|[PE(V)|dA = h(1).

If h=r,f then h(1l) = f(z) and the theorem follows. n
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6. The Maximal Amenable Subgroup Us A N

In this section we extend our results on Ny and AgNg to the maximal amenable
subgroups

E3 := UgsAgpNg where Ug is a maximal compact subgroup of Mg .

Of course if ® = (), i.e. if Q¢ is a minimal parabolic, then Uy = Mg . We start
by recalling the classification of maximal amenable subgroups in real reductive Lie
groups.

Recall the definition. A mean on a locally compact group H is a linear
functional g on L*°(H) of norm 1 and such that p(f) =2 0 for all real-valued
f 2 0. H is amenable if it has a left-invariant mean. There are more than a dozen
useful equivalent conditions. Solvable groups and compact groups are amenable,
as are extensions of amenable groups by amenable subgroups. In particular if Ug
is a maximal compact subgroup of Mg then Eg := UgAgNg is amenable.

We'll need a technical condition [8, p. 132]. Let H be the group of real
points in a linear algebraic group whose rational points are Zariski dense, let A
be a maximal R-split torus in H, let Zy(A) denote the centralizer of A in H,
and let H° be the algebraic connected component of the identity in H. Then
H is isotropically connected if H = H° - Zy(A). More generally we will say that
a subgroup H C G is isotropically connected if the algebraic hull of Adg(H) is
isotropically connected. The point is Moore’s theorem

Proposition 6.1. [8, Theorem 3.2]. The groups E¢ := UpAeNo are mazimal
amenable subgroups of G. They are isotropically connected and self-normalizing.
As ® runs over the 2/¥! subsets of U the E¢ are mutually non-conjugate. An
amenable subgroup H C G is contained in some Eg if and only if it is isotropically
connected.

Now we need some notation and definitions. If & € A" (g, a) we denote

[a]e = {y € A¥(g,0) [ Yoy = oy} a0d gioj = > (6.1)

7€[a]<1>gv .
Recall [17, Theorem 8.3.13] that the various gig o, @ ¢ ", are ad (mg)-invariant
and are absolutely irreducible as ad (mg)-modules.

Definition 6.2. The decomposition N¢ = Ly 1Lss...Lee of Theorem 4.5 is
invariant if each ad (mg)3e,; C 3o, equivalently if each Ad(Ms)3e,; = 30, in
other words whenever 3¢, = 9(®,8;,] - The decomposition No = Lo 1Laea... Loy
is weakly invariant if each Ad(Us )30, = 34, -

Here are four special cases. (1) If ® is empty, i.e. if Qg is a minimal
parabolic subgroup, then the decomposition Ng = Lg 1L ... Le, is invariant.

(2) If |\ @ =1, ie. if Q¢ is a maximal parabolic subgroup, then
Ng = Lo is invariant.
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(3) Let G = SL(6;R) with simple roots ¥ = {t1,...,95} in the usual
order and ® = {¢1,%4,¢5}. Then By = 11 + -+ + 15, Bo = 12 + 93 + by and
B3 = 3. Note Bilay = Bolay 7 Bslag = (V3 + Yu)lay - Thus ne = lo; + Lo,
with lp1 = (I + ) Nng and lg, = gs, . Now 90,35 7 39,2 S0 the decomposition
Ncp = ch’qu;.Q Ce Lq;j 1S not invariant.

(4) In the example just above, [f3] = {¢3,1%3 + V4,93 + 4 + ¥5}. The
semisimple part [mg, mg| of mg is direct sum of m; = sl(2;R) with simple root
Yy and mys = sl(3;R) with simple roots 14 and 5. The action of [mge, mg]
on gpg, is trivial on m; and the usual (vector) representation of mys. That
remains irreducible on the maximal compact so0(3) in mys. It follows that here
the decomposition Ng = Lg 1L ... Lo, is not weakly invariant.

Lemma 6.3. Let F'=exp(ia) N K. Then F is an elementary abelian 2-group
of cardinality < 29™%  In particular, F is finite, and if x € F then 2> = 1.

Further, F is central in Mg (thus also in Us), Uy = FUY, Fe = FES and
My = FME .

Proof. Let 6 be the Cartan involution of G for which K = G?. If x € F then
r=0(x)=2"'s02?=1. Now F is an elementary abelian 2-group of cardinality
< 2dima in particular F is finite.

Let G, denote the compact real form of G¢ such that GNG, = K, and let
Ag,, denote the torus subgroup exp(iag). The centralizer Mg ,Ae . = Za, (Aou)
is connected. It has a maximal torus Cg ,Bg A, corresponding to

bc = coc + baoc + aac (6.2)

where ¢g is a Cartan subalgebra of ug, ¢p + bg is a Cartan subalgebra of me
and by + ag = a. The complexification Mg cAoc = Za.(Asc) is connected
and has connected Cartan subgroup CscBscAsc. Now every component of
MsAs = (MocAsc) NG contains an element of exp(ce + ibe + ias). Thus
every component of its maximal compact subgroup Ug contains an element of
exp(ibg +1ias) = exp(ia). This proves Up C FUY . But F' C MgAg , and is finite
and central there, so F' C Ug. Now Ug = FUJ . It follows that My = FMJ . As
FEs is the semidirect product of Ug with an exponential solvable (thus topologically
contractible) group it also follows that Eg = FEYS . n

Notice that the parabolic Qg is cuspidal (in the sense of Harish-Chandra)
if and only if by = 0, in other words if and only if Mg has discrete series
representations. The cuspidal parabolics are the ones used to construct standard
tempered representations of real reductive Lie groups.

Lemma 6.4.  The action of F' on s3 s trivial.

Proof.  We know that the action of F' is trivial on each 3} [22, Proposition 3.6].
The action of Mg is absolutely irreducible on every ag-root space [17, Theorem
8.13.3]. Recall 30,; = >_; (g5, + 1) where [[ =3, g4 from (4.2) and (4.3). Using
Lemma 3.3 we see that the action of F' is trivial on each gs, + ', thus trivial on
3d,j , and thus trivial on their sum s¢ , and finally by duality is trivial on s3 . =
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When Ng = Lo 1Los ... Ley is weakly invariant we can proceed more or
less as in [22]. Set

tpy ={A€sy | P(A\) # 0 and Ad(Us)A is a principal Ug-orbit on s3}.  (6.3)

If c # 0 and A € ¢}, then cA € v}, . Thus we obtain t}, by scaling the set of all X in a
unit sphere s of s (for any norm) such that Ad(Us)A is a principal Ug-orbit on s.
Thus, as in the case of compact group actions on compact spaces, t is dense, open
and Ug-invariant in s3 . By definition of principal orbit the isotropy subgroups of
Us at the various points of t} are conjugate, and we take a measurable section o
to th, — Ad"(Us)\tj on whose image all the isotropy subgroups are the same,

Ug @ isotropy subgroup of Us at o(Us())), independent of A € v . (6.4)

Lemma 6.4 says that U}, = F(Uy NUY) In view of Lemma 6.4 the principal
isotropy subgroups U} are specified by the work of W.-C. and W.-Y. Hsiang [3]
on the structure and classification of principal orbits of compact connected linear
groups. With a glance back at (5.3) we have

UpAy : isotropy subgp of UpAg at 0(UsAge(N)), independent of A € v}, . (6.5)
The first consequence, as in [22, Proposition 3.3], is
Theorem 6.5.  Suppose that N9 = Le1Les... Loy is weakly invariant. Let

f €C(UpsNg) Given X € ¢ let Wf\ denote the extension of w\ to a representation
of Uy Ng on the space of wn. Then the Plancherel density at Ind U‘PN‘P(WA @ u'),

p e (/]Z, , s (dim p')|P(X\)| and the Plancherel Formula for UgNg is
f(un) = c/ Z __ trace ((Ind Ug Vo (7r>\®u ) (runf)) -dim(g/)-| P(\)]dX
vy /Ad* (Ug) THEVD
where ¢ = 28+ Fdnd, \dol . d,,!, from (1.6).
Combining Theorems 5.8 and 6.5 we come to

Theorem 6.6.  Let Qo = MeAsNg be a parabolic subgroup of the real reductive
Lie group G. Let Ug be a mazimal compact subgroup of Mg , so Eg := UpAeNg
18 a mazimal amenable subgroup of Qe . Suppose that the decompos@f\z’on Ng =
Lo1Los ... Loy is weakly invariant. Given A € ¢, ¢ € ay and ' € U}y denote

T = Ind g?ﬁ?% (7T)\ & e'? X u ) S E(p

Let @7TM> : h — tracemy 4, (h) denote its distribution character. Then Gﬂw
s a tempered distribution on the maximal amenable subgroup Fe . If f € C(Eq>)
then

sw=ef ( / e (3, ey O (D) i) |P<A>rdA) s

Op

where ¢ = (%)dimc‘:ﬁ/2 odittdmg N\l d,)
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Proof. Theorem 13.4 extends this result to certain direct limit parabolics,
and the calculation in the proof of Theorem 13.4 specializes to give the proof
of Theorem 6.6. [

When weak invariance fails we replace the 34 ; by the larger

o8] = Zae[ﬁ o

5]

Ja where [ﬁj]@ = {a € A+(gv a) | a|a<1> = ﬁj0|aq>}v (66)

for any jo € I; , as in (6.1). Note that g, is an irreducible Ad(Mg)-module.
We need to show that we can replace s¢ = > 34, by S5p = Zj gje,3,] in our
Plancherel formulae. The key is

Lemma 6.7. Let \; € gf‘@ﬁj] . Split 9(s,5;) = 38,5+ W ; where g ; = go,5, Vs
is the sum of the g, that occur in gep,) but not in 3¢;. Then the Pfaffian
PEi(A;) = PEi(Xls.,) -

Proof. Write )‘j = /\3,j+)\m,j where /\37]‘(1’0@?]‘) =0= Am,j(ﬁ@,j)- Let 9+, 96 C [<I>’j
with [g,,9s] # 0. Then [g,,895] C loj, so [gy,85] N We; = 0, in particular

Aw,j([8y,85]) = 0. In other words A;([g+, 8s]) = Ajlsa, (84, 95]) . Now by, = by,
so their Pfaffians are the same. ]

In order to extend Theorems 6.5 and 6.6 we now need only make some
trivial changes to (6.3), (6.4), (6.5) and the measurable section:

e ts ={\€sy | P(\) #0 and Ad(Us)A is a principal Ug-orbit on s }.

e &: measurable section to te" — te \Us on whose image all the isotropy
subgroups are the same.

e U} : isotropy subgroup of U at o(Us(N)), independent of A € tg" .
o ULAL : isotropy subgroup of UsAg at 5(UpAs())), independent of \ € t3" .
The result is

Theorem 6.8. In Theorems 6.5 and 6.6 one can omit the requirement that
No = Lo 1Los ... Loy be weakly invariant.

PART II: INFINITE DIMENSIONAL THEORY

7. Direct Limits of Nilpotent Lie Groups

In this section we describe the basic outline for direct limits of stepwise square
integrable representations of simply connected nilpotent Lie groups. Later we
will specialize these constructions to nilradicals N¢ o = lim Ng, of parabolic
subgroups ¢ = lim Qs in our real reductive Lie groups Go = limG,, . In
order to do that we will need to adjust the ordering in the decompositions (1.3)
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so that they fit together as n increases. We do that by reversing the indices and
keeping the L, constant as n goes to infinity. Thus, we suppose that

{N,} is a strict direct system of connected nilpotent Lie groups, (7.1)

in other words the connected simply connected nilpotent Lie groups N,, have the
property that N, is a closed analytic subgroup of N, for all £ = n. As usual, Z,
denotes the center of L, . For each n, we require that
Ny =LiLy--- Ly, where

(a) L, is a closed analytic subgroup of N, for 1 < r < m,, and

(b) each L, has unitary representations with coefficients in L*(L,/Z,).

(x) Lpg = Lpt1Lpt2--- Lg for p < g and

va’n« = Lmé+1LmZ+2 cee Lmn = Lmz’mn for £ < T, (72)
(¢) Ny is normal in N,, and N, = N, x N, ,, semidirect product,

(d) [T =3 + v, and n, =5, —+ @r<m 0, Where Sp = @7‘<m 3rs

then [[,,35] = 0 and [[,, ] C I + v for r < s where
[, = [ @[ direct sum of ideals with [/ C 3, and v, C [,

With this we can follow the lines of the constructions in [20, Section 5] as
indicated in §1 above. Denote

Pn(’yn) = Pfl()\l)PfQ()\Q) st men(Amn) s )\r € 3: and Yn = )\1 + 4 /\mn (73)
and the nonsingular set
tz = {%z € 51*1 | Pn(’}/n) + 0} (74)

When v, € t; the stepwise square integrable representation ., € ]/\Zz is defined as
in Construction 1.2, but with the indices reversed: 7y 4+..4x,., = WI\IJF.“Hm@mmH
with representation space 'Hmﬁm+Am+1 = HW/\1+~~+>\m ®Hﬂm+1 .

The parameter space for our representations of the direct limit Lie group
N = @Nn is

t={v=(y) €s =lms;| v =M+ + X, € forall {}. (7.5)

The closed normal subgroups N, ,41 and N, o satisfy N, = N,i1/Nppp1 =
N/Np.oo- Let v € t* and denote

Ty n: the stepwise square integrable my, 1.1y, € ]/\7; (7.6)
" . .6

Tynnt1: the stepwise square integrable my,, fit A Amg ., € Npnt1

Using N,, = N, 11/Ny ny1 we lift 7, ,, to a representation ﬂ,n of N, 1 whose kernel

contains N, ,11 and we extend 7, .41 to a representation ﬂi’n,n 41 of Npyp on

the same representation space H, , ..,. Then we define

—

Tyn+1 = W'];,n ® 7T'];,n,n#»l S Nn—i—l : (77)
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The representation space is the projective (jointly continuous) tensor product
Hﬂ%nﬁ-l - Hﬂ'y,n®%7w,n,n+1 Where ,Hﬂ-'y,n,n-‘rl = HﬂA7m7L+1®' . .®Hﬂ—kvmn+1 . Choose

a C° unit vector e, 1 € Hr, .., - Then

Vi U ® epyq is an Ny-equivariant isometry Hr , = Hr ..y (7.8)

Ty,n

exhibits 7, ,, as the restriction 7, ,1|n, on the subspace (Hr, ,®enq1) of Hr .\ -
Lemma 7.1.  The maps just described, define direct system {(myn, Hr, )} of
wrreducible stepwise square integrable unitary representations, and thus define an
irreducible unitary representation m, = liﬂwmn of N = ligNn on the Hilbert
space Ho, =limHr .

The representations m, described in Lemma 7.1 are the limit stepwise
square integrable representations of N. Corollary 9.9 will show that the unitary
equivalence class of 7, is independent of the choice of the C* unit vectors e, .

8. Direct Limit Structure of Parabolics and some Subgroups

We adapt the constructions Section 7 to limits of nilradicals of parabolic subgroups.
That requires some alignment of root systems so that the direct limit respects the
restricted root structures, in particular the strongly orthogonal root structures, of
the N,, . We enumerate the set ¥,, = ¥(g,, a,) of nonmultipliable simple restricted
roots so that, in the Dynkin diagram, for type A we spread from the center of
the diagram. For types B, C' and D, 1) is the right endpoint. In other words
for £ 2 n W, is constructed from ¥, adding simple roots to the left end of their
Dynkin diagrams. Thus

Agpir Yot om0 Yn Y (Z2n=0 (8.1)

Ay Vo o n  Yn Y (>n>1

By | W e W W15, sy

o Y Y Yt %2 Y1 s 5 (8.2)
@Z)E wn ¢n—l 1/}5 ¢2

Dy <Zq/11 {z2n=4

We describe this by saying that G, propagates G,, . For types B, C' and D this
is the same as the notion of propagation in [10] and [11].

The direct limit groups obtained this way are SL(co;C), SO(o0;C),
Sp(oo; C), SL(co;R), SL(oo; H), SU(00,q) with ¢ < oo, SO(00, q) with ¢ < oo,
Sp(o00,q) with g < oo, Sp(oo;R) and SO*(200).

Let {G,} be a direct system of real semisimple Lie groups in which G,
propagates G,, for £ = n. Then the corresponding simple restricted root systems
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satisfy U,, C ¥, as indicated in (8.1) and (8.2). Consider conditions on a family
& = {$,} of subsets ®,, C VU, such that G, — G, maps the corresponding
parabolics Qg , — Qs . Then we have

Qo00 = lngq,,n inside G, 1= @Gn. (8.3)

Express Q(b,n = MQnAq)qu)’n and Qq)j = Mq>7gAq>7€N<p7g. Then Mq;m — ng
is equivalent to ®,, C ®,, Ag, — Ag, is implicit in the condition that G,
propagates G,, , and Ng, < Ng is equivalent to (¥, \®,,) C (V,\Py) . As before
let Ug,, denote a maximal compact subgroup of Mg, ; we implicitly assume that
U‘I)Jl — Uq;}g whenever Mcp’n — Mq)’g .

We will extend some of our results from the finite dimensional setting to
these subgroups of Qg o -

(a) No oo = hg Ng ,, maximal locally unipotent subgroup,
requiring (¥, \ ®,,) C (¥, \ Dy),
(b) Ag oo :=lim Ag
() Up oo := hg Us ,, maximal lim-compact subgroup, requiring ®,, C &y,
(d) Up 0o No 00 1= lim Ug n N
requiring ®,, C ¢, and (¥, \ ¢,,) C (¥, \ Py).

(8.4)

To study these we will need to extend some notation from the finite dimen-
sional setting to the system {g,}. For a € A*(g,,a,) we denote

[on ={0 € AT (gn. a0) | lag,, = Vlag,,} a0d o0 = Zée[% g5.  (85)

The adjoint action of mg,, on ge . is absolutely irreducible [17, Theorem 8.3.13];
a0 is the sum of the root spaces for roots 6 = >,y 1y (0)Y € AT (gy, a,) such
that ny(0) = ny(a) for all ¢ € ¥, \ @, , in other words the same coefficients along
U\ @, in 37,y ny(-)Y. The following lemma is immediate.

Lemma 8.1. Let n £ { and assume the condition (V,, \ ®,) C (¥, \ &) of
(8.4)(a) for Nooo . Then gona C Gora - In particular we have the joint ag o -
e1genspaces 9o coa = hgln 0bn.a N N oo -

We will also say something about representations, but not about Fourier
inversion, for the

Ap oNp oo := liénAquqm maximal exponential solvable subgroup,
where (U, \ @,,) C (¥, \ ®,) for n < ¢, and for the
Eg o 1= hAq Eg , maximal amenable subgroup,
where ®,, C &, and (¥, \ ®,,) C (¥ \ &y) for n < 0.

(8.6)

Here Eq)m = Uq>7nAq>7nNcp7n , SO Eq>7oo = U@,OOA(I),OONCD,OO . The dlfﬁculty with
Fourier inversion for the two limit groups of (8.6) is that we don’t have an explicit
Dixmier-Pukanszky operator.
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Start with Ng o . For that we must assume (¥, \ ®,) C (U, \ ®).
In view of the propagation assumption on the G, the maximal set of strongly
orthogonal non-multipliable roots in A*(g,,a,) is increasing in n. It is obtained
by cascading up (we reversed the indexing from the finite dimensional setting)
has form {3i,...,05,,} in A*(g,,a,). Following ideas of Section 4 we partition
{Bis- s B} = U U, Bi where I, consists of the indices ¢ for which the 5;
have a given restriction to agp, and belong to A*(g,,a,). Note that I,; can
increase as n increases. This happens in some cases where the ® stop growing,
i.e. where there is an index ny such that &, = ®,, # () for n = ny. That is
the case when A(g,,a,) is of type A, with each ¥ = {¢1}. Thus we also denote
Ioir =, Ink - Asin (4.1), following the idea of [; = 3, + v; , we define

[$,00,j = Ziélooj([i Nng), the §; part of ng  , (8.7)

30,00,] = E né@,n,j, 55,00 = E j3<1>,oo,j and v o = E i Vo nj,

’

SO Mg oo = 5000 + Voo - We'll also use s¢, = Zj 3o, and vg, = Zj O, » SO
Nepn = Son + Von -

L, ; denotes the analytic subgroup with Lie algebra [3,; and Lo o =
hﬂn L, ; has Lie algebra lg o ; . We have this set up so that

9. Representations of the Limit Groups I: Ng o

In this section we indicate the limit stepwise square integrable representations
Toy = ligmp,% of the direct limit group Ng o = @N@m. The parameter
space for the stepwise square integrable representations of the Ng, is given by
on = 1 € 55, | P(yw) # 0} where v, = 37" A; and P(v,) is the product
of the Pfaffians P;(\;). Note that s, , = 7n for £ > n. The parameter space
for the 7o, is 5o = {(Wm) € 850 | ecach v € t5,,} where §§ , = limsq,.
The stepwise square integrable representations m,, were obtained recursively in
Construction 1.2, from square integrable representations of the L., r < m,, , and
in Lemma 7.1 we described method of construction of their direct limits 7, .

As noted before we must assume the condition (¥, \ ®,) C (¥, \ ®,) of
(8.4)(a), so that {Ng,,} is a direct system, in order to work with Ng o . Then we
have the decompositions (8.7) and (8.8). With those in mind we will build up the
parameter space for direct limits of stepwise square integrable representations of
Ns  in two steps. First,

Lemma9.1.  If A€ gy 5, the antisymmetric bilinear form by on N 00,5/ 3,00,
satisfies by = b)\|j<I> -

Proof.  Let n be sufficiently large that g, C lg ;. Apply Lemma 8.1 to each
go,e, With £ 2 n. That gives (bx)lng,,/se. = (bAy, , )lnec/se, - As £ increases the
additional brackets go into ng, and thus into the kernel of b, . ]
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Second, we define the §; part of the parameter space. In view of Lemma 9.1
we need only look at the A\; = (A, ;) € lim 35, ; that belong to

tg,oo,j = {()\an)| )\mj - 327%]- with P[<1>,n,j ()\mj) 7& 0 for n z n()\j)} (91)

where n(;) is the first index n such that A, ; € 33, ;. We start this way because
of the possibility that the 3¢, could grow, for fixed j, if the multiplicity of j;
as a joint eigenvalue of ad (ag,,), increases as n increases. Third,

oo = {7 = () € lim 55,,,| every 9 € ..} 92)

Fix v = (7;) € t o - As in Construction 1.2 and Lemma 7.1 we have the
limit stepwise square integrable representation g x; 00 Of L o,;j- Apply Construc-
tion 1.2 and Lemma 7.1 to the 7 ), o as j increases, obtaining the limit stepwise

—

square integrable representation mg 00 € No oo -

Theorem 9.2.  Assume the condition (V,,\ ®,) C (V,\ D) of (8.4)(a), so that
{Non} is a direct system and Ng oo = lim N, is well defined. Let v = (Yn) € t5 o
and Ty oo = liM7Teyn as in Lemma 7.1. View Hq, . = hﬂH%,%n in the
category of Hilbert spaces and partial isometries. Let u,v € Hay_ , C Hay -
Then the coefficient function fry  _iuw(T) = (U, Te 5,00(T)v) satisfies

2 2
||f7T<I>,'y,oo; u,v |N<I>,Z | |%2(N¢7¢/Sq>’g) = H‘UI‘LL(")'/Z)lI (93)

Proof. Let u =@ u; and v = @ v; where uj,v; € Hy,_ _ , the representation
g

spaces of the Tg, . We know from stepwise square integrability that the

coefficients satisfy

I¥: . I, |22 — Pl g0 s 0
Tr<1>,’}/j,005uj7’Uj Ny, L (L'i),n,j/Z@,n,j) |P[<I>,n,j(’yj)| .

In other words,

I¥: v, |2 — gl 12
7r<1>,'yj,oo§uj,’vj Np, LQ(Lé,oo,j/ZCD,oo,j) |P[<1>,oo,j(’7j)‘ .

Taking the product over j we have (9.3) for decomposable v and v. Decomposable
vectors are dense in Hr, . so (9.3) follows from the decomposable case by
continuity. =

Now we continue as in [23, Sections 3, 4 & 5]. The first step is the rescaling

implicit in Theorem 9.2, specifically in (9.3), which holds in our situation with
only the obvious changes. Recall Ng oy = Lo mot+1---Lom, = Lo met1m,, and
Nfb,a,oo = hﬂb N@,a,b; S0 N<I>,oo = N<I>,n X Ncb,n,oo-
Proposition 9.3.  Let vy € t3 ,, and { > n so that Yyls,,, = Vn- Then 7a|N,,
is an infinite multiple of To . Split He, , = H'OH" where H' = Hq, ., and
where ' = Hayy 1@ QHog . With ve = A+ -+ + Ay, . Choose a C*°
unit vector e € H", so

H > Hry, YV @€ (9.4)

T®,v,n
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1s an N, -equivariant isometric injection that sends C'* wvectors to C* wvectors. If
U,V € Hr,, . then

P’I’L 3
||f7r<1>,«,,z;u®e,v®e||%2(N¢’Z/Sq>7¢) = |\P£8,?))\| ||f7rq>,7,n;u®e,v®e||%2(N¢7n/54,,n) (95)

Given v € t3 ., consider the unitary character ¢, = exp(27iy) on Sg o,
given by (,(exp(€)) = e¥™© for ¢ € 54, . The corresponding Hilbert space is

L*(Na,o0 /S0 Gy) = lim L*(Na s/ Sw,n5 Gy )
where

L*(Ng /Son; C) =
{f: Now— C| fgz) = ¢ ()" f(g) and |f| € L*(Ngn/Sen) for = € S}

The finite linear combinations of the coefficients fr, . .u., Where u,v € Hy, .,
are dense in LQ(NQn). That gives us a Ng, X Ng, equivariant Hilbert space
isomorphism

LQ(Nd),n/S'iI),n; C’Yn) g Hﬂ'@,'y,n ®,H:r~i>,’y,n

The stepwise square integrable group Ng,, satisfies
P0No) = [ Moy B, P
'Ynet;,’n

That expands functions on Ng o = Ne1Ngo... that depend only on the first
m, factors. To increase the number of factors we must deal the renormalization
implicit in (9.5). Reformulate (9.5):

P,
Pyn,e - f7rq>’%g;u®u’,v®v’ g <u/7 Ul> HPZEzZ))"fTr@,%n;u,v (96)

is the orthogonal projection dual to Hr, ., < Hr, ,. These maps sum over
(Yn,Ye) to a Hilbert space projection py, = (fwesq),g Pynedy')

Pem i L*(Ngy) — L*(Ng,,) for £ = n. (9.7)

The maps (9.7) define an inverse system in the category of Hilbert spaces and
partial isometries:

L*(Ng1) &% L*(Ngs) &2 L3 (Ngs) &2 . «— L*(No) (9.8)

where the projective limit L?(Ng) := @{LQ(NQR),]?(’”} is taken in that category.
We now have the Hilbert space projective limit

L*(Ng) = Um{L*(Ne,), pen}- (9.9)

Because of the renormalizations in (9.6), the elements of L?(Ng) do not have an
immediate interpretation as functions on Ng. We address that problem by looking
at the Schwartz space.
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The Schwartz space considerations of [23, Section 5] extend to our setting
with only obvious modifications, so we restrict our discussion to the relevant
definitions and results.

Given v = (v,) € t

*
P, 00

we have the unitary character ¢, = exp(2miy) on
Soco = limSy, . Express ¢, = () € l'm@. The corresponding relative
Schwartz space C((Non/Sen); Cy,) consists of all functions f € C*°(Ng,) such
that

f(zs) =, (s) ' f(x) for x € Ny, 5 € Sa., and |q(g)p(D) f| bounded

on Ng,/Se, for all polynomials p, g on Ng,,/Se, and all D € U(ng ).

(9.10)

The corresponding limit Schwartz space C((Ne,co/ So,00); ¢7) = U C(Nan/Sam; Gy, )
consisting of all functions f € C*°(Ng ) such that

f(zs) = ¢, (s)" f(x) for 2 € Np oo, 5 € Sp oo, and |g(g)p(D)f| bounded

9.11
on Ng ~/Se.c for all polynomials p,q on Ng o/So 0, all D € U(Ng ). ( )

As expected, C(No,/Son;Cy,) is a nuclear Fréchet space and it is dense in
L*(Ngn/Son; (), and [23, Theorem 5.7] and its corollaries go through in our
setting as follows.

Theorem 9.4.  Let v = (V) € tg o, - Let n >0 and let u and v be C> vectors
for the stepwise square integrable representation e, 0f No, . Then the coeffi-
cient function fr,  ..uw belongs to the relative Schwartz space C((Non/San); Gy, ),
and the coefficient function fr, . .uo belongs to the limit relative Schwartz space

C(Nd),oo/S@,oo; Cv)~

Corollary 9.5. Let v = (y,) € t5 - Let n > 0 and let u and v be C>
vectors for the stepwise square integrable representation 7g . 0f No, . Then the
coefficient function fry uw € LY(Non/Son; (), and the coefficient function
fﬂ-@,’y,oo;uyv < @ L (Nq’,n/sé,n; gvn) .

In fact the argument shows

Corollary 9.6. Let L be a connected simply connected nilpotent Lie group, Z
its center, and \ € 3* such that wy is a square integrable (mod Z ) representation
of L. Let ( = ¥ € 7 and let u and v be C wvectors for m . Then the
coefficient fr,.un € L*(L/Z, ().

A norm |£] on ng, corresponds to a norm ||exp(§)|| := ||¢|| on Ng, . Thus
classical Schwartz space C(ng,,) on the real vector space ng,, corresponds to the
Schwartz space C(Ng,,) , which thus is defined by seminorms

Vipa(f) = subsen,  [(1+ |2) (D f)(2)]. (9.12)

Here k is a positive integer, and D € U(ng,,) is a differential operator acting
on the left on Ng, . Since exp : ng, — No, is a polynomial diffeomorphism,
f+— f-exp is a topological isomorphism of C(Ng,,) onto C(ng,):

C(Non) ={f € C*(Non) | foexp € Clngy)} (9.13)
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We now define the Schwartz space

C(Nq>7oo) {f € COO(Nq> oo) | f|Nq> (Nq> n) for n > 0} @C(Nq)’n) (914)

where the inverse limit is taken in the category of complete locally convex topo-
logical vector spaces and continuous linear maps. Since C(Ng,,) is defined by the
seminorms (9.12), the same follows for C(Ng ). In other words,

Lemma 9.7.  The Schwartz space C(No ) consists of all f € C®°(Ng ) such
that, for all n > 0, vy pn(f) is bounded for all integers k > 0 all D € U(ng,,).
Here the seminorms vy p, are given by (9.12).

Every f € C(Ncp n) IS a limit in C(Ng,) of finite linear combinations
of the functions f, () = qu:. (8)¢y, (s)ds in C((Non/Son),Cy). Specifi-
cally, denote ¢, (v,) = f%( x). Then ¢, is a multiple of the Fourier transform
Fonll(@) 7 f)lsq,,)-

The inverse Fourier transform f;’z(@x) reconstructs f from the f, . Since
the relative Schwartz space C((Ng,/Ss.,);(,,) is dense in L?*(Ng . /Se 5, C,,) and
the the set of finite linear combinations of coeflicients fm,%n;u,v (where w,v are

C vectors) is dense in C(Ngn/Son, (), now every f € C(Ng,,) is a Schwartz
wave packet along s3, . of coefficients of the various 7¢ ,, , © and v smooth. Now

we combine the inverse system (9.8) and its Schwartz space analog.

C(Np1) <21 C(Npo) «22 C(Ngg) 2 .. C(Ng) = limC(Ne )

R -
L2(Ng1) +22— L[2(Ngo) +222— L[2(Ngs) 2 L*(Ng) = lim L*(Na,»)
(9.15)
The r, : C(No,) — L2(N¢,,n) are continuous injections with dense image, so
Too : C(Ng o) = L*(Ng o) is a continuous injection with dense image. Putting all
this together as in the minimal parabolic case [23, Section 5], we have proved

Proposition 9.8.  Assume (8.4)(a), so that {Ng,} is a direct system and
No o = liqu,,n is well defined. Define ro : C(No o) — L*(Nooo) as in the
commutative diagram (9.15). Then L*(Ngs) is a Hilbert space completion of
C(No o). In particular ro defines a pre-Hilbert space structure on C(Ng o) with
completion L*(Ng o) -

As in [23, Corollary 5.17], C(Ng,~) is independent of the choices made in
the construction of L?(Ng ), S0

Corollary 9.9.  The limit Hilbert space L*(Ng o) = IL{LQ(NQ n)sDent Of
(9.15) , and the left/right regular representation of Ng oo X Nooo on L*(Ne o),
are independent of the choice of vectors e in (9.4).

Recall the notation

oty =lmty, ={v=(m)[m €, andif { 2 n then vls,, =}
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o if v=(y,) €15, then Mg, = fm g, is constructed as in Section 7,

e The distribution characters © on the Ng, are given by (1.2), and

T®,y,n

® C(Nooo) =UmC(Noyn) ={f = (fu) | fn € C(Now), felng,, = fofor £ 2 n}.

As for minimal parabolics [23, Section 6], the limit Fourier inversion formula is

Theorem 9.10.  Suppose that Ng o = @N@m where {Ng,} satisfies (7.2).
Let f = (fn) € C(No) and x € No o . Then x € Ny, for some n and

f@)=cn | Oy, (raf)[Phuy , (0)ldvn (9.16)

*
{<I>,n

where c,, = 24t tdnd\d,) ... d,! as in (1.6a) and m is the number of factors L,
m N@}n .

Proof. By Theorem 1.6, f(z) = f.(x) = ¢, ft* 7om (Tef ) Plug.,, (0n)| dyn -
[

10. Representations of the Limit Groups II: A ocN#,oo

We extend some of the results of Section 9 to the maximal exponential (locally)
solvable subgroup Ag ooNo oo -

The first step is to locate the Ag o -stabilizer of a limit square integrable
representation 7, of Ng o . Following (5.3) we set

A oo = {exp(§) | £ € ap oo and every £;(£) = 0}. (10.1)

Lemma 10.1.  If v = () € t3 o, then A% is the stabilizer of 7, in Ag oo -

Proof. Recall the J” from Lemma 3.3. Then Lemma 3.4 tells us that, for each
ro , lor, has center

3o = Zﬂrh@:ﬁro\a@ (gﬁr + ngga) )

and Lemma 3.3 then says that 3¢, is an ad(ag) eigenspace on g. Thus the
ad *(ag)-stabilizer of ~ is given by f,(ag ) = 0 for all 7. [

Lemma 5.1 shows that our methods cannot yield a Dixmier-Pukanszky
operator for Ag ooNo o nor for Up ooAp coNo o , but we do have such operators
Dn for the Aq;.,nNcp’n and the Uq;}nAq)’an,,n .

Let v = (1) € t3 - Then mg . extends from Ng o to a representa-

tion 7rjb voo Of A o Na o with the same representation space, because every e .,

extends that way from Ng,, to A&,mN@,n. The representations of Aﬁb’anm corre-
sponding to 7, are the exp(2mi¢ \a&) n) ® Wé’%n . The representation of Ag oo Ng oo
and the Ag,Ng . , corresponding to v and § = (§,) € (ag )%, is the

To,600 = Y Mo 6 where 7 ¢, = Ind’, Az, "Ni " (exp(2mi&,) ® 7rq, WL) (10.2)
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If dim(Ap oo /Ap o) < 00, (10.2) says Toe00 = Ind 5= N0 (exp(2mi€) @mh_ ),

Ng
P, 00 ,O0
because then one can integrate over Ag /AL .- Or in general one may view

(10.2) as an interpretation of 7 ¢ = Ind zzzxi::(exp(?mﬁ) ® ﬂ-:rb,v,oo) :

Lemma 10.2. Letv,v € ts o - Then the representations Te g 0o ANA To A ¢ o0
are equivalent if and only if both & = & and v € Ad"(Ae)(7). FEzpress
v = () with v, = 37" yny where v ; € 37, Then Ad™(Ageo)(v) consists

of all (Z;n:"l cjan) with every ¢; > 0.

Proof.  The Mackey little group method implies 7¢ y¢n >~ To e just when
¢ =¢ and 7, € Ad"(Agn) (7). The first assertion follows. The second is because
the action of Ad*(Ag ) on 7,; is multiplication by an arbitrary positive real
c; = exp(if;(a)) for a € agp . n

The representation space Hr, .. Of Tayc00 € (ApooNe o) is the same
as that of Ng o, except for the unitary character exp(2mi€). We thus obtain
L*((AanNan/Ag 5 Se.n); (exp(2mi€) @ (o)) = (Ha, o, EH;

W@ms,n) '

Summing over t3,, and dag,/dg,, We proceed as in Section 9; then
L*(Ag,No.) = / / (g, o EHE, ) Pal) o dE
aq’vn/a&),n t:% n
so, as in (9.8) and (9.9),
PoNos) =l [ [ (0 89, PG de.
uq’7n/aq>,n t:b n

Since the base spaces of the unitary line bundles
Ag nNo, — Aq>’an>7n/A:D7nS¢,n and No, = Non/Son
are similar, we modify (9.10) for the relative Schwartz space
C((AenNon/ A Son); exp(27i&) @ ()
to consist of all functions f € C*(Ag,,No,) such that

f(zas) = exp(—2mi&(log a))¢y, ()~ f(x) for # € Noy,a € Ay, , s € Son)
with |q(g)p(D)f| bounded on Ag nNgrn/A%,,Son (10.3)
for all polynomials p,q on Ng,/Se,, and all D € U(ng ).

The corresponding limit relative Schwartz space is

C((A<I3,OON<I>,OO/A&>7OOS¢,OO>;(eXp(27Ti£> ® C’Y))
= 1im C((ApuNo /Ay S ) (exp(2mi€) ® C,,)),
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consisting of all functions f € C*°(Ag No ) such that

f(zas) = exp(—2mi(log a))¢,(s) " f(z) for & € No oo, a € Ay, and
s € Spo, and |g(g)p(D)f]| is bounded on A@,WN¢,W/A&,7wS¢,m (10.4)
for all polynomials p,q on N o/Se 00 and all D € U(ng ).

Theorem 9.4 and Corollaries 9.5 and 9.6 hold for our groups Ag ¢/Ng o here
with essentially no change, so we will not repeat them.

We use Casselman’s extension [1, p. 4] of the classical definition for semi-
norms and Schwartz space (which we used for ng ). First, we have seminorms on
the ag, + no,, as in (9.12) as follows. Fix a continuous norm ||¢|| on AgnNen
such that

114080, |l = Lllz]| = [|z7*[| 2 1 for all , and (10.5)
I/l = [l=yll = [lz]] [[y]] for all z,y. '

That gives seminorms
vkpa(f) = supxeAq)’an)’J|x||k|Df(x)|(k >0and D € U(ag,, +ns,)).  (10.6)
That defines the Schwartz space C(As,,No,) as in (9.13):
C(ApnNon) ={f € C°(AsnNaon) | Vipna(f) < o0} (10.7)

for all £ > 0and D € U(ag,, + ne,). Finally we define C(AgpooNp o) to be
the inverse limit in the category of locally convex topological vector spaces and
continuous linear maps, as in (9.14):

C<A<I>,OON<I>,OO) =

[ € C%(AoNone) | Flagoven € ClAbaNo )} = imC(ApaNa,). 09
Lemma 10.3.  ([1, Proposition 1.1]) The Schwartz space C(Agp oNo o) consists
of all functions f € C™(ApocNaooo) such that, for all n > 0, vpp,(f) < oo
for all integers k > 0 and all D € U(agp, + non). Here vgp, is given by
(10.6). The C(AonNon) are nuclear Fréchet spaces and C(AgooNo o) is an LF
space. The left/right actions of (AenNon X AenNe,) on C(AenNe,,) and of
(Ap,00No 0o X Ap coNo o) 0n C(Ap oNo ) are continuous.

As for the Ng,,, if f € C(As,,No ) it is a limit in C(Ag ,No,,) of finite lin-
ear combinations of the f¢ . ,(x) = qu),n fS@,n f(zas) exp(2mi€(loga))¢,, (s)dsda in
C((ApnNo /A%, S0n), (exp(27i€)(,,)) . Specifically, denote v, (&, 7m) = feq, ().
Then ¢, is a multiple of the classical Fourier transform Fg,,(£(2) ™" f)|ag.50.)
and the inverse Fourier transform ]-"qjjl(goz) reconstructs f from the f¢,, .

The relative Schwartz space C((AsnNon/Ap ,So.n), (exp(2mi§)(,,)) is dense
in L*((AenNon/Ap nSon), (exp(2mi€)(,,)). Finite linear combinations of coeffi-

cients of the mg ¢, along C* vectors form dense subset of
C((ApnNon/Ap 5 n), (exp(27i&)(,, ). So every f € C(ApnNay) is a Schwartz
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wave packet along ag ,, + 53, of coefficients of the various 74 ,¢n, and the corre-
sponding inverse systems fit together as in (9.15):

C(Aq)}qu)’l) <q2—1 C(Aq),qu;’Q) 22 ce C(Aq;.Nq)) = @C(Aq,’an)’n)
L2(A<1>’1Nq>’1) (1)2—1 L2(Aq>’2Nq>’2) b2 . LQ(Aq;.Nq;.) = II&HLQ(Aq;.mN@’n)
(10.9)

As before, the r, are continuous injections with dense image, and it follows that
Too : C(Ad00Ns 00) = L*(Ap00Ns o) is a continuous injection with dense image.
As in Proposition 9.8 we conclude

Proposition 10.4. Assume (8.4)(a), so {A¢n,Non} is a direct system and
Ap oNo oo = liﬂA@,anm is well defined. Let

Too - C(A<I>,OON'I>,OO> — LQ(Aq),ooN<I>,oo)

as in (10.9). Then L*(AgpooNooo) s a Hilbert space completion of C(Ag coNo.oo) -
In particular v defines a pre-Hilbert space structure on C(Ag ooNo ) with com-
pletion L*(Ag coNo o) -

Corollary 10.5.  The Hilbert space L*(Agp oNooo) = I'&H{LQ(A@,an),n),pg,n}
of (10.9) , and the left/right reqular representation of (Ae.coNeo o) X (Ad.coNe o)
on L*(AscNs ), are independent of the choice of C™ unit vectors e in the
inclusions Hyyen = Hamee 20, byv—v®e.

The distribution characters O, . = exp(27i{)Oy, , where O,  is
given by (1.2). The limit Schwartz space C(Ag oo No,o0) = I&nC(A¢7nN¢>7n) consists
ofall f = (f,) whereeach f, € C(As,No,). Asin the case of minimal parabolics
[23, Section 6], the limit Fourier inversion formula is

Theorem 10.6.  Suppose that (¥, \ ®,) C (¥, \ ;) for £ =2 n, so that
Ap coNo oo = liﬂAq>,nN¢’n is well defined. Let D, be a Dizxmier-Pukdnszky op-
erator for Ag ,No, . Let f = (f,) € C(AonNon) and v € Ap ooNo o . Then
x € ApnNo, for some n and

F@ =n [ ]y G Dol PG (e (1010

where ¢, = (Qﬂ)d‘m W9/2 Qdittdmn g \dyl . d,,, ! as in (1.6a) and m, is the number
of factors L, in Ngp .

Proof.  Apply Theorem 5.8 to Ag ,Ng - |

11. Representations of the Limit Groups III: Us

We are going to study highest weight limit representations of Ug o = liﬂqu.
These are the representations for which there is an explicit Peter-Weyl Theorem
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[18, Theorem 4.3]. We restrict our attention to highest weight representations of
Us o for a good reason: as noted in papers ([13], [14], [15] and [16]) of Stratila and
Voiculescu, irreducible unitary representations of U(oco) and other lim-compact
groups can be extremely complicated, even of Type III. This is summarized in [21,
Section 9.

Recall from Section 8 that G, propagates G, for ¢ = n. In particular
® = (P,) where @, is the simple root system for (me,, + do,)c and @, C P,
for ¢ 2 n. It is implicit that the maximal compact subgroups K,, C G,, satisfy
K, C Ky for £ 2 n, so K := lim K, is a maximal lim-compact subgroup of
G = h%m G, . We decompose thegartan subalgebras of g¢, and ge . along the
lines of the proof of Lemma 6.3, as follows:

hn =Con + b@,n + ap n and hoo = (P00 + bCI’,oo + 0% (111)

where ag ,, is as before, ¢g ,+bg , is a Cartan subalgebra of mg ,, , bo p+as, = a, ,
and ¢g, is a Cartan subalgebra of ug, . Then ag oo =limag,,, be o = limbg,, ,
and ¢ oo = hg ¢o, . Further, ag, = bs,, + as, and cs, = h, NE, . Notice that
Con = exp(co,) is a maximal torus in Ug’n .

We define a simple root system for ug, along the lines of an idea of
Borel and de Siebenthal. Let {mg) } be the simple ideals in mg,, and let {0}

denote the corresponding subsets of &, . If every root in o is Compact we set
2@ = . Otherwise & contams Just one noncompact root, say ol let Bn
denote the maxunal root of mqm _If o has coefficient 1 as a summand of 3

we set N DN\ {af?Y. 1f it has coefficient 2 as a summand of 8 we set
0 = () \{ SZ NU{=8Y}. Now £, := =V is a simple root system g,
and for its semisimple part [ug ,, Upp]-

Lemma 11.1.  If {2 n then X¢, C Yoy . Thus Yo :=JXe,, is a simple root
system for the semisimple part [Ug oo, Up o] 1= lign[uq,,n,ucpm] of Up 0o -

Proof. If a € X3, is not simple as a root of ug,41, then, as a linear combi-
nation of roots in @, , it must involve a root from &, \ ®, . That contradicts

the fact that a € A((mon)c, (Con + bon)c)- "

As in Lemma 6.3 we define F,, = exp(ia,)NK,, . It is an elementary abelian
2-subgroup of Us,, , central in both Ug,, and Mg, , and has the properties

Usp = U3, , Mo, = F, Mg, , and Eg,, = F,Eq, .
Further, F,,Cs,, is a Cartan subgroup of Us, . Passing to the limit, we define
= hﬂFn =exp(ia) N K, and Cp o = liglC’cp,n
so that

U oo = FU%OO, and FCs  is a lim-compact Cartan subgroup of Ug o .
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Definition 11.2.  Let A, € ¢, . Then \, is integral if exp(27i),) is a well
defined unitary character on the torus Cg,, , and A, is dominant integral if it is
integral and (\,,«) = 0 for every a € ¥g, . Write Ag, for the set of dominant
integral weights in ¢g , .

Let A = (\;) € ¢3 o - Then X is integral if exp(2mi)) is a well defined
unitary character on the torus Cs o , in other words if each A, is integral. And
A is dominant integral if it is integral and (A, ) = 0 for every « € 3¢ , in other
words if each A, is dominant integral. Write Ag o for the set of all dominant
integral weights in g . .

Each A, € Ag,, is the highest weight of an irreducible unitary representa-
tion iy, of Ug’n. Let H,, denote the representation space and u), a highest
weight unit vector. Now let A = (\,) € Ap o . Then uy,, — uy, defines a Ugvn—
equivariant isometric injection H,, < H,, . Thus A defines a direct limit highest
weight unitary representation

px = lim pix € U$ with representation space Hy = lim 7y, -

Different choices of {uy,} lead to equivalent representations. Here recall [11,
Theorem 5.10] that if ¢ = n then u,\g\Ug contains fy, with multiplicity 1, so

there is no ambiguity (beyond phase changes uy,, — €“"uy ) about the inclusion
Hy, — H, - Now denote

p €L, A\ € App and 90|Fngn = NA,n‘FnUgn} )

Eopn = {Mn,so =9 pan
(11.2)

Za00 = {irp = 9 @ a0 € F LA = () € Aoyos and lprpg = ialprug | -

Lemma 11.1 shows that the direct system {Ug .} is strict and is parabolic
in the sense of [18, Eq. 4.2]. Thus we have the Peter-Weyl Theorem for parabolic
direct limits [18, Theorem 4.3], and it follows immediately for the system {Ug,,} .
Rescaling matrix coefficients with the Frobenius-Schur orthogonality relations as
in (9.5) and (9.6) we obtain Hilbert space projections py,, : L*(Uss) — L*(Usn)
and an inverse system

L (Us)) &5 LA(Ups) &2 L2 (Usy) &2 0 — L (Usoo) (11.3)

in the category of Hilbert spaces and projections, where the projective limit
L*(Us,0) := Um{L*(Us,n), Pe,n} is taken in that category. We now have the Hilbert
space projective limit

L*(Ng o) i= I'&H{LQ(Ncpm),pg’n} = Z HA@H; orthogonal direct sum.

B, €EED, 0o
(11.4)
The left/right representation of U X Up o on L*(Upo) is multiplicity-free,
preserves each summand 7—[,\@)7-[; , and acts on 7-[,\®Hf\ by the irreducible repre-
sentation of highest weight (A, A*). The connection with matrix coefficients is

C(Upy) 2 C(Upy) 22— .. C(Us o) = imC(Us,)

l” J l ym (11.5)

LA (Up,) = [2(Up,) 22 L2(Ug o) = lim L*(Us,»)
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as in (9.15). As in Proposition 9.8 this realizes the limit space L*(Uspoo) as a
Hilbert space completion of the Schwartz space C(Us ), and because of com-
pactness the latter in turn is the projective limit of spaces C(Us,,) = C®°(Upn).
The Fourier inversion formula for Ug o is given stepwise as in Theorem 9.10.

12. Representations of the Limit Groups IV: Ug oo Ns, o

We combine some of the results of Sections 9 and 11, extending them to the
subgroup Usp ooNg o - In view of the discussion culminating in (8.4) we assume
that the direct system {G,} of real semisimple Lie groups satisfies

if £ 2 n then ®,, C ¢, and (¥, \ ¢,,) C (¥, \ §,) so that

12.1
Usp oo = LHEUCI”” and Up oo No o0 = ligrququ)’n exist. ( )

We also extend Definition 6.2:

Definition 12.1.  The direct limit groups Neo oo = Lo 1Lao2Las... is weakly
invariant if each Ad(Us o0)30,j = 30, -

We’ll need a variation on Lemma 6.3. Recall the maximal lim-compact
subgroup K = @Kn .

Lemma 12.2. Let F,, = exp(iae,) N K, and F = exp(iap ) N K. Then
F = lian is contained in Usp o and is central in Mg o ; if * € F then 2?2 =1,
U oo = FU(I(Z,oo ; and Mg o, = F]\/[%OO )

Proof. Lemma 6.3 contains the corresponding results for the F),. It follows
that I is a subgroup of Usg  central in Mg o , that describes the components as
stated, and in which every element has square 1. [ ]

Lemma 12.3.  The action of Ad(F) on sy, is trivial.

Proof. Lemma 6.4 shows that Ad(F7}) is trivial on 3, whenever ¢ = n. n

Now suppose that Ng o = Lo 1Le2Les... is weakly invariant. We con-
tinue as in Section 6.

.00 = 1(1n) €t oo | each Ad*(Usn)yn is a principal Ug ,-orbit on s, ,,}.  (12.2)

It is dense, open and Ad*(Us)-invariant in s3 . Let o be a measurable
section to v o, — Ad"(Us,co)\tp o, On whose image all the isotropy subgroups are
the same. We use the notation

Ug o © isotropy subgp of Up o at 0(Ad*(Up xo)(7)), independent of v € t . (12.3)

As a bonus, in view of Lemma 10.1, the isotropy subgroup of Up.cAs .~ at
Ad*(a)o(Ad"(Upeo)(7)) is Up oA o » independent of a € Ag o and v € vy
Note that U, = lignUc’D’n where Ug , is the isotropy subgroup of Us, at
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0(Ad"(Us,00)(7))n , independent of v € v, . Given p' € (f’b;, say p' = lim pi,

where p;, € Uj ., and « is in the image of o, we have representations

L Us nNon 1
T -=Ind Ul N (H, @ T 5,n) and

(12.4)

o Us,coN&,00 /1 1
TP~y 00 = Ind Ul - Nooo (,LL ® 7T<I>,’Y,OO) = hglﬂ—(b,%/ﬂan .

To be precise here, ' must be a cocycle representation of Ug ,, where the cocycle
¢ is the inverse of the Mackey obstruction to extending 7g - o to a representation
of U</I>,00N‘I>,OO .

As in (10.3) the relative Schwartz space C((UsnNon/Ug ,,Son): Hy @ Cy,)
consists of all functions f € C*(Usp,,No,,) such that

f(zus) = pl (u)'¢,, () f(x) (¥ € Nop,u € Upn»5 € San), and
lq(9)p(D) f| is bounded on U nNg n/Us S for all (12.5)
polynomials p,q on Ng,/Se,, and all D € U(ug ,, + o).

The corresponding limit relative Schwartz space is

C((UQOONLD,OO/Ué,ooSQOO)a(,U/ ® Cv))
= @C((UQnN@,n/Ué,nS@,n)a (N:z ® C’Y’n)))

consisting of all functions f € C*°(Up «No ) such that

flaus) = p/(w) 7' ¢ (s) 7 f(2) (2 € Nooos t € Up o, 8 € So00, and
lq(9)p(D) f| is bounded on Us oo Ne oo/ Usp, oo S®,00 for all (12.6)
polynomials p, g on N oo /Se 00 and all D € U (g oo + Mo o0)-

Theorem 9.4 and Corollaries 9.5 and 9.6 hold for our groups Us ,Ns , here
with essentially no change, so we will not repeat them.

Following the discussion in Section 10 for C(A¢Non) and C(As coNo )
we define seminorms

Veon(f) = Sup,epy  ny, 12]/*[Df ()] (12.7)
for all £ > 0 and D € U(ug,, +1s,). Asin (9.13) that defines the Schwartz space

C(UQ,nNd),n) -

{f € C®(UsnNon) |vkpn(f) <oofor k>0,DclU(up, +non)}- (12.8)

Finally we define C(Up No ) to be the inverse limit in the category of locally
convex topological vector spaces and continuous linear maps, as in (9.14):

C<U<I>,OON<I>,00) == 1&1 C(UQ,nN‘I),n)

12.9
= {f € COO(U¢7OON¢7OO) |f|Uq>,nN<1>,n S C(Uq;jan)’n) } . ( )

Then we have
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Lemma 12.4.  The Schwartz space C(Up «No ) consists of all functions f €
C®(Up,No o) such that vipn,(f) < oo for all integers k > 0 and all D €
UUp oo + Noo). Here vgp, is given by (12.7). The C(Up,No,) are nu-
clear Fréchet spaces and C(UpooNo o) is an LF space. The left/right actions
of (UspnNon) X (UsnNon) on C(UsnNoy) and of (UseeNeooo) X (UscoNo o) 0N

C(Up ooNo o) are continuous.

We construct L*(Ug oo Nooo) = @LQ(UQ,ZN@?”) along the lines of Sec-
tion 9. Let v = (v.) € t3, such that v is in the image of o. Consider
po=lim g, € lf’b:o where (i) ul, € U/f{; and (i) H,, C H,, from a map u, — u,
of highest weight unit vectors, for £ = n.

Every f € C(Up,Ns,) is a Schwartz wave packet along (ul,)* + %,
of coefficients of the various 7,/ ,, and the corresponding inverse systems fit
together as in (9.15):

q3,2

ClUp1Ngp 1) L C(Us2Ns2) C(U<I>,OON<I>,OO):@C(U‘1>JLN<I>,7L)

I R I-
L[*(Up1Ns 1) 22— L[2(UpaNpg) +2— . L2(Ug 00 N 00) = 1im L2 (Us . N
(12.10)
The map 7o : C(Us oNooo) — L*(UpooNa ) is a continuous injection with
dense image, properties inherited from the 7, . As in Proposition 9.8 we conclude

Proposition 12.5.  Assume (8.4)(d), so that Up «No oo = lim Up nNo.p is well
defined. Define 1o : C(UpooNooo) = L*(UpooNa o) as in the commutative dia-
gram (12.10). Then L*(Up oo N ) is a Hilbert space completion of C(Up oo Na o) -
In particular o, defines a pre-Hilbert space structure on C(Ug ooNo ) with com-
pletion L*(Ug oo No oo) -

As in [23, Corollary 5.17] C(Us ooNo ) is independent of the choices we
made in the construction of L*(Ug s Ne.oo), SO

Corollary 12.6.  The Hilbert space L*(Up ooNooo) = T&H{L2(U¢,n]\f¢7n),pm}
of (12.10) , and the left/right reqular representation of (Up.oNooo) X (U coNo o)
on L*(Up o No o), are independent of the choice of vectors {e} in (9.4)and highest
weight unit vectors {u,} .

The limit Fourier inversion formula is

Theorem 12.7. Given oy pinpm € Um,n, let @W’muw denote its dis-
tribution character. Then © is tempered. Let f € C(UpooNoo) and

TR, 5,17 o,n

r € UpooNo oo . Then v € Up ,Ng,, for some n and
fz) = e / S e, () deg()[Py ()ldy  (1211)
ynety,, T HnUs.n o

where ¢, = 20t Fdmnd \dyl . d,, | as in (1.6a) and m, is the number of factors
L,« m N<I>,n-
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Proof. We adapt the computation of [7, Theorem 2.7|. Let h = r, f and apply
[5, Theorem 3.2].

trace (1) = [

trace / h(z™ tyuz) - (7@ 40 @ pil,) (yu) dy du da
2€Us,n /UL Yyu€Ns U,

= / trace / h(yztuz) - (e 40 @ pl,) (zyr~ ) dy du dz.
€U, »n /UL Na

’
P, n v"Ucb,n

Now

Z trace To . n(h) deg i,

’
U n

= Z / trace / h(yz ™ uz) (T 0 n) (2yz ™ u) dy du de deg p),
o Je€Uen/Ug No nUg ,

/LKEU@YH/UC'I)

‘/J;EUrp,n/U&,
/'IJEU@,H/U!Q’T,,

= / trace ((z~ ! - Ty m)(h)) dx
z€Us n /UL

Z trace / h(yz ™ uz) (T . urn) (ryz ™~ u) dy du deg pl, d
o N,

7
\n U, <I’,an>,n

trace / h(y)ﬂq%%#/,n(xyx*l)dy dx
Ng n

P,n

,n

trace / h(y)(:)ﬁ_1 STy om) (Y)dy da
Ng

b, n

= / trace ﬂ'@m%(h)|Pf(fyn)|d'yn.
Ad*(Us,n)Y

Summing over the the space of Us ,,-orbits on s, we now have
[ X tracemu ) des i PG i,
Up,n\5% Ul
— [ tracemaealt)PHGI
Uq)vn\ﬁrb,n

_ / trace g .o (1) PE(7a)|drn = h(1) = f(x).

*
54’,77,

That completes the proof. [ |

13. Representations of the Limit Groups V: Us ccAs,00N#,00

We extend some of the results of Sections 10 and 12 to the maximal amenable
subgroups Eg o = Up coAd coNo oo of G. Here we are using amenability of the
Eq)m = Uq>7nAq>’nN<I>7n.

As in Definition 6.2 the decomposition N¢ o = Le1La 2. .. is tnvariant if
each ad (Mg o0)30,00j = 0,00, , i Other words if each Ng,, = Lo1Log ... Lom, is
invariant. Similarly Ng o = Lo 1La2 ... is weakly invariant if each ad (Ug 00 )3 00,5
= 3®,00 ; 1.€. if each Ng,, = Lo 1L ... Loy, is weakly invariant.

Recall the principal orbit set t ., from (12.2) and the measurable sec-
tion 0 : Ad"(Up,co)\t3 0o — Tooo ON Whose image all the isotropy subgroups of
Ad*(Usp,) are the same. Note that o is Ad*(Ag ~)-equivariant, so we may view
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it as a section to tg o, — Ad"(UspcoAe00)\ts o On Whose image all the isotropy
subgroups of Ad*(UpAs ) are the same. Following (6.5), (10.1) and (12.3),
and as remarked just after (12.3), that common isotropy subgroup is independent
of v € vy, and is given by

Up 0o Ag oo 1 150tr0py of Ug 00 Ag 00 at 0(Ad" (Usp,coAs,00))(7)- (13.1)

Let v € t§ , be in the image of . Then 7, o, extends to a representation

T / / : / 770
dry00 Of Up ooApoocNo oo on the same space Hy, . . Given u' € Uz, and

§' = (&) € (ag )" the corresponding representation of Eg o = Us coAd 0o Na 0o
is induced from Eg = Ug A . No oo as follows.

T

. Eg n / ]
T8 00 = U T 5 &1 1 n Where g ¢ v n = Ind EZ (ﬂn ® exp(2mig,) @ ijmn) ’

U<I>-,nA<I>,an>,n (132)

in other words e y,¢/,urn = Ind 7" " (u;l ® exp(2mi€,) @ W;mn) .

As in Section 10, C((U¢7nAq>7nNq>7n/Uc’I,7nA&,7nSq>,n), (p, ® exp(2mi€),) ® Cy,,))
consists of all functions f € C*°(Up,A¢No ) such that
f(zuas) = i, (u) ™" exp(—2mi&’ (log )¢y, (s) " f(x)
( € No,u € U&)m, a € Aﬁb’n, s € Sen), and |q(g)p(D)f] is
bounded on Ug nAsnNon/Us , A, Sen for all polynomials
p,q on Ag,No /Ay, Sen and all D € U(ugpn + o + o pn).

(13.3)

That is the relative Schwartz space. The corresponding limit relative Schwartz
space 18

C((Ufb,ooACID,ooN@,oo/U</I),OOA:1>7OOS<I>,OO)7 (Ml & eXp(Qﬂ'Zfl) & C’y))
= l.LnC((U@,nA@mN@,n/Uc,b,nAib,nScI),n): (N;z ® eXp(QWZf;L) ® C%))

Again, Theorem 9.4 and Corollaries 9.5 and 9.6 hold mutatis mutandis for
the groups Fg, so we won’t repeat them. We extend the definition (12.7) of
seminorms on Ug ,Ng, t0 Eg, = UpnAenNon:

vkpa(f) = supzeE¢7n||x||k|Df(x)| (k>0,D €epn, feC®(Espy)). (13.5)
That defines the Schwartz space C(Eg,):
C(Epn) ={f € C®(Eon) |Vkpn(f) <oofor k>0and D e€U(epy)}. (13.6)

(13.4)

Finally we define C(Es ) to be the inverse limit in the category of locally convex
topological vector spaces and continuous linear maps,

C(Eaoo) = {f € C%(Ba) | flrq,, € C(Eap) } =1ImC(Es,y). (13.7)
As before

Lemma 13.1.  The Schwartz space C(Eg ) consists of all f € C°(Eg ) such
that v pn(f) < oo for all integers k > 0 and all D € U(ep ). Here vgpp is
given by (13.5). The C(Es,) are nuclear Fréchet spaces and C(Ep ) is an LF
space. The left/right actions of (Een) X (Een) on C(Ee,) and of (Ee o)X (Fe o)

on C(Esg ) are continuous.
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We construct L*(Ep o) i= l'&le(Eqm) as before. Let v = (v,) € t3,, be

in the image of 0. Consider p' = (y1;,) € U, , and § = (§,) € ag, , For £ 2 n we
consider the maps on representation spaces given by H CH from
maps u, — uy of highest weight unit vectors.

T®,v,&,u! T® 6,1/ &

Every f € C(Es,) is a Schwartz wave packet along (ug ,)*ag , + 53, of
coefficients of the various 7g ¢ ,v» . The corresponding inverse systems fit together
as in (9.15):

C(Eq)’l) <QQ—71 C(Eq;g) < 92 Lo £ C(E@’oo) = @C(Eq;.JJ
J/Tl J{TQ J{ lroo (138)
LX(Egy) <2 [2(BEg,) +22— ... 4 [*(Eg0) = lim L*(Es,»)

The 7, are continuous injections with dense image, s0 7 : C(Ep00) < L*(Eg )
is a continuous injection with dense image. As in Proposition 9.8 we conclude

Proposition 13.2.  Assume (8.4)(d), so that E¢ o, = lim Eg,, is well defined.
Define 1o : C(FEp o) = L*(Es ) as in (13.8). Then L*(Eg ) is a Hilbert space
completion of C(Eg ). In particular ro defines a pre-Hilbert space structure on
C(Es ) with completion L*(Ep ).

As in [23, Corollary 5.17) C(Eg ) is independent of the choices we made
in the construction of L?*(Eg ), S0

Corollary 13.3.  The Hilbert space L*(Eg ) = Tgn{Lz(Eqm),p&n} of (13.8),

and the left/right regular representation of Eg o X E¢ o on it, are independent of
the choice of vectors {e} in (9.4) and highest weight unit vectors {u,}.

The limit Fourier inversion formula is

Theorem 13.4.  Gwen 7o ¢, ., € E/@\m let Ory e, denote its distribu-
sPy LA ,o,mn
tion character. Then © is a tempered distribution. Let f € C(Eg ) and

TP, 7,610, 0,0
r € Fp o . Then v € Eg, for some n and

f@=co [ [ 3 o O (el deg )P, (e dr, (139
€L, JE€ Hn€Ug T
where ¢, = (%)dim“‘ﬁb/2 it tdmn g \do! .. d,,, ! and m,, is the number of factors
Lr m Nq;.m.
Proof. We combine the ideas in the proofs of Theorems 5.8 and 12.7. In an

attempt to keep the notation under control we write U, for Us,/Us, and Aj
for Ag ., /Aﬁbm , and more generally we drop the subscript ®. We write § for the
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modular function of Qg . Let h = r,f. Using [5, Theorem 3.2],

trace my ¢ v n(Dh) :/ § () trace/ (Dh)(z ™ 'yauz)x
ceUl Al yau€Nn AL U,

X (7r ® exp(2mi&) u, ) (yau) dy da du dx

= trace h)(yzrtaux) x
xcU” A" nA’ U’

X ( . @ exp(2mié) ) (zyz ™~ u) dy da du dz.

Now Z / trace my ¢ v (Dh)dE deg i,

:ZA/ / trace/ (Dh)(yx™auz)x
Un Jar, er”A” NoUJL AL

. @ exp(2mi&) ) (zyz " av) dy da du dx d€ deg i,

:/ / trace/ (DR)(yxtaux) x
er’a/A// ’ N U/

( . @ exp(2mi&) ) (zyz~tav) dy da du dé deg pi), dx

/ trace/ (Dh)() n(zya)dy da
weUN Al N

[ wace [ (DM@)Ad @) A )y ds
xzeUl’ Al n

n n

/ trace ((Ad*(z) " - mhn)(Dh)) dx
xeUJI Al

/EU”A” (Ad*<I>_1 : Wv,n)*(D) trace (Ad(x)_l . ﬂ-:fy,n)(h) dx

/EU”AN (Ad*(x)D) trace (Ad(x)~" - ﬂivn)(h) dx

/ §(z)trace (Ad(z)~" - len)(h) dx
zeUy A

:/ tracew, S(W)PE(y) | dAL -
€A (Un An )y

Summing over the the space of U, A, -orbits on s we now have

/ (Z’\/ tracem,,g,uf,n(Dh)dfdeg/i;z) dvn
YmEAd* (Un An)\s, Un J Ay,

:/ </ tracew ( )|Pf(7n)|d7n) dy,
Y €AA* (Un An)\s?, Y, €A (UnAn)yn
= / trace 7., () |Pf(v,)|dyn = h(1) = f(z).

Tn €S,

That completes the proof. [ |
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