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Abstract. In a series of recent papers ([19], [20], [22], [23]) we extended the
notion of square integrability, for representations of nilpotent Lie groups, to that
of stepwise square integrability. There we discussed a number of applications
based on the fact that nilradicals of minimal parabolic subgroups of real reduc-
tive Lie groups are stepwise square integrable. In Part I we prove stepwise square
integrability for nilradicals of arbitrary parabolic subgroups of real reductive Lie
groups. This is technically more delicate than the case of minimal parabolics.
We further discuss applications to Plancherel formulae and Fourier inversion for-
mulae for maximal exponential solvable subgroups of parabolics and maximal
amenable subgroups of real reductive Lie groups. Finally, in Part II, we extend
a number of those results to (infinite dimensional) direct limit parabolics. These
extensions involve an infinite dimensional version of the Peter-Weyl Theorem,
construction of a direct limit Schwartz space, and realization of that Schwartz
space as a dense subspace of the corresponding L2 space.
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Key Words and Phrases: Parabolic subgroups, nilradicals, stepwise square in-
tegrable representations, Dixmier-Pukánszky operators, Plancherel formulae,
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Part I: Finite Dimensional Theory

1. Stepwise Square Integrable Representations

There is a very precise theory of square integrable representations of nilpotent Lie
groups due to Moore and the author [9]. It is based on the Kirillov’s general rep-
resentation theory [4] for nilpotent Lie groups, in which he introduced coadjoint
orbit theory to the subject. When a nilpotent Lie group has square integrable rep-
resentations its representation theory, Plancherel and Fourier inversion formulae,
and other aspects of real analysis, become explicit and transparent.

Somewhat later it turned out that many familiar nilpotent Lie groups have
foliations, in fact semidirect product towers composed of subgroups that have
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square integrable representations. These include nilradicals of minimal parabolic
subgroups, e.g. the group of strictly upper triangular real or complex matrices. All
the analytic benefits of square integrability carry over to stepwise square integrable
nilpotent Lie groups.

In order to indicate our results here we must recall the notions of square
integrability and stepwise square integrability in sufficient detail to carry them
over to nilradicals of arbitrary parabolic subgroups of real reductive Lie groups.

A connected simply connected Lie group N with center Z is called square
integrable, or is said to have square integrable representations, if it has unitary
representations π whose coefficients fu,v(x) = 〈u, π(x)v〉 satisfy |fu,v| ∈ L2(N/Z).
C.C. Moore and the author worked out the structure and representation theory of
these groups [9]. If N has one such square integrable representation then there is
a certain polynomial function Pf(λ) on the linear dual space z∗ of the Lie algebra
of Z that is key to harmonic analysis on N . Here Pf(λ) is the Pfaffian of the
antisymmetric bilinear form on n/z given by bλ(x, y) = λ([x, y]). The square
integrable representations of N are the πλ (corresponding to coadjoint orbits
Ad∗(N)λ) where λ ∈ z∗ with Pf(λ) 6= 0, Plancherel almost irreducible unitary
representations of N are square integrable, and, up to an explicit constant, |Pf(λ)|
is the Plancherel density on the unitary dual N̂ at πλ . Concretely,

Theorem 1.1. [9] Let N be a connected simply connected nilpotent Lie group
that has square integrable representations. Let Z be its center and v a vector
space complement to z in n, so v∗ = {γ ∈ n∗ | γ|z = 0}. If f is a Schwartz class
function N → C and x ∈ N then

f(x) = c

∫
z∗

Θπλ(rxf)|Pf(λ)|dλ (1.1)

where c = d!2d with 2d = dim n/z , rxf is the right translate (rxf)(y) = f(yx),
and Θ is the distribution character

Θπλ(f) = c−1|Pf(λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N). (1.2)

Here f1 is the lift f1(ξ) = f(exp(ξ)) of f from N to n, f̂1 is its classical Fourier
transform, O(λ) is the coadjoint orbit Ad∗(N)λ = v∗+λ, and dνλ is the translate
of normalized Lebesgue measure from v∗ to Ad∗(N)λ.

More generally, we will consider the situation where

N =L1L2 . . . Lm−1Lm where

(a) each factor Lr has unitary reps with coefficients in L2(Lr/Zr),

(b) each Nr := L1L2 . . . Lr is normal in N with Nr = Nr−1 o Lr ,

(c) if r = s then [lr, zs] = 0

(1.3)

The conditions of (1.3) are sufficient to construct the representations of interest to
us here, but not sufficient to compute the Pfaffian that is the Plancherel density.
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For that, in the past we used the strong computability condition

Decompose lr = zr + vr and n = s + v (vector space direct) where

s = ⊕ zr and v = ⊕ vr; then [lr, ls] ⊂ vs for r > s.
(1.4)

The problem is that the strong computability condition (1.4) can fail for some
non-minimal real parabolics, but we will see that, for the Plancherel density, we
only need the weak computability condition

Decompose lr = l′r ⊕ l′′r , direct sum of ideals, where l′′r ⊂ zr and vr ⊂ l′r; then

[lr, ls] ⊂ l′′s + vs for r > s.
(1.5)

where we retain lr = zr + vr and n = s + v .

In the setting of (1.3), (1.4) and (1.5) it is useful to denote

(a) dr = 1
2

dim(lr/zr) so 1
2

dim(n/s) =
∑

di , and c = 2
∑
di · d1!d2! . . . dm!

(b) bλr : (x, y) 7→ λr([x, y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . . Zm = Z1 × · · · × Zm where Zr is the center of Lr

(d) P : polynomial P (λ) = Pf(bλ1)Pf(bλ2) . . .Pf(bλm) on s∗

(e) t∗ = {λ ∈ s∗ | P (λ) 6= 0}

(f) πλ ∈ N̂ where λ ∈ t∗ : irreducible unitary representation, as follows.

(1.6)

Construction 1.2. [20] Given λ ∈ t∗ , in other words λ = λ1 + · · · + λm
where λr ∈ zr with each Pf(bλr) 6= 0, we construct πλ ∈ N̂ by recursion on m .
If m = 1 then πλ is a square integrable representation of N = L1 . Now as-
sume m > 1. Then we have the irreducible unitary representation πλ1+···+λm−1 of
L1L2 . . . Lm−1 . and (1.3(c)) shows that Lm stabilizes the unitary equivalence class
of πλ1+···+λm−1 . Since Lm is topologically contractible the Mackey obstruction van-

ishes and πλ1+···+λm−1 extends to an irreducible unitary representation π†λ1+···+λm−1

on N on the same Hilbert space. View the square integrable representation πλm
of Lm as a representation of N whose kernel contains L1L2 . . . Lm−1 . Then we
define πλ = π†λ1+···+λm−1

⊗̂πλm .

Definition 1.3. The representations πλ of (1.6(f)), constructed just above, are
the stepwise square integrable representations of N relative to the decomposition
(1.3). If N has stepwise square integrable representations relative to (1.3) we will
say that N is stepwise square integrable.

Remark 1.4. Construction 1.2 of the stepwise square integrable representations
πλ uses (1.3(c)), [lr, zs] = 0 for r > s , so that Lr stabilizes the unitary equivalence
class of πλ1+···+λr−1 . The condition (1.4), [lr, ls] ⊂ v for r > s , enters the picture
in proving that the polynomial P of (1.6(d)) is the Pfaffian Pf = Pfn of bλ on
n/s . However we don’t need that, and the weaker (1.5) is sufficient to show that
P is the Plancherel density. See Theorem 1.6 below.
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Lemma 1.5. [20] Assume that N has stepwise square integrable representa-
tions. Then Plancherel measure is concentrated on the set {πλ | λ ∈ t∗} of all
stepwise square integrable representations.

Theorem 1.1 extends to the stepwise square integrable setting, as follows.

Theorem 1.6. Let N be a connected simply connected nilpotent Lie group
that satisfies (1.3) and (1.5). Then Plancherel measure for N is concentrated
on {πλ | λ ∈ t∗}. If λ ∈ t∗ , and if u and v belong to the representation space Hπλ

of πλ , then the coefficient fu,v(x) = 〈u, πν(x)v〉 satisfies

||fu,v||2L2(N/S) =
||u||2||v||2

|P (λ)|
. (1.7)

The distribution character Θπλ of πλ satisfies

Θπλ(f) = c−1|P (λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N) (1.8)

where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)), f̂1 is its
classical Fourier transform, O(λ) is the coadjoint orbit Ad∗(N)λ = v∗ + λ, and
dνλ is the translate of normalized Lebesgue measure from v∗ to Ad∗(N)λ. The
Plancherel formula on N is

f(x) = c

∫
t∗

Θπλ(rxf)|P (λ)|dλ for f ∈ C(N). (1.9)

Theorem 1.6 is proved in [20] for groups N that satisfy (1.3) together with
(1.4). We will need it for (1.3) together with the somewhat less restrictive (1.5).
The only point where the argument needs a slight modification is in the proof
of (1.7). The action of Lm on l1 + · · · + lm−1 is unipotent, so there is an Lm -
invariant measure preserving decomposition Nm/Sm = (L1/Z1)× · · · × (Nm/Zm).

The case m = 1 is the property |fu,v|2L2(L1/Z1) = ||u||2||v||2
|Pf(λ)| < ∞ of coefficients

of square integrable representations. By induction on m , |fu,v|2L2(Nm−1/Sm−1)) =
||u||2||v||2

|Pf(λ1)...Pf(λm−1)| for Nm−1 . Let π† be the extension of π ∈ N̂m−1 to Nm . Let
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u, v ∈ Hπλ1+...λm−1
and write vy for π†λ1+···+λm−1

(y)v . Let u′, v′ ∈ Hπλm
.

||fu⊗u′,v⊗v′||2L2(N/S) =

∫
N/S

|〈u, π†λ1+...λm−1
(xy)v〉|2|〈u′, πλm(y)v′〉|2d(xySm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, π†λ1+...λm−1
(xy)v〉|2d(xSm−1)

)
d(yZm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, π†λ1+...λm−1
(x)vy〉|2d(xSm−1)

)
d(yZm)

=

∫
Lm/Zm

|〈u′, πλm(y)v′〉|2
(∫

Nm−1/Sm−1

|〈u, πλ1+...λm−1(x)vy〉|2d(xSm−1)

)
d(yZm)

= ||u||2||vy ||2
|Pf(λ1)...Pf(λm−1)|

∫
Nm/Zm

|〈u′, πλm(y)v′〉|2d(yZm)

= ||u||2||v||2
|Pf(λ1)...Pf(λm−1)|

∫
Nm/Zm

|〈u′, πλm(y)v′〉|2d(yZm) =
||u⊗ u′||2||v ⊗ v′||2

|Pf(λ1) . . .Pf(λm)|
<∞.

Thus Theorem 1.6 is valid as stated.

The first goal of this note is to show that if N is the nilradical of a parabolic
subgroup Q of a real reductive Lie group, then N is stepwise square integrable,
specifically that it satisfies (1.3) and (1.5), so that Theorem 1.6 applies to it. That
is Theorem 4.5. The second goal is to examine applications to Fourier analysis
on the parabolic Q and several important subgroups, such as the maximal split
solvable subgroups and the maximal amenable subgroup of Q . The third goal is
to extend all these results to direct limit parabolics in a certain class of infinite
dimensional real reductive Lie groups.

In Section 2 we recall the restricted root machinery used in [20] to show
that nilradicals of minimal parabolics are stepwise square integrable. In Section 3
we make a first approximation to refine that machinery to apply it to general
parabolics. That is enough to see that those parabolics satisfy (1.3), and to
construct their stepwise square integrable representations. But it not quite enough
to compute the Plancherel density. Then in Section 4 we introduce an appropriate
modification of the earlier stepwise square integrable machinery. We prove (1.5)
in general and use the result to compute the Plancherel density and verify the
estimates and inversion formula of Theorem 1.6 for arbitrary parabolic subgroups
of real reductive Lie groups. The main result is Theorem 4.5.

In Section 5 we apply Theorem 4.5 to obtain explicit Plancherel and Fourier
inversion formulae for the maximal exponential solvable subgroups AN in real
parabolic subgroups Q = MAN , following the lines of the minimal parabolic case
studied in [22]. The key point here is computation of the Dixmier-Pukánszky
operator D for the group AN . Recall that D is a pseudo-differential operator
that compensates lack of unimodularity in AN .

There are technical obstacles to extending our results to non-minimal parabol-
ics Q = MAN , many involving the orbit types for noncompact reductive groups
M , but in Section 6 we do carry out the extension to the maximal amenable sub-
groups (M ∩K)AN . This covers all the maximal amenable subgroups of G that
satisfy a certain technical condition [8].
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That ends Part I: Finite Dimensional Theory. We go on to Part II: Infinite
Dimensional Theory.

In Section 7 we discuss infinite dimensional direct limits of nilpotent Lie
groups and the setup for studying direct limits of stepwise square integrable
representations. Then in Section 8 we introduce the machinery of propagation,
which will allow us to deal with nilradicals of direct limit parabolics.

In Section 9 we apply this machinery to an L2 space for the direct limit
nilradicals. This L2 space is formed using the formal degree inherent in stepwise
square integrable representations, and it is not immediate that its elements are
functions. But we also introduce a limit Schwartz space, based on matrix coeffi-
cients of C∞ vectors for stepwise square integrable representations. It is a well
defined LF (limit of Fréchet) space, sitting naturally in the L2 space, and we can
view that L2 space as its Hilbert space completion. That is Proposition 9.8. We
follow it with a fairly explicit Fourier Inversion Formula, Theorem 9.10.

In Section 10 we work out the corresponding results for the maximal expo-
nential locally solvable subgroup AN of the direct limit parabolic Q = MAN . We
have to be careful about the Schwartz space and the lack of a Dixmier-Pukánszky
operator in the limit, but the results of Section 9 to extend from N to AN .
See Proposition 10.4 and Theorem 10.6. In Section 11 we develop similar results
for the maximal lim-compact subgroup U of M , carefully avoiding the analytic
complications that would result from certain classes of Type II and Type III rep-
resentations.

In Section 12 we fit the results of Sections 9 and 11 together for an analysis
of the L2 space, the Schwartz space, and the Fourier Inversion formula, for the
limit group UN in the parabolic Q = MAN . Finally, in Section 13, we combine
the results of Sections 10 and 12 for the corresponding results on the maximal
amenable subgroup UAN of the limit parabolic Q . See Proposition 13.2 and
Theorem 13.4.

2. Specialization to Minimal Parabolics

In order to prove our result for nilradicals of arbitrary parabolics we need to study
the construction that gives the decomposition N = L1L2 . . . Lm of 1.3 and the form
of the Pfaffian polynomials for the individual the square integrable layers Lr .

Let G be a connected real reductive Lie group, G = KAN an Iwasawa
decompsition, and Q = MAN the corresponding minimal parabolic subgroup.
Complete a to a Cartan subalgebra h of g . Then h = t + a with t = h ∩ k . Now
we have root systems

• ∆(gC, hC): roots of gC relative to hC (ordinary roots),

• ∆(g, a): roots of g relative to a (restricted roots),

• ∆0(g, a) = {α ∈ ∆(g, a) | 2α /∈ ∆(g, a)} (nonmultipliable restricted roots).

The choice of n is the same as the choice of a positive restricted root systen
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∆+(g, a). Define

β1 ∈ ∆+(g, a) is a maximal positive restricted root and

βr+1 ∈ ∆+(g, a) is a maximum among the roots of ∆+(g, a)

orthogonal to all βi with i 5 r

(2.1)

The resulting roots (we usually say root for restricted root) βr , 1 5 r 5 m ,
are mutually strongly orthogonal, in particular mutually orthogonal, and each
βr ∈ ∆0(g, a). For 1 5 r 5 m define

∆+
1 = {α ∈ ∆+(g, a) | β1 − α ∈ ∆+(g, a)} and

∆+
r+1 = {α ∈ ∆+(g, a) \ (∆+

1 ∪ · · · ∪∆+
r ) | βr+1 − α ∈ ∆+(g, a)}.

(2.2)

We know [20, Lemma 6.1] that if α ∈ ∆+(g, a) then either α ∈ {β1, . . . , βm} or α
belongs to exactly one of the sets ∆+

r .

The layers are are the

lr = gβr +
∑

∆+
r

gα for 1 5 r 5 m (2.3)

Denote
sβr is the Weyl group reflection in βr ,

σr : ∆(g, a)→ ∆(g, a) by σr(α) = −sβr(α).
(2.4)

Then σr leaves βr fixed and preserves ∆+
r . Further, if α, α′ ∈ ∆+

r then α + α′ is
a (restricted) root if and only if α′ = σr(α), and in that case α + α′ = βr .

From this it follows [20, Theorem 6.11] that N = L1L2 . . . Lm satisfies (1.3)
and (1.4), so it has stepwise square integrable representations. Further [20, Lemma
6.4] the Lr are Heisenberg groups in the sense that if λr ∈ z∗r with Pf lr(λr) 6= 0
then lr/ kerλr is an ordinary Heisenberg group of dimension dim vr + 1.

3. Intersection with an Arbitrary Real Parabolic

Every parabolic subgroup of G is conjugate to a parabolic that contains the
minimal parabolic Q = MAN . Let Ψ denote the set of simple roots for the
positive system ∆+(g, a). Then the parabolic subgroups of G that contain Q are
in one to one correspondence with the subsets Φ ⊂ Ψ, say QΦ ↔ Φ, as follows.
Denote Ψ = {ψi} and set

Φred =
{
α =

∑
ψi∈Ψ

niψi ∈ ∆(g, a) | ni = 0 whenever ψi /∈ Φ
}

Φnil =
{
α =

∑
ψi∈Ψ

niψi ∈ ∆+(g, a) | ni > 0 for some ψi /∈ Φ
}
.

(3.1)

Then, on the Lie algebra level, qΦ = mΦ + aΦ + nΦ where

aΦ = {ξ ∈ a | ψ(ξ) = 0 for all ψ ∈ Φ} = Φ⊥ ,

mΦ + aΦ is the centralizer of aΦ in g, so mΦ has root system Φred, and

nΦ =
∑

α∈Φnil
gα , nilradical of qΦ , sum of the positive aΦ-root spaces.

(3.2)
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Since n =
∑

r lr , as given in (2.3) we have

nΦ =
∑

r
(nΦ ∩ lr) =

∑
r

(
(gβr ∩ nΦ) +

∑
∆+
r

(gα ∩ nΦ)
)
. (3.3)

As ad (m) is irreducible on each restricted root space, if α ∈ {βr} ∪ ∆+
r then

gα ∩ nΦ is 0 or all of gα .

Lemma 3.1. Suppose gβr ∩ nΦ = 0. Then lr ∩ nΦ = 0.

Proof. Since gβr ∩ nΦ = 0, the root βr has form
∑

ψ∈Φ nψψ with each nψ = 0
and nψ = 0 for ψ /∈ Φ. If α ∈ ∆+

r it has form
∑

ψ∈Ψ `ψψ with 0 5 `ψ 5 nψ
for each ψ ∈ Ψ. In particular `ψ = 0 for ψ /∈ Φ. Now every root space of lr is
contained in mΨ . In particular lr ∩ nΦ = 0.

Remark 3.2. We can define a partial order on {βi} by: βi+1 � βi when the
set of positive roots of which βi+1 is a maximum is contained in the corresponding
set for βi . This is only a consideration when one further disconnects the Dynkin
diagram by deleting a node at which −βi attaches, which doesn’t happen for type
A . If βs � βr in this partial order, and gβr ∩ nΦ = 0, then gβs ∩ nΦ = 0 as well,
so ls ∩ nΦ = 0.

Lemma 3.3. Suppose gβr∩nΦ 6= 0. Define Jr ⊂ ∆+
r by lr∩nΦ = gβr +

∑
Jr
gα .

Decompose Jr = J ′r ∪ J ′′r (disjoint) where J ′r = {α ∈ Jr | σrα ∈ Jr} and
J ′′r = {α ∈ Jr | σrα /∈ Jr}. Then gβr +

∑
J ′′r

gα belongs to a single aΦ -root

space in nΦ , i.e. α|aΦ
= βr|aΦ

, for every α ∈ J ′′r .

Proof. Two restricted roots α =
∑

Ψ niψi and α′ =
∑

Ψ `iψi have the same
restriction to aΦ if and only if ni = `i for all ψi /∈ Φ. Now suppose α ∈ J ′′r and
α′ = σrα . Then ni > 0 for some ψi /∈ Φ but `i = 0 for all ψi /∈ Φ. Thus α and
βr = α+ σrα have the same ψi -coefficient ni = ni + `i for every ψi /∈ Φ. In other
words the corresponding restricted root spaces are contained in the same aΦ -root
space.

Lemma 3.4. Suppose lr ∩ nΦ 6= 0. Then the algebra lr ∩ nΦ has center
gβr +

∑
J ′′r

gα , and lr ∩ nΦ = (gβr +
∑

J ′′r
gα) + (

∑
J ′r
gα)). Further, lr ∩ nΦ =(∑

J ′′r
gα

)
⊕
(
gβr +

(∑
J ′r
gα

))
direct sum of ideals.

Proof. This is immediate from the statements and proofs of Lemmas 3.1
and 3.3.

Following the cascade construction (2.1) it will be convenient to define sets
of simple restricted roots

Ψ1 = Ψ and Ψs+1 = {ψ ∈ Ψ | 〈ψ, βi〉 = 0 for 1 5 i 5 s}. (3.4)

Note that Ψr is the simple root system for {α ∈ ∆+(g, a) | α ⊥ βi for i < r} .

Lemma 3.5. If r > s then [lr ∩ nΦ , gβs +
∑

J ′′s
gα] = 0.
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Proof. Suppose that α ∈ J ′′s . Express α and σsα as sums of simple roots,
say α =

∑
niψi and σsα =

∑
`iψi . Then, `i = 0 for all ψi ∈ Ψs ∩ Φnil and

βs =
∑

(ni + `i)ψi . In other words the coefficient of ψi is the same for α and
βs whenever ψi ∈ Ψs ∩ Φnil . Now let γ ∈ ({βr} ∪ ∆+

r ) ∩ Φnil where r > s , and
express γ =

∑
ciψi . Then ci0 > 0 for some βi0 ∈ (Ψr ∩ Φnil). Note Ψr ⊂ Ψs , so

ci0 > 0 for some βi0 ∈ (Ψs ∩ Φnil) . Also, [lr, ls] ⊂ ls because r > s . If γ + α is a
root then its ψi0 -coefficient is greater than that of βs , which is impossible. Thus
γ + α is not a root. The lemma follows.

We look at a particular sort of linear functional on
∑

r

(
gβs +

∑
J ′′s
gα
)
.

Choose λr ∈ g∗βr such that bλr is nondegenerate on
∑

r

∑
J ′r
gα . Set λ =

∑
λr .

We know that (1.3(c)) holds for the nilradical of the minimal parabolic q that
contains qΦ . By Lemma 3.5 it follows that bλ(lr, ls) = λ([lr, ls] = 0 for r > s . For
this particular type of λ , the bilinear form bλ has kernel

∑
r

(
gβs +

∑
J ′′s
gα
)

and

is nondegenerate on
∑

r

∑
J ′r
gα .

At this point, the decomposition NΦ = (L1 ∩ NΦ)(L2 ∩ NΦ) . . . (Lm ∩ NΦ)
satisfies the first two conditions of (1.3):

(a) each factor Lr ∩NΦ has unitary representations with coefficients

in L2((Lr ∩NΦ)/(center)), and

(b) each Nr ∩NΦ := (L1 ∩NΦ) . . . (Lr ∩NΦ) is a normal subgroup of NΦ

with Nr ∩NΦ = (Nr−1 ∩NΦ) o (Lr ∩NΦ) semidirect.

With Lemma 3.5 this is enough to carry out Construction 1.2 of our representations
πλ of NΦ . However it is not enough for (1.3(c)) and (1.5). For that we will group
the Lr∩NΦ in such a way that (1.5) is immediate and (1.3(c)) follows from Lemma
3.5. This will be done in the next section.

4. Extension to Arbitrary Parabolic Nilradicals

In this section we address (1.3(c)) and (1.5), completing the proof that NΦ has a
decomposition that leads to stepwise square integrable representations.

We start with some combinatorics. Denote sets of indices as follows. q1 is
the first index of (1.3) (usually 1) such that βq1 |aΦ

6= 0; define

I1 = {i | βi|aΦ
= βq1|aΦ

}.

Then q2 is the first index of (1.3) such that q2 /∈ I1 and βq2|aΦ
6= 0; define

I2 = {i | βi|aΦ
= βq2|aΦ

}.

Continuing, qk is the first index of (1.3) such that qk /∈ (I1 ∪ · · · ∪ Ik−1) and
βqk |aΦ

6= 0; define
Ik = {i | βi|aΦ

= βqk |aΦ
}

as long as possible. Write ` for the last index k that leads to a nonempty set Ik .
Then, in terms of the index set of (1.3), I1 ∪ · · · ∪ I` consists of all the indices i
for which βi|aΦ

6= 0.
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For 1 5 j 5 ` define

lΦ,j =
∑

i∈Ij
(li ∩ nΦ) =

(∑
i∈Ij

li

)
∩ nΦ and l†Φ,j =

∑
k=j

lΦ,k . (4.1)

Lemma 4.1. If k = j then [lΦ,k, lΦ,j] ⊂ lΦ,j . For each index j , lΦ,j and l†Φ,j
are subalgebras of nΦ and lΦ,j is an ideal in l†Φ,j .

Proof. As we run along the sequence {β1, β2, . . . } the coefficients of the simple
roots are weakly decreasing, so in particular the coefficients of the roots in Ψ \ Φ
are weakly decreasing. If r ∈ Ik , s ∈ Ij and k > j now r > s . Using [lr, ls] ⊂ ls
(and thus [(lr ∩ nΦ), (ls ∩ nΦ)] ⊂ ls ∩ nΦ ) for r > s it follows that [lΦ,k, lΦ,j] ⊂ lΦ,j
for k > j .

Now suppose k = j . If r = s then [lr, lr] = gβr , so we may assume r > s ,
and thus [lr, ls] ⊂ ls ⊂ lΦ,j . It follows that [lΦ,k, lΦ,j] ⊂ lΦ,j for k = j .

Now it is immediate that lΦ,j and l†Φ,j are subalgebras of nΦ and lΦ,j is an

ideal in l†Φ,j .

Lemma 4.2. If k > j then [lΦ,k , lΦ,j] ∩
∑

i∈Ij gβi = 0.

Proof. This is implicit in Theorem 1.6, which gives (1.5), but we give a direct
proof for the convenience of the reader. Let gγ ⊂ lΦ,k and gα ⊂ lj with
[gγ, gα] ∩

∑
i∈Ij gβi 6= 0. Then [gγ, gα] = gβi where gγ ⊂ lr and gα ⊂ li , so

gγ = gβi−α ⊂ lr ∩ li = 0. That contradiction proves the lemma.

Given r ∈ Ij we use the notation of Lemma 3.3 to decompose

lr ∩ nΦ = l′r + l′′r where l′r = gβr +
∑

J ′r
gα and l′′r =

∑
J ′′r
gα . (4.2)

Here J ′r consists of roots α ∈ ∆+
r such that gα + gβr−α ⊂ nΦ , and J ′′r consists of

roots α ∈ ∆+
r such that gα ⊂ nΦ but gβr−α 6⊂ nΦ . For 1 5 j 5 ` define

zΦ,j =
∑

i∈Ij
(gβi + l′′i ) (4.3)

and decompose

lΦ,j = l′Φ,j + l′′Φ,j where l′Φ,j =
∑

i∈Ij
l′i and l′′Φ,j =

∑
i∈Ij

l′′i . (4.4)

Lemma 4.3. Recall l†Φ,j =
∑

k=jlΦ,k from (4.1). For each j , both zΦ,j and l′′Φ,j
are central ideals in l†Φ,j , and zΦ,j is the center of lΦ,j .

Proof. Lemma 3.3 shows that α|aΦ
= βi|aΦ

whenever i ∈ Ij and gα ⊂ l′′Φ,j .
If [lΦ,k, l

′′
i ] 6= 0 it contains some gδ such that gδ ⊂ lΦ,j and at least one of the

coefficients of δ along roots of Ψ \ Φ is greater than that of βi . As gδ ⊂ li that
is impossible. Thus l′′Φ,j is a central ideal in l†Φ,j . The same is immediate for
zΦ,j =

∑
i∈Ij(gβi + l′′i ) . In particular zΦ,j is central in lΦ,j . But the center of lΦ,j

can’t be any larger, by definition of l′Φ,j .
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Decompose

nΦ = zΦ + vΦ where zΦ =
∑
j

zΦ,j , vΦ =
∑
j

vΦ,j and vΦ,j =
∑
i∈Ij

∑
α∈J ′i

gα . (4.5)

Then Lemma 4.3 gives us (1.5) for the lΦ,j : lΦ,j = l′Φ,j ⊕ l′′Φ,j with l′′Φ,j ⊂ zΦ,j and
vΦ,j ⊂ l′Φ,j .

Lemma 4.4. For generic λj ∈ z∗Φ,j the kernel of bλj on lΦ,j is just zΦ,j , in
other words bλj is is nondegenerate on vΦ,j ' lΦ,j/zΦ,j . In particular LΦ,j has
square integrable representations.

Proof. From the definition of l′Φ,j , the bilinear form bλj on lΦ,j annihilates the
center zΦ,j and is nondegenerate on vΦ,j . Thus the corresponding representation
πλj of LΦ,j has coefficients that are square integrable modulo its center.

Now we come to our first main result:

Theorem 4.5. Let G be a real reductive Lie group and Q a real parabolic
subgroup. Express Q = QΦ in the notation of (3.1) and (3.2). Then its nilradical
NΦ has decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` that satisfies the conditions of (1.3)
and (1.5) as follows. The center ZΦ,j of LΦ,j is the analytic subgroup for zΦ,j and

(a) each LΦ,j has unitary reps with coefficients in L2(LΦ,j/ZΦ,j),

(b) each NΦ,j := LΦ,1LΦ,2 . . . LΦ,j is a normal subgroup of NΦ

with NΦ,j = NΦ,j−1 o LΦ,j semidirect, and

(c) [lΦ,k, zΦ,j] = 0 and [lΦ,k, lΦ,j] ⊂ vΦ,j + l′′Φ,j for k > j.

(4.6)

In particular NΦ has stepwise square integrable representations relative to the
decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` , and the results of Theorem 1.6, specifically
(1.7), (1.8) and (1.9), hold for NΦ .

Proof. Statement (a) is the content of Lemma 4.4, and statement (b) follows
from Lemma 4.1. The first part of (c), [lΦ,k, zΦ,j] = 0 for k > j , is contained in
Lemma 4.3. The second part, [lΦ,k, lΦ,j] ⊂ vΦ + l′′Φ,j for k > j , follows from Lemma
4.2. Now Theorem 1.6 applies.

5. The Maximal Exponential-Solvable Subgroup AΦNΦ

In this section we extend the considerations of [22, §4] from minimal parabolics to
the exponential-solvable subgroups AΦNΦ of real parabolics QΦ = MΦAΦNΦ . It
turns out that the of Plancherel and Fourier inversion formulae of NΦ go through,
with only small changes, to the non-unimodular solvable group AΦNΦ . We follow
the development in [22, §4].

Let H be a separable locally compact group of type I. Then [6, §1] the
Fourier inversion formula for H has form

f(x) =

∫
Ĥ

traceπ(D(rxf))dµH(π) (5.1)
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where D is an invertible positive self adjoint operator on L2(H), conjugation semi-
invariant of weight equal to that of the modular function δH , rxf is the right
translate y 7→ f(yx), and µ is a positive Borel measure on the unitary dual Ĥ .
When H is unimodular, D is the identity and (5.1) reduces to the usual Fourier
inversion formula for H . In general the semi-invariance of D compensates any
lack of unimodularity. See [6, §1] for a detailed discussion including a discussion
of the domains of D and D1/2 . Here D⊗µ is unique up to normalization of Haar
measure, but (D,µ) is not unique, except of course when we fix one of them, such
as in the unimodular case when we take D = 1. Given such a pair (D,µ) we
refer to D as a Dixmier-Pukánszky operator and to µ as the associated Plancherel
measure.

One goal of this section is to describe a “best” choice of the Dixmier-
Pukánszky operator for AΦNΦ in terms of the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,`

that gives stepwise square integrable representations of NΦ .

Let δ = δQΦ
denote the modular function of QΦ . Its kernel contains MΦNΦ

because Ad(MΦ) is reductive with compact center and Ad(NΦ) is unipotent. Thus
δ(man) = δ(a), and if ξ ∈ aΦ then δ(exp(ξ)) = exp(trace (ad (ξ))). Note that δ
also is the modular function for AΦNΦ .

Lemma 5.1. Let ξ ∈ aΦ . Then each dim lΦ,j + dim zΦ,j is even, and

(i) the trace of ad (ξ) on lΦ,j is 1
2

dim(lΦ,j + dim zΦ,j)βj0(ξ) for any j0 ∈ Ij ,

(ii) the trace of ad (ξ) on nΦ , on aΦ+nΦ and on qΦ is 1
2

∑
j(dim lΦ,j+dim zΦ,j)βj0(ξ),

(iii) the determinant of Ad(exp(ξ)) on nΦ , on aΦ + nΦ ,

and on qΦ , is
∏

j exp(βj0(ξ))
1
2

(dim lΦ,j+dim zΦ,j) .

Proof. We use the notation of (4.2), (4.3) and (4.4). It is immediate that
dim lr + dim(gβr + l′′r) is even. Sum over r ∈ Ij to see that dim lΦ,j + dim zΦ,j is
even.

The trace of ad (ξ) on lr ∩ nΦ is (dim gβr)βr(ξ) on gβr , and we add
1
2

∑
α∈J ′r

(dim gα)βr(ξ) for the pairs gα, g
′
α ∈ ∆+

r ∩ Φnil that pair into gβr , plus∑
α∈J ′′r

(dim gα)βr(ξ) since α ∈ J ′′r implies α|aΦ
= βr|aΦ

. Now the trace of ad (ξ)
on lr ∩ nΦ is

(1
2

dim gβr + 1
2

dim l′r + dim l′′r)βr(ξ) = 1
2

dim(lr ∩ nΦ) + dim(gβr + l′′r)βr(ξ).
Summing over r ∈ Ij we arrive at assertion (i). Then sum over j for (ii) and
exponentiate for (iii).
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We reformulate Lemma 5.1 as

Lemma 5.2. The modular function δ = δQΦ
of QΦ = MΦAΦNΦ is

δ(man) =
∏

j
exp(βj0(log a))

1
2

(dim lΦ,j+dim zΦ,j) .

The modular function δAΦNΦ
= δ|AΦNΦ

, and δUΦAΦNΦ
= δ|UΦAΦNΦ

where UΦ is a
maximal compact subgroup of MΦ .

Consider semi-invariance of the polynomial P of (1.6(d)), which by defini-
tion is the product of factors Pf lΦ,j . Using (4.5) and Lemma 4.4, calculate with
bases of the vΦ,j as in [22, Lemma 4.4] to arrive at

Lemma 5.3. Let ξ ∈ aΦ and a = exp(ξ) ∈ AΦ . Then

ad (ξ)P =
(

1
2

∑
j
dim(lΦ,j/zΦ,j)βj0(ξ)

)
P

and
Ad(a)P =

(∏
j
(exp(βj0(ξ)))

1
2

∑
j dim(lΦ,j/zΦ,j)

)
P.

Definition 5.4. The quasi-center of nΦ is sΦ =
∑

j zΦ,j . Fix a basis {et} of
sΦ consisting of ordinary root vectors, et ∈ gαt . The quasi-center determinant
relative to the choice of {et} is the function DetsΦ(λ) =

∏
t λ(et) on s∗Φ .

Let a ∈ AΦ and compute

(Ad(a)DetsΦ)(λ) = DetsΦ(Ad∗(a)−1λ) =
∏

t λ(Ad(a)et).

Each et ∈ zΦ,j is multiplied by exp(βj0(log a)). So
(Ad(a)DetsΦ)(λ) =

(∏
j exp(βj0(log a))dim zΦ,j

)
DetsΦ(λ).

Now

Lemma 5.5. If ξ ∈ aΦ then Ad(exp(ξ))DetsΦ =
(∏

j exp(βj0(ξ))dim zΦ,j

)
DetsΦ

where j0 ∈ Ij .

Combining Lemmas 5.1, 5.2 and 5.5 we have

Proposition 5.6. The product P ·DetsΦ is an Ad(QΦ)-semi-invariant polyno-
mial on s∗Φ of degree 1

2
(dim nΦ + dim sΦ) and of weight equal to the weight of the

modular function δQΦ
.

Denote VΦ = exp(vΦ) and SΦ = exp(sΦ). Then VΦ × SΦ → NΦ , by
(v, s) 7→ vs , is an analytic diffeomorphism. Define

D0 : Fourier transform of P ·DetsΦ acting on AΦNΦ = AΦVΦSΦ

by acting on the SΦ variable.
(5.2)
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Theorem 5.7. The operator D0 of (5.2) is an invertible self-adjoint differen-
tial operator of degree 1

2
(dim nΦ + dim sΦ) on L2(AΦNΦ) with dense domain the

Schwartz space C(AΦNΦ), and D := D1,2
0 (D

1/2
0 )∗ is a well defined invertible pos-

itive self-adjoint operator of the same degree 1
2
(dim nΦ + dim sΦ) on L2(AΦNΦ)

with dense domain C(AΦNΦ). In particular D is a Dixmier-Pukánszky operator
on AΦNΦ with domain equal to the space of rapidly decreasing C∞ functions.

Proof. Since it is the Fourier transform of a real polynomial, D0 is a differential
operator that is self-adjoint on L2(AΦNΦ) with dense domain C(AΦNΦ). Thus D
is well defined, and is positive and self-adjoint as asserted. Now it remains only to
see that D (and thus D0 ) are invertible.

Invertibility of D comes out of Dixmier’s theory of quasi-Hilbert algebras
[2] as applied by Kleppner and Lipsman to group extensions. Specifically, [5,
§6] leads to a Dixmier-Pukánszky operator, there called M . The quasi-Hilbert
algebra in question is defined on [5, pp. 481–482], the relevant transformations
M and Υ are specified in [12, Theorem 1], and invertibility of M is shown in
[2, pp. 293–294]. Unwinding the definitions of M and Υ in [5, §6] one sees that
the Dixmier-Pukánszky operator M of [5] is the same as our operator D . That
completes the proof.

The action of aΦ on zΦ,j is scalar, ad (α)ζ = βj0(α)ζ where (as before)
j0 ∈ Ij . So the isotropy algebra (aΦ)λ is the same at every λ ∈ t∗Φ , given by
(aΦ)λ = {α ∈ aΦ | every βj0(α) = 0} . Thus the (AΦ)-stabilizer on t∗Φ is

A′Φ := {exp(α) | every βj0(α) = 0}, independent of choice of λ ∈ t∗Φ . (5.3)

Given λ ∈ t∗Φ , in other words given a stepwise square integrable represen-
tation πλ where λ ∈ s∗Φ , we write π†λ for the extension of πλ to a representation
of A′ΦNΦ on the same Hilbert space. That extension exists because A′Φ is a vector
group, thus contractible to a point, so H2(A′Φ;C′) = H2(point;C′) = {1} , and the
Mackey obstruction vanishes. Now the representations of AΦNΦ corresponding to
πλ are the

πλ,ξ := Ind AΦNΦ

A′ΦNΦ
(exp(iξ)⊗ π†λ) (5.4)

where ξ ∈ (a′Φ)∗ and exp(iξ) : exp(α) := exp(iξ(α)) for α ∈ a′Φ . Note also that

πλ,ξ · Ad(an) = πAd∗(a)λ,ξ for a ∈ AΦ and n ∈ NΦ . (5.5)

The resulting Plancherel formula (5.1), f(x) =
∫
Ĥ

traceπ(D(rxf))dµH(π), where
H = AΦNΦ , is

Theorem 5.8. Let QΦ = MΦAΦNΦ be a parabolic subgroup of the real reductive
Lie group G. Let D denote the Dixmier-Pukánszky operator of (5.2). Let πλ,ξ ∈
ÂΦNΦ as described in (5.4) and let Θπλ,ξ : h 7→ traceπλ,ξ(h) denote its distribution
character. Then Θπλ,ξ is a tempered distribution. If f ∈ C(AΦNΦ) and x ∈ AΦNΦ

then

f(x) = c

∫
(a′Φ)∗

(∫
s∗Φ/Ad∗(AΦ)

Θπλ,ξ(D(rxf))|Pf(λ)|dλ

)
dφ
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where c = 2d1+···+dmd1!d2! . . . dm! as in (1.6a) and m is the number of factors Lr
in Nn .

Proof. We compute along the lines of the computation of [7, Theorem 2.7] and
[5, Theorem 3.2].

traceπλ,φ(Dh)

=

∫
x∈AΦ/A

′
Φ

δ(x)−1trace

∫
NΦA

′
Φ

(Dh)(x−1nax) · (π†λ ⊗ exp(iφ))(na) dn da dx

=

∫
x∈AΦ/A

′
Φ

trace

∫
NΦA

′
Φ

(Dh)(nx−1ax) · (π†λ ⊗ exp(iφ))(xnx−1a) dn da dx.

Now ∫
(a′Φ)∗

traceπλ,φ(Dh) dφ

=

∫
Â′Φ

∫
x∈AΦ/A′Φ

trace

∫
NΦA′Φ

(Dh)(nx−1ax)(π†λ ⊗ exp(iφ))(xnx−1a) dn da dx dφ

=

∫
x∈AΦ/A′Φ

∫
Â′Φ

trace

∫
NΦA′Φ

(Dh)(nx−1ax)(π†λ ⊗ exp(iφ))(xnx−1a) dn da dφ dx

=

∫
x∈AΦ/A′Φ

trace

∫
NΦ

(Dh)(n)π†λ(xnx−1)dn dx

=

∫
x∈AΦ/A′Φ

trace

∫
NΦ

(Dh)(n)(Ad(x−1) · π†λ)(n)dn dx

=

∫
x∈AΦ/A′Φ

trace (Ad(x−1) · π†λ)(Dh)) dx

=

∫
x∈AΦ/A′Φ

(Ad(x−1) · π†λ)∗(D) trace (Ad(x−1) · π†λ)(h)dx

=

∫
x∈AΦ/A′Φ

(π†λ)∗(Ad(x) ·D) trace (Ad(x−1) · π†λ)(h) dx

=

∫
x∈AΦ/A′Φ

δAΦNΦ(x) trace (Ad(x−1) · π†λ)(h) dx

=

∫
λ′∈Ad∗(AΦ)λ

traceπ†λ′(h)|Pf(λ′)|dλ′.

(5.6)

Summing over λ = Ad∗(AΦ)(λ) ∈ t∗/Ad∗(AΦ) we now have

∫
λ∈t∗Φ/Ad∗(AΦ)

(∫
(a′Φ)∗

traceπλ,φ(Dh) dφ

)
dλ

=

∫
λ∈t∗Φ/Ad∗(AΦ)

(∫
λ′∈Ad∗(AΦ)λ

traceπ†λ′(h)|Pf(λ′)|dλ′
)
dλ

=

∫
λ∈s∗Φ

traceπλ(h)|Pf(λ)|dλ = h(1).

(5.7)

If h = rxf then h(1) = f(x) and the theorem follows.
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6. The Maximal Amenable Subgroup UΦAΦNΦ

In this section we extend our results on NΦ and AΦNΦ to the maximal amenable
subgroups

EΦ := UΦAΦNΦ where UΦ is a maximal compact subgroup of MΦ .

Of course if Φ = ∅ , i.e. if QΦ is a minimal parabolic, then UΦ = MΦ . We start
by recalling the classification of maximal amenable subgroups in real reductive Lie
groups.

Recall the definition. A mean on a locally compact group H is a linear
functional µ on L∞(H) of norm 1 and such that µ(f) = 0 for all real-valued
f = 0. H is amenable if it has a left-invariant mean. There are more than a dozen
useful equivalent conditions. Solvable groups and compact groups are amenable,
as are extensions of amenable groups by amenable subgroups. In particular if UΦ

is a maximal compact subgroup of MΦ then EΦ := UΦAΦNΦ is amenable.

We’ll need a technical condition [8, p. 132]. Let H be the group of real
points in a linear algebraic group whose rational points are Zariski dense, let A
be a maximal R-split torus in H , let ZH(A) denote the centralizer of A in H ,
and let H0 be the algebraic connected component of the identity in H . Then
H is isotropically connected if H = H0 · ZH(A). More generally we will say that
a subgroup H ⊂ G is isotropically connected if the algebraic hull of AdG(H) is
isotropically connected. The point is Moore’s theorem

Proposition 6.1. [8, Theorem 3.2]. The groups EΦ := UΦAΦNΦ are maximal
amenable subgroups of G. They are isotropically connected and self-normalizing.
As Φ runs over the 2|Ψ| subsets of Ψ the EΦ are mutually non-conjugate. An
amenable subgroup H ⊂ G is contained in some EΦ if and only if it is isotropically
connected.

Now we need some notation and definitions. If α ∈ ∆+(g, a) we denote

[α]Φ = {γ ∈ ∆+(g, a) | γ|aΦ
= α|aΦ

} and g[Φ,α] =
∑

γ∈[α]Φ
gγ . (6.1)

Recall [17, Theorem 8.3.13] that the various g[Φ,α] , α /∈ Φred , are ad (mΦ)-invariant
and are absolutely irreducible as ad (mΦ)-modules.

Definition 6.2. The decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` of Theorem 4.5 is
invariant if each ad (mΦ)zΦ,j ⊂ zΦ,j , equivalently if each Ad(MΦ)zΦ,j = zΦ,j , in
other words whenever zΦ,j = g[Φ,βj0 ] . The decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,`

is weakly invariant if each Ad(UΦ)zΦ,j = zΦ,j .

Here are four special cases. (1) If Φ is empty, i.e. if QΦ is a minimal
parabolic subgroup, then the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` is invariant.

(2) If |Ψ \ Φ| = 1, i.e. if QΦ is a maximal parabolic subgroup, then
NΦ = LΦ,1 is invariant.
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(3) Let G = SL(6;R) with simple roots Ψ = {ψ1 , . . . , ψ5} in the usual
order and Φ = {ψ1, ψ4, ψ5} . Then β1 = ψ1 + · · · + ψ5 , β2 = ψ2 + ψ3 + ψ4 and
β3 = ψ3 . Note β1|aΦ

= β2|aΦ
6= β3|aΦ

= (ψ3 + ψ4)|aΦ
. Thus nΦ = lΦ,1 + lΦ2

with lΦ,1 = (l1 + l2) ∩ nΦ and lΦ2 = gβ3 . Now g[Φ,β3] 6= zΦ,2 so the decomposition
NΦ = LΦ,1LΦ,2 . . . LΦ,` is not invariant.

(4) In the example just above, [β3] = {ψ3, ψ3 + ψ4, ψ3 + ψ4 + ψ5} . The
semisimple part [mΦ,mΦ] of mΦ is direct sum of m1 = sl(2;R) with simple root
ψ1 and m4,5 = sl(3;R) with simple roots ψ4 and ψ5 . The action of [mΦ,mΦ]
on g[β3] is trivial on m1 and the usual (vector) representation of m4,5 . That
remains irreducible on the maximal compact so(3) in m4,5 . It follows that here
the decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,` is not weakly invariant.

Lemma 6.3. Let F = exp(ia) ∩K . Then F is an elementary abelian 2-group
of cardinality 5 2dim a . In particular, F is finite, and if x ∈ F then x2 = 1.
Further, F is central in MΦ (thus also in UΦ), UΦ = FU0

Φ , EΦ = FE0
Φ and

MΦ = FM0
Φ .

Proof. Let θ be the Cartan involution of G for which K = Gθ . If x ∈ F then
x = θ(x) = x−1 so x2 = 1. Now F is an elementary abelian 2-group of cardinality
5 2dim a , in particular F is finite.

Let Gu denote the compact real form of GC such that G∩Gu = K , and let
AΦ,u denote the torus subgroup exp(iaΦ). The centralizer MΦ,uAΦ,u = ZGu(AΦ,u)
is connected. It has a maximal torus CΦ,uBΦ,uAΦ,u corresponding to

hC = cΦ,C + bΦ,C + aΦ,C (6.2)

where cΦ is a Cartan subalgebra of uΦ , cΦ + bΦ is a Cartan subalgebra of mΦ

and bΦ + aΦ = a . The complexification MΦ,CAΦ,C = ZGC(AΦ,C) is connected
and has connected Cartan subgroup CΦ,CBΦ,CAΦ,C . Now every component of
MΦAΦ = (MΦ,CAΦ,C) ∩ G contains an element of exp(cΦ + ibΦ + iaΦ). Thus
every component of its maximal compact subgroup UΦ contains an element of
exp(ibΦ + iaΦ) = exp(ia). This proves UΦ ⊂ FU0

Φ . But F ⊂MΦAΦ , and is finite
and central there, so F ⊂ UΦ . Now UΦ = FU0

Φ . It follows that MΦ = FM0
Φ . As

EΦ is the semidirect product of UΦ with an exponential solvable (thus topologically
contractible) group it also follows that EΦ = FE0

Φ .

Notice that the parabolic QΦ is cuspidal (in the sense of Harish-Chandra)
if and only if bΦ = 0, in other words if and only if MΦ has discrete series
representations. The cuspidal parabolics are the ones used to construct standard
tempered representations of real reductive Lie groups.

Lemma 6.4. The action of F on s∗Φ is trivial.

Proof. We know that the action of F is trivial on each z∗j [22, Proposition 3.6].
The action of MΦ is absolutely irreducible on every aΦ -root space [17, Theorem
8.13.3]. Recall zΦ,j =

∑
Ij

(gβi + l′′i ) where l′′i =
∑

J ′′i
gα from (4.2) and (4.3). Using

Lemma 3.3 we see that the action of F is trivial on each gβi + l′′i , thus trivial on
zΦ,j , and thus trivial on their sum sΦ , and finally by duality is trivial on s∗Φ .
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When NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant we can proceed more or
less as in [22]. Set

r∗Φ = {λ ∈ s∗Φ | P (λ) 6= 0 and Ad(UΦ)λ is a principal UΦ-orbit on s∗Φ}. (6.3)

If c 6= 0 and λ ∈ r∗Φ then cλ ∈ r∗Φ . Thus we obtain r∗Φ by scaling the set of all λ in a
unit sphere s of s∗Φ (for any norm) such that Ad(UΦ)λ is a principal UΦ-orbit on s .
Thus, as in the case of compact group actions on compact spaces, r∗Φ is dense, open
and UΦ -invariant in s∗Φ . By definition of principal orbit the isotropy subgroups of
UΦ at the various points of r∗Φ are conjugate, and we take a measurable section σ
to r∗Φ → Ad∗(UΦ)\r∗Φ on whose image all the isotropy subgroups are the same,

U ′Φ : isotropy subgroup of UΦ at σ(UΦ(λ)), independent of λ ∈ r∗Φ . (6.4)

Lemma 6.4 says that U ′Φ = F (U ′Φ ∩ U0
Φ) In view of Lemma 6.4 the principal

isotropy subgroups U ′Φ are specified by the work of W.-C. and W.-Y. Hsiang [3]
on the structure and classification of principal orbits of compact connected linear
groups. With a glance back at (5.3) we have

U ′ΦA
′
Φ : isotropy subgp of UΦAΦ at σ(UΦAΦ(λ)), independent of λ ∈ r∗Φ . (6.5)

The first consequence, as in [22, Proposition 3.3], is

Theorem 6.5. Suppose that NΦ = LΦ,1LΦ,2 . . . LΦ,` is weakly invariant. Let

f ∈ C(UΦNΦ) Given λ ∈ r∗Φ let π†λ denote the extension of πλ to a representation

of U ′ΦNΦ on the space of πλ . Then the Plancherel density at Ind UΦNΦ

U ′ΦNΦ
(π†λ ⊗ µ′),

µ′ ∈ Û ′Φ , is (dimµ′)|P (λ)| and the Plancherel Formula for UΦNΦ is

f(un) = c

∫
r∗Φ/Ad∗(UΦ)

∑
µ′∈Û ′Φ

trace
((

Ind UΦNΦ

U ′ΦNΦ
(π†λ⊗µ

′)
)(
runf

))
·dim(µ′)·|P (λ)|dλ

where c = 2d1+···+dmd1!d2! . . . dm! , from (1.6).

Combining Theorems 5.8 and 6.5 we come to

Theorem 6.6. Let QΦ = MΦAΦNΦ be a parabolic subgroup of the real reductive
Lie group G. Let UΦ be a maximal compact subgroup of MΦ , so EΦ := UΦAΦNΦ

is a maximal amenable subgroup of QΦ . Suppose that the decomposition NΦ =

LΦ,1LΦ,2 . . . LΦ,` is weakly invariant. Given λ ∈ r∗Φ , φ ∈ a′Φ and µ′ ∈ Û ′Φ denote

πλ,φ,µ′ = Ind UΦAΦNΦ

U ′ΦA
′
ΦNΦ

(π†λ ⊗ e
iφ ⊗ µ′) ∈ ÊΦ .

Let Θπλ,φ,µ′
: h 7→ traceπλ,φ,µ′(h) denote its distribution character. Then Θπλ,φ,µ′

is a tempered distribution on the maximal amenable subgroup EΦ . If f ∈ C(EΦ)
then

f(x) = c

∫
(a′Φ)∗

(∫
r∗Φ/Ad∗(UΦAΦ)

(∑
µ′∈∈Û ′Φ

Θπλ,φ,µ′
(D(rxf)) dim(µ′)

)
|P (λ)|dλ

)
dφ

where c = ( 1
2π

)dim a′Φ/2 2d1+···+dmd1!d2! . . . dm! .



Wolf 863

Proof. Theorem 13.4 extends this result to certain direct limit parabolics,
and the calculation in the proof of Theorem 13.4 specializes to give the proof
of Theorem 6.6.

When weak invariance fails we replace the zΦ,j by the larger

g[Φ,βj ] =
∑

α∈[βj ]Φ
gα where [βj]Φ = {α ∈ ∆+(g, a) | α|aΦ

= βj0|aΦ
}, (6.6)

for any j0 ∈ Ij , as in (6.1). Note that g[Φ,βj ] is an irreducible Ad(M0
Φ)-module.

We need to show that we can replace sΦ =
∑

zΦ,j by s̃Φ :=
∑

j g[Φ,βj ] in our
Plancherel formulae. The key is

Lemma 6.7. Let λj ∈ g∗[Φ,βj ] . Split g[Φ,βj ] = zΦ,j+wΦ,j where wΦ,j = g[Φ,βj ]∩vΦ

is the sum of the gα that occur in g[Φ,βj ] but not in zΦ,j . Then the Pfaffian
Pfj(λj) = Pfj(λj|zΦ,j).

Proof. Write λj = λz,j+λw,j where λz,j(wΦ,j) = 0 = λw,j(zΦ,j). Let gγ, gδ ⊂ lΦ,j
with [gγ, gδ] 6= 0. Then [gγ, gδ] ⊂ lΦ,j , so [gγ, gδ] ∩ wΦ,j = 0, in particular
λw,j([gγ, gδ]) = 0. In other words λj([gγ, gδ]) = λj|zΦ,j([gγ, gδ]). Now bλj |zΦ,j = bλj ,
so their Pfaffians are the same.

In order to extend Theorems 6.5 and 6.6 we now need only make some
trivial changes to (6.3), (6.4), (6.5) and the measurable section:

• r̃Φ
∗

= {λ ∈ s̃Φ
∗ | P (λ) 6= 0 and Ad(UΦ)λ is a principal UΦ-orbit on s̃Φ

∗} .

• σ̃ : measurable section to r̃Φ
∗ → r̃Φ

∗\UΦ on whose image all the isotropy
subgroups are the same.

• U ′Φ : isotropy subgroup of UΦ at σ̃(UΦ(λ)), independent of λ ∈ r̃Φ
∗

.

• U ′ΦA
′
Φ : isotropy subgroup of UΦAΦ at σ̃(UΦAΦ(λ)), independent of λ ∈ r̃Φ

∗
.

The result is

Theorem 6.8. In Theorems 6.5 and 6.6 one can omit the requirement that
NΦ = LΦ,1LΦ,2 . . . LΦ,` be weakly invariant.

Part II: Infinite Dimensional Theory

7. Direct Limits of Nilpotent Lie Groups

In this section we describe the basic outline for direct limits of stepwise square
integrable representations of simply connected nilpotent Lie groups. Later we
will specialize these constructions to nilradicals NΦ,∞ = lim−→NΦ,n of parabolic
subgroups QΦ,∞ = lim−→QΦ,n in our real reductive Lie groups G∞ = lim−→Gn . In
order to do that we will need to adjust the ordering in the decompositions (1.3)
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so that they fit together as n increases. We do that by reversing the indices and
keeping the Lr constant as n goes to infinity. Thus, we suppose that

{Nn} is a strict direct system of connected nilpotent Lie groups, (7.1)

in other words the connected simply connected nilpotent Lie groups Nn have the
property that Nn is a closed analytic subgroup of N` for all ` = n . As usual, Zr
denotes the center of Lr . For each n , we require that

Nn =L1L2 · · ·Lmn where

(a) Lr is a closed analytic subgroup of Nn for 1 5 r 5 mn and

(b) each Lr has unitary representations with coefficients in L2(Lr/Zr).

(x) Lp,q = Lp+1Lp+2 · · ·Lq for p < q and

N`,n = Lm`+1Lm`+2 · · ·Lmn = Lm`,mn for ` < n;

(c) N`,n is normal in Nn and Nn = Nr nNr,n semidirect product,

(d) lr = zr + vr and nn = sn +
⊕

r5mn
vr where sn =

⊕
r5mn

zr;

then [lr, zs] = 0 and [lr, ls] ⊂ l′′s + v for r < s where

lr = l′r ⊕ l′′r direct sum of ideals with l′′r ⊂ zr and vr ⊂ l′r

(7.2)

With this we can follow the lines of the constructions in [20, Section 5] as
indicated in §1 above. Denote

Pn(γn) = Pf1(λ1)Pf2(λ2) · · ·Pfmn(λmn) , λr ∈ z∗r and γn = λ1 + · · ·+ λmn (7.3)

and the nonsingular set

t∗n = {γn ∈ s∗n | Pn(γn) 6= 0}. (7.4)

When γn ∈ t∗n the stepwise square integrable representation πγn ∈ N̂n is defined as

in Construction 1.2, but with the indices reversed: πλ1+···+λm+1 = π†λ1+···+λm⊗̂πλm+1

with representation space Hπλ1+···+λm+1
= Hπλ1+···+λm

⊗̂Hπλm+1
.

The parameter space for our representations of the direct limit Lie group
N = lim−→Nn is

t∗ =
{
γ = (γ`) ∈ s∗ = lim←− s∗`

∣∣ γ` = λ1 + · · ·+ λm` ∈ t∗` for all `
}
. (7.5)

The closed normal subgroups Nn,n+1 and Nn,∞ satisfy Nn
∼= Nn+1/Nn,n+1

∼=
N/Nn,∞ . Let γ ∈ t∗ and denote

πγ,n: the stepwise square integrable πλ1+···+λmn ∈ N̂n

πγ,n,n+1: the stepwise square integrable πλmn+1+···+λmn+1
∈ N̂n,n+1

(7.6)

Using Nn
∼= Nn+1/Nn,n+1 we lift πγ,n to a representation π†γ,n of Nn+1 whose kernel

contains Nn,n+1 and we extend πγ,n,n+1 to a representation π†γ,n,n+1 of Nn+1 on
the same representation space Hπγ,n,n+1 . Then we define

πγ,n+1 = π†γ,n ⊗ π
†
γ,n,n+1 ∈ N̂n+1 . (7.7)
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The representation space is the projective (jointly continuous) tensor product
Hπγ,n+1 = Hπγ,n⊗̂Hπγ,n,n+1 where Hπγ,n,n+1 = Hπλ,mn+1

⊗̂ · · · ⊗̂Hπλ,mn+1
. Choose

a C∞ unit vector en+1 ∈ Hπγ,n,n+1 . Then

v 7→ v ⊗ en+1 is an Nn-equivariant isometry Hπγ,n ↪→ Hπγ,n+1 (7.8)

exhibits πγ,n as the restriction πγ,n+1|Nn on the subspace (Hπγ,n⊗en+1) of Hπγ,n+1 .

Lemma 7.1. The maps just described, define direct system {(πγ,n,Hπγ,n)} of
irreducible stepwise square integrable unitary representations, and thus define an
irreducible unitary representation πγ = lim−→ πγ,n of N = lim−→Nn on the Hilbert
space Hπγ = lim−→Hπγ,n .

The representations πγ described in Lemma 7.1 are the limit stepwise
square integrable representations of N . Corollary 9.9 will show that the unitary
equivalence class of πγ is independent of the choice of the C∞ unit vectors en .

8. Direct Limit Structure of Parabolics and some Subgroups

We adapt the constructions Section 7 to limits of nilradicals of parabolic subgroups.
That requires some alignment of root systems so that the direct limit respects the
restricted root structures, in particular the strongly orthogonal root structures, of
the Nn . We enumerate the set Ψn = Ψ(gn, an) of nonmultipliable simple restricted
roots so that, in the Dynkin diagram, for type A we spread from the center of
the diagram. For types B , C and D , ψ1 is the right endpoint. In other words
for ` = n Ψ` is constructed from Ψn adding simple roots to the left end of their
Dynkin diagrams. Thus

A2`+1
aψ−` p p p aψ−n p p p aψ0 p p p aψn p p p aψ` ` = n = 0

A2`
aψ−` p p p aψ−n p p p aψ−1 aψ1 p p p aψn p p p aψ` ` = n = 1

(8.1)

B` bψ` p p p bψn bψn−1 p p p bψ2 rψ1 ` = n = 2

C` rψ` p p p rψn rψn−1 p p p rψ2 bψ1 ` = n = 3

D`

bψ` p p p bψn bψn−1 p p p bψ3
HH bψ1

��
bψ2

` = n = 4

(8.2)

We describe this by saying that G` propagates Gn . For types B , C and D this
is the same as the notion of propagation in [10] and [11].

The direct limit groups obtained this way are SL(∞;C), SO(∞;C),
Sp(∞;C), SL(∞;R), SL(∞;H), SU(∞, q) with q 5∞ , SO(∞, q) with q 5∞ ,
Sp(∞, q) with q 5∞ , Sp(∞;R) and SO∗(2∞).

Let {Gn} be a direct system of real semisimple Lie groups in which G`

propagates Gn for ` = n . Then the corresponding simple restricted root systems
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satisfy Ψn ⊂ Ψ` as indicated in (8.1) and (8.2). Consider conditions on a family
Φ = {Φn} of subsets Φn ⊂ Ψn such that Gn ↪→ G` maps the corresponding
parabolics QΦ,n ↪→ QΦ,` . Then we have

QΦ,∞ := lim−→QΦ,n inside G∞ := lim−→Gn . (8.3)

Express QΦ,n = MΦ,nAΦ,nNΦ,n and QΦ,` = MΦ,`AΦ,`NΦ,` . Then MΦ,n ↪→ MΦ,`

is equivalent to Φn ⊂ Φ` , AΦ,n ↪→ AΦ,` is implicit in the condition that G`

propagates Gn , and NΦ,n ↪→ NΦ,` is equivalent to (Ψn\Φn) ⊂ (Ψ`\Φ`) . As before
let UΦ,n denote a maximal compact subgroup of MΦ,n ; we implicitly assume that
UΦ,n ↪→ UΦ,` whenever MΦ,n ↪→MΦ,` .

We will extend some of our results from the finite dimensional setting to
these subgroups of QΦ,∞ .

(a)NΦ,∞ := lim−→NΦ,n maximal locally unipotent subgroup,

requiring (Ψn \ Φn) ⊂ (Ψ` \ Φ`),

(b)AΦ,∞ := lim−→AΦ,n ,

(c)UΦ,∞ := lim−→UΦ,n maximal lim-compact subgroup, requiring Φn ⊂ Φ`,

(d)UΦ,∞NΦ,∞ := lim−→UΦ,nNΦ,n ,

requiring Φn ⊂ Φ` and (Ψn \ Φn) ⊂ (Ψ` \ Φ`).

(8.4)

To study these we will need to extend some notation from the finite dimen-
sional setting to the system {gn} . For α ∈ ∆+(gn, an) we denote

[α]Φ,n = {δ ∈ ∆+(gn, an) | δ|aΦ,n
= α|aΦ,n

} and gΦ,n,α =
∑

δ∈[α]Φ,n
gδ . (8.5)

The adjoint action of mΦ,n on gΦ,n,α is absolutely irreducible [17, Theorem 8.3.13];
gΦ,n,α is the sum of the root spaces for roots δ =

∑
ψ∈Ψn

nψ(δ)ψ ∈ ∆+(gn, an) such
that nψ(δ) = nψ(α) for all ψ ∈ Ψn\Φn , in other words the same coefficients along
Ψn \ Φn in

∑
ψ∈Ψn

nψ(·)ψ . The following lemma is immediate.

Lemma 8.1. Let n 5 ` and assume the condition (Ψn \ Φn) ⊂ (Ψ` \ Φ`) of
(8.4)(a) for NΦ,∞ . Then gΦ,n,α ⊂ gΦ,`,α . In particular we have the joint aΦ,∞ -
eigenspaces gΦ,∞,α = lim−→n

gΦ,n,α in nΦ,∞ .

We will also say something about representations, but not about Fourier
inversion, for the

AΦ,∞NΦ,∞ := lim−→AΦ,nNΦ,n maximal exponential solvable subgroup,

where (Ψn \ Φn) ⊂ (Ψ` \ Φ`) for n 5 `, and for the

EΦ,∞ := lim−→EΦ,n maximal amenable subgroup,

where Φn ⊂ Φ` and (Ψn \ Φn) ⊂ (Ψ` \ Φ`) for n 5 ` .

(8.6)

Here EΦ,n = UΦ,nAΦ,nNΦ,n , so EΦ,∞ = UΦ,∞AΦ,∞NΦ,∞ . The difficulty with
Fourier inversion for the two limit groups of (8.6) is that we don’t have an explicit
Dixmier-Pukánszky operator.
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Start with NΦ,∞ . For that we must assume (Ψn \ Φn) ⊂ (Ψ` \ Φ`).
In view of the propagation assumption on the Gn the maximal set of strongly
orthogonal non-multipliable roots in ∆+(gn, an) is increasing in n . It is obtained
by cascading up (we reversed the indexing from the finite dimensional setting)
has form {β1, . . . , βrn} in ∆+(gn, an). Following ideas of Section 4 we partition
{β1, . . . , βrn} =

⋃
k

⋃
In,k

βi where In,k consists of the indices i for which the βi
have a given restriction to aΦ,n and belong to ∆+(gn, an). Note that In,k can
increase as n increases. This happens in some cases where the Φ stop growing,
i.e. where there is an index n0 such that Φn = Φn0 6= ∅ for n = n0 . That is
the case when ∆(gn, an) is of type An with each Ψ = {ψ1} . Thus we also denote
I∞,k =

⋃
n In,k . As in (4.1), following the idea of lj = zj + vj , we define

lΦ,n,j =
∑

i∈In,j
(li ∩ nΦ,n), the βj part of nΦ,n ,

lΦ,∞,j =
∑

i∈I∞,j
(li ∩ nΦ), the βj part of nΦ,∞ ,

zΦ,∞,j =
∑

n
zΦ,n,j , sΦ,∞ =

∑
j
zΦ,∞,j and vΦ,∞ =

∑
n,j

vΦ,n,j ,

(8.7)

so nΦ,∞ = sΦ,∞ + vΦ,∞ . We’ll also use sΦ,n =
∑

j zΦ,n,j and vΦ,n =
∑

j vΦ,n,j , so
nΦ,n = sΦ,n + vΦ,n .

LΦ,n,j denotes the analytic subgroup with Lie algebra lΦ,n,j and LΦ,∞,j =
lim−→n

LΦ,n,j has Lie algebra lΦ,∞,j . We have this set up so that

NΦ,∞ = lim−→n
NΦ,n = lim−→j

LΦ,∞,j = lim−→j
lim−→n

LΦ,n,j . (8.8)

9. Representations of the Limit Groups I: NΦ,∞

In this section we indicate the limit stepwise square integrable representations
πΦ,γ = lim−→ πΦ,γn of the direct limit group NΦ,∞ = lim−→NΦ,n . The parameter
space for the stepwise square integrable representations of the NΦ,n is given by
t∗Φ,n = {γn ∈ s∗Φ,n | P (γn) 6= 0} where γn =

∑mn
1 λj and P (γn) is the product

of the Pfaffians Pj(λj). Note that γ`|sΦ,n = γn for ` > n . The parameter space
for the πΦ,γ is t∗Φ,∞ = {(γn) ∈ s∗Φ,∞ | each γn ∈ t∗Φ,n} where s∗Φ,∞ = lim←− sΦ,n .
The stepwise square integrable representations πγn were obtained recursively in
Construction 1.2, from square integrable representations of the Lr , r 5 mn , and
in Lemma 7.1 we described method of construction of their direct limits πΦ,γ .

As noted before we must assume the condition (Ψn \ Φn) ⊂ (Ψ` \ Φ`) of
(8.4)(a), so that {NΦ,n} is a direct system, in order to work with NΦ,∞ . Then we
have the decompositions (8.7) and (8.8). With those in mind we will build up the
parameter space for direct limits of stepwise square integrable representations of
NΦ,∞ in two steps. First,

Lemma 9.1. If λ ∈ g∗Φ,∞,βj the antisymmetric bilinear form bλ on nΦ,∞,j/zΦ,∞,j
satisfies bλ = bλ|zΦ,∞,j .

Proof. Let n be sufficiently large that gβj ⊂ lΦ,n,j . Apply Lemma 8.1 to each
gΦ,`,βj with ` = n . That gives (bλ)|nΦ,`/sΦ,` = (bλ|zΦ,`,j )|nΦ,`/sΦ,` . As ` increases the
additional brackets go into nΦ,` and thus into the kernel of bλ .
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Second, we define the βj part of the parameter space. In view of Lemma 9.1
we need only look at the λj = (λn,j) ∈ lim←−nz

∗
Φ,n,j that belong to

t∗Φ,∞,j =
{

(λn,j)|λn,j ∈ z∗Φ,n,j with PlΦ,n,j(λn,j) 6= 0 for n = n(λj)
}

(9.1)

where n(λj) is the first index n such that λn,j ∈ z∗Φ,n,j . We start this way because
of the possibility that the zΦ,n,j could grow, for fixed j , if the multiplicity of βj
as a joint eigenvalue of ad (aΦ,n), increases as n increases. Third,

t∗Φ,∞ =
{
γ = (γn) ∈ lim←−ns

∗
Φ,n

∣∣∣ every γn ∈ t∗Φ,n

}
. (9.2)

Fix γ = (γj) ∈ t∗Φ,∞ . As in Construction 1.2 and Lemma 7.1 we have the
limit stepwise square integrable representation πΦ,λj ,∞ of LΦ,∞,j . Apply Construc-
tion 1.2 and Lemma 7.1 to the πΦ,λj ,∞ as j increases, obtaining the limit stepwise

square integrable representation πΦ,γ,∞ ∈ N̂Φ,∞ .

Theorem 9.2. Assume the condition (Ψn \Φn) ⊂ (Ψ` \Φ`) of (8.4)(a), so that
{NΦ,n} is a direct system and NΦ,∞ = lim−→NΦ,n is well defined. Let γ = (γn) ∈ t∗Φ,∞
and πΦ,γ,∞ = lim−→ πΦ,γ,n as in Lemma 7.1. View HπΦ,γ,∞ = lim−→HπΦ,γ,n

in the
category of Hilbert spaces and partial isometries. Let u, v ∈ HπΦ,γ,`

⊂ HπΦ,γ,∞ .
Then the coefficient function fπΦ,γ,∞;u,v(x) = 〈u, πΦ,γ,∞(x)v〉 satisfies

||fπΦ,γ,∞;u,v|NΦ,`
||2L2(NΦ,`/SΦ,`)

= ||u||2||v||2
|P`(γ`)|

(9.3)

Proof. Let u =
⊗

uj and v =
⊗

vj where uj, vj ∈ HπΦ,γj ,∞
, the representation

spaces of the πΦ,γj ,∞ . We know from stepwise square integrability that the
coefficients satisfy

||fπΦ,γj ,∞;uj ,vj |Nn||2L2(LΦ,n,j/ZΦ,n,j)
=
||uj ||2||vj ||2
|PlΦ,n,j

(γj)| for n >> 0.

In other words,

||fπΦ,γj ,∞;uj ,vj |Nn||2L2(LΦ,∞,j/ZΦ,∞,j)
=
||uj ||2||vj ||2
|PlΦ,∞,j (γj)| .

Taking the product over j we have (9.3) for decomposable u and v . Decomposable
vectors are dense in HπΦ,γ,∞ so (9.3) follows from the decomposable case by
continuity.

Now we continue as in [23, Sections 3, 4 & 5]. The first step is the rescaling
implicit in Theorem 9.2, specifically in (9.3), which holds in our situation with
only the obvious changes. Recall NΦ,a,b = LΦ,ma+1 . . . LΦ,mb = LΦ,ma+1,mn , and
NΦ,a,∞ = lim−→b

NΦ,a,b , so NΦ,∞ = NΦ,n nNΦ,n,∞ .

Proposition 9.3. Let γ ∈ t∗Φ,∞ and ` > n so that γ`|sΦ,n = γn . Then πΦ,γ,`|NΦ,n

is an infinite multiple of πΦ,γ,n . Split HπΦ,γ,`
= H′⊗̂H′′ where H′ = HπΦ,γ,n

, and

where H′′ = HπΦ,λ,mn+1
⊗̂ · · · ⊗̂HπΦ,λ,m`

with γ` = λ1 + · · · + λm` . Choose a C∞

unit vector e ∈ H′′ , so

HπΦ,γ,n
↪→ HπΦ,γ,`

by v 7→ v ⊗ e (9.4)
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is an Nn -equivariant isometric injection that sends C∞ vectors to C∞ vectors. If
u, v ∈ HπΦ,γ,n

then

||fπΦ,γ,`;u⊗e,v⊗e||2L2(NΦ,`/SΦ,`)
= |Pn(γ,n)|
|P`(γ,`)|

||fπΦ,γ,n;u⊗e,v⊗e||2L2(NΦ,n/SΦ,n) (9.5)

Given γ ∈ t∗Φ,∞ consider the unitary character ζγ = exp(2πiγ) on SΦ,∞ ,

given by ζγ(exp(ξ)) = e2πiγ(ξ) for ξ ∈ sΦ,∞ . The corresponding Hilbert space is

L2(NΦ,∞/SΦ,∞; ζγ) = lim−→L2(NΦ,n/SΦ,n; ζγn)

where

L2(NΦ,n/SΦ,n; ζγn) =

{f : NΦ,n → C | f(gx) = ζγ(x)−1f(g) and |f | ∈ L2(NΦ,n/SΦ,n) for x ∈ SΦ,n}.

The finite linear combinations of the coefficients fπΦ,γ,n;u,v , where u, v ∈ HπΦ,γ,n
,

are dense in L2(NΦ,n). That gives us a NΦ,n × NΦ,n equivariant Hilbert space
isomorphism

L2(NΦ,n/SΦ,n; ζγn) ∼= HπΦ,γ,n
⊗̂H∗πΦ,γ,n

.

The stepwise square integrable group NΦ,n satisfies

L2(NΦ,n) =

∫
γn∈t∗Φ,n

HπΦ,γ,n
⊗̂H∗πΦ,γ,n

|Pn(γ)|dγn .

That expands functions on NΦ,∞ = NΦ,1NΦ,2 . . . that depend only on the first
mn factors. To increase the number of factors we must deal the renormalization
implicit in (9.5). Reformulate (9.5):

pγ,n,` : fπΦ,γ,`;u⊗u′,v⊗v′ 7→ 〈u′, v′〉
|Pn(γn)|
|P`(γ`)|

fπΦ,γ,n;u,v (9.6)

is the orthogonal projection dual to HπΦ,γ,n
↪→ HπΦ,γ,`

. These maps sum over

(γn, γ`) to a Hilbert space projection p`,n =
(∫

γ`∈sΦ,`
pγ,n,`dγ

′) ,

p`,n : L2(NΦ,`)→ L2(NΦ,n) for ` = n. (9.7)

The maps (9.7) define an inverse system in the category of Hilbert spaces and
partial isometries:

L2(NΦ,1)
p2,1←− L2(NΦ,2)

p3,2←− L2(NΦ,3)
p4,3←− ... ←− L2(NΦ) (9.8)

where the projective limit L2(NΦ) := lim←−{L
2(NΦ,n), p`,n} is taken in that category.

We now have the Hilbert space projective limit

L2(NΦ) := lim←−{L
2(NΦ,n), p`,n}. (9.9)

Because of the renormalizations in (9.6), the elements of L2(NΦ) do not have an
immediate interpretation as functions on NΦ . We address that problem by looking
at the Schwartz space.
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The Schwartz space considerations of [23, Section 5] extend to our setting
with only obvious modifications, so we restrict our discussion to the relevant
definitions and results.

Given γ = (γn) ∈ t∗Φ,∞ we have the unitary character ζγ = exp(2πiγ) on

SΦ,∞ = lim−→SΦ,n . Express ζγ = (ζγn) ∈ lim←− ŜΦ,n . The corresponding relative
Schwartz space C((NΦ,n/SΦ,n); ζγn) consists of all functions f ∈ C∞(NΦ,n) such
that

f(xs) = ζγn(s)−1f(x) for x ∈ NΦ,n , s ∈ SΦ,n , and |q(g)p(D)f | bounded

on NΦ,n/SΦ,n for all polynomials p, q on NΦ,n/SΦ,n and all D ∈ U(nΦ,n).
(9.10)

The corresponding limit Schwartz space C((NΦ,∞/SΦ,∞); ζγ) = lim←−C(NΦ,n/SΦ,n; ζγn),
consisting of all functions f ∈ C∞(NΦ,∞) such that

f(xs) = ζγ(s)
−1f(x) for x ∈ NΦ,∞ , s ∈ SΦ,∞ , and |q(g)p(D)f | bounded

on NΦ,∞/SΦ,∞ for all polynomials p, q on NΦ,∞/SΦ,∞, all D ∈ U(nΦ,∞).
(9.11)

As expected, C(NΦ,n/SΦ,n; ζγn) is a nuclear Fréchet space and it is dense in
L2(NΦ,n/SΦ,n; ζγn), and [23, Theorem 5.7] and its corollaries go through in our
setting as follows.

Theorem 9.4. Let γ = (γn) ∈ t∗Φ,∞ . Let n > 0 and let u and v be C∞ vectors
for the stepwise square integrable representation πΦ,γ,n of NΦ,n . Then the coeffi-
cient function fπΦ,γ,n;u,v belongs to the relative Schwartz space C((NΦ,n/SΦ,n); ζγn),
and the coefficient function fπΦ,γ,∞;u,v belongs to the limit relative Schwartz space
C(NΦ,∞/SΦ,∞; ζγ).

Corollary 9.5. Let γ = (γn) ∈ t∗Φ,∞ . Let n > 0 and let u and v be C∞

vectors for the stepwise square integrable representation πΦ,γ,n of NΦ,n . Then the
coefficient function fπΦ,γ,n;u,v ∈ L1(NΦ,n/SΦ,n; ζγn), and the coefficient function
fπΦ,γ,∞;u,v ∈ lim←−L

1(NΦ,n/SΦ,n; ζγn).

In fact the argument shows

Corollary 9.6. Let L be a connected simply connected nilpotent Lie group, Z
its center, and λ ∈ z∗ such that πλ is a square integrable (mod Z ) representation

of L. Let ζ = e2πiλ ∈ Ẑ and let u and v be C∞ vectors for πλ . Then the
coefficient fπλ;u,v ∈ L1(L/Z, ζλ).

A norm |ξ| on nΦ,n corresponds to a norm || exp(ξ)|| := ||ξ|| on NΦ,n . Thus
classical Schwartz space C(nΦ,n) on the real vector space nΦ,n , corresponds to the
Schwartz space C(NΦ,n) , which thus is defined by seminorms

νk,D,n(f) = supx∈NΦ,n
|(1 + |x|2)k(Df)(x)|. (9.12)

Here k is a positive integer, and D ∈ U(nΦ,n) is a differential operator acting
on the left on NΦ,n . Since exp : nΦ,n → NΦ,n is a polynomial diffeomorphism,
f 7→ f · exp is a topological isomorphism of C(NΦ,n) onto C(nΦ,n):

C(NΦ,n) = {f ∈ C∞(NΦ,n) | f ◦ exp ∈ C(nΦ,n)}. (9.13)
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We now define the Schwartz space

C(NΦ,∞) = {f ∈ C∞(NΦ,∞) | f |NΦ,n
∈ C(NΦ,n) for n >> 0} = lim←−C(NΦ,n) (9.14)

where the inverse limit is taken in the category of complete locally convex topo-
logical vector spaces and continuous linear maps. Since C(NΦ,n) is defined by the
seminorms (9.12), the same follows for C(NΦ,∞). In other words,

Lemma 9.7. The Schwartz space C(NΦ,∞) consists of all f ∈ C∞(NΦ,∞) such
that, for all n > 0, νk,D,n(f) is bounded for all integers k > 0 all D ∈ U(nΦ,n).
Here the seminorms νk,D,n are given by (9.12).

Every f ∈ C(NΦ,n) is a limit in C(NΦ,n) of finite linear combinations
of the functions fγn(x) =

∫
SΦ,n

f(xs)ζγn(s)ds in C((NΦ,n/SΦ,n), ζγn). Specifi-

cally, denote ϕx(γn) := fγn(x). Then ϕx is a multiple of the Fourier transform
FΦ,n(`(x)−1f)|SΦ,n

).

The inverse Fourier transform F−1
Φ,n(ϕx) reconstructs f from the fγn . Since

the relative Schwartz space C((NΦ,/SΦ,n); ζγn) is dense in L2(NΦ,n/SΦ,n, ζγn) and
the the set of finite linear combinations of coefficients fπΦ,γ,n;u,v (where u, v are
C∞ vectors) is dense in C(NΦ,n/SΦ,n, ζγn), now every f ∈ C(NΦ,n) is a Schwartz
wave packet along s∗Φ,n of coefficients of the various πΦ,γ,n , u and v smooth. Now
we combine the inverse system (9.8) and its Schwartz space analog.

C(NΦ,1)
q2,1←−−−− C(NΦ,2)

q3,2←−−−− C(NΦ,3)
q4,3←−−−− . . . ←−−−− C(NΦ) = lim←−C(NΦ,n)yr1 yr2 yr3 y yr∞

L2(NΦ,1)
p2,1←−−−− L2(NΦ,2)

p3,2←−−−− L2(NΦ,3)
p4,3←−−−− . . . ←−−−− L2(NΦ) = lim←−L

2(NΦ,n)

(9.15)

The rn : C(NΦ,n) ↪→ L2(NΦ,n) are continuous injections with dense image, so
r∞ : C(NΦ,∞) ↪→ L2(NΦ,∞) is a continuous injection with dense image. Putting all
this together as in the minimal parabolic case [23, Section 5], we have proved

Proposition 9.8. Assume (8.4)(a), so that {NΦ,n} is a direct system and
NΦ,∞ = lim−→NΦ,n is well defined. Define r∞ : C(NΦ,∞) ↪→ L2(NΦ,∞) as in the
commutative diagram (9.15). Then L2(NΦ,∞) is a Hilbert space completion of
C(NΦ,∞). In particular r∞ defines a pre-Hilbert space structure on C(NΦ,∞) with
completion L2(NΦ,∞).

As in [23, Corollary 5.17], C(NΦ,∞) is independent of the choices made in
the construction of L2(NΦ,∞), so

Corollary 9.9. The limit Hilbert space L2(NΦ,∞) = lim←−{L
2(NΦ,n), p`,n} of

(9.15) , and the left/right regular representation of NΦ,∞ × NΦ,∞ on L2(NΦ,∞),
are independent of the choice of vectors e in (9.4).

Recall the notation

• t∗Φ,∞ := lim←− t∗Φ,n = {γ = (γn) | γn ∈ t∗Φ,n and if ` = n then γ`|sΦ,n = γn}.
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• if γ = (γn) ∈ t∗Φ,∞ then πΦ,γ,∞ = lim←− πΦ,γn is constructed as in Section 7,

• The distribution characters ΘπΦ,γ,n
on the NΦ,n are given by (1.2), and

• C(NΦ,∞) = lim←−C(NΦ,n) = {f = (fn) | fn ∈ C(NΦ,n) , f`|NΦ,n
= fn for ` = n}.

As for minimal parabolics [23, Section 6], the limit Fourier inversion formula is

Theorem 9.10. Suppose that NΦ,∞ = lim−→NΦ,n where {NΦ,n} satisfies (7.2).
Let f = (fn) ∈ C(NΦ,∞) and x ∈ NΦ,∞ . Then x ∈ NΦ,n for some n and

f(x) = cn

∫
t∗Φ,n

ΘπΦ,γ,n
(rxf)|PfnΦ,n

(γn)|dγn (9.16)

where cn = 2d1+···+dmd1!d2! . . . dm! as in (1.6a) and m is the number of factors Lr
in NΦ,n .

Proof. By Theorem 1.6, f(x) = fn(x) = cn
∫
t∗Φ,n

ΘπΦ,γ,n
(rxf)|PfnΦ,n

(γn)| dγn .

10. Representations of the Limit Groups II: AΦ,∞NΦ,∞

We extend some of the results of Section 9 to the maximal exponential (locally)
solvable subgroup AΦ,∞NΦ,∞ .

The first step is to locate the AΦ,∞ -stabilizer of a limit square integrable
representation πγ of NΦ,∞ . Following (5.3) we set

A′Φ,∞ = {exp(ξ) | ξ ∈ aΦ,∞ and every βj(ξ) = 0}. (10.1)

Lemma 10.1. If γ = (γn) ∈ t∗Φ,∞ then A′Φ,∞ is the stabilizer of πγ in AΦ,∞ .

Proof. Recall the J ′′r from Lemma 3.3. Then Lemma 3.4 tells us that, for each
r0 , lΦ,r0 has center

zΦ,r0 =
∑

βr|aΦ=βr0 |aΦ

(
gβr +

∑
J ′′r
gα

)
,

and Lemma 3.3 then says that zΦ,r is an ad (aΦ) eigenspace on g . Thus the
ad ∗(aΦ)-stabilizer of γ is given by βr(aΦ,∞) = 0 for all r .

Lemma 5.1 shows that our methods cannot yield a Dixmier-Pukánszky
operator for AΦ,∞NΦ,∞ nor for UΦ,∞AΦ,∞NΦ,∞ , but we do have such operators
Dn for the AΦ,nNΦ,n and the UΦ,nAΦ,nNΦ,n .

Let γ = (γn) ∈ t∗Φ,∞ . Then πΦ,γ,∞ extends from NΦ,∞ to a representa-

tion π†Φ,γ,∞ of A′Φ,∞NΦ,∞ with the same representation space, because every πΦ,γ,n

extends that way from NΦ,n to A′Φ,nNΦ,n . The representations of A′Φ,nNΦ,n corre-

sponding to γn are the exp(2πiξ|a′Φ,n) ⊗ π†Φ,γ,n . The representation of AΦ,∞NΦ,∞

and the AΦ,nNΦ,n , corresponding to γ and ξ = (ξn) ∈ (a′Φ,∞)∗ , is the

πΦ,γ,ξ,∞ := lim−→ πΦ,γ,ξ,n where πΦ,γ,ξ,n = Ind
AΦ,nNΦ,n

A′Φ,nNΦ,n

(
exp(2πiξn)⊗ π†Φ,γ,n

)
. (10.2)
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If dim(AΦ,∞/A
′
Φ,∞) <∞ , (10.2) says πΦ,γ,ξ,∞ = Ind

AΦ,∞NΦ,∞
A′Φ,∞NΦ,∞

(exp(2πiξ)⊗π†Φ,γ,∞) ,

because then one can integrate over AΦ,∞/A
′
Φ,∞ . Or in general one may view

(10.2) as an interpretation of πΦ,γ,ξ,∞ = Ind
AΦ,∞NΦ,∞
A′Φ,∞NΦ,∞

(exp(2πiξ)⊗ π†Φ,γ,∞) .

Lemma 10.2. Let γ, γ′ ∈ t∗Φ,∞ . Then the representations πΦ,γ,ξ,∞ and πΦ,γ′,ξ′,∞
are equivalent if and only if both ξ′ = ξ and γ′ ∈ Ad∗(AΦ,∞)(γ). Express
γ = (γn) with γn =

∑mn
j=1 γn,j where γn,j ∈ z∗j . Then Ad∗(AΦ,∞)(γ) consists

of all
(∑mn

j=1 cjγn,j

)
with every cj > 0.

Proof. The Mackey little group method implies πΦ,γ,ξ,n ' πΦ,γ′,ξ′,n just when
ξ′ = ξ and γ′n ∈ Ad∗(AΦ,n)(γn). The first assertion follows. The second is because
the action of Ad∗(AΦ,∞) on γn,j is multiplication by an arbitrary positive real
cj = exp(iβj(α)) for α ∈ aΦ,∞ .

The representation space HπΦ,γ,ξ,∞ of πΦ,γ,ξ,∞ ∈ (AΦ,∞NΦ,∞)̂ is the same
as that of NΦ,∞ , except for the unitary character exp(2πiξ). We thus obtain

L2((AΦ,nNΦ,n/A
′
Φ,nSΦ,n); (exp(2πiξ)⊗ ζn)) ∼= (HπΦ,γ,ξ,n

⊗̂H∗πΦ,γ,ξ,n
) .

Summing over t∗Φ,n and aΦ,n/a
′
Φ,n we proceed as in Section 9; then

L2(AΦ,nNΦ,n) =

∫
aΦ,n/a

′
Φ,n

∫
t∗Φ,n

(HπΦ,γ,ξ,n
⊗̂H∗πΦ,γ,ξ,n

)|Pn(γn)|dγn dξ

so, as in (9.8) and (9.9),

L2(AΦ,∞NΦ,∞) = lim−→

∫
aΦ,n/a

′
Φ,n

∫
t∗Φ,n

(HπΦ,γ,ξ,n
⊗̂H∗πΦ,γ,ξ,n

)|Pn(γn)|dγn dξ .

Since the base spaces of the unitary line bundles

AΦ,nNΦ,n → AΦ,nNΦ,n/A
′
Φ,nSΦ,n and NΦ,n → NΦ,n/SΦ,n

are similar, we modify (9.10) for the relative Schwartz space

C((AΦ,nNΦ,n/A
′
Φ,nSΦ,n); exp(2πiξ)⊗ ζγn)

to consist of all functions f ∈ C∞(AΦ,nNΦ,n) such that

f(xas) = exp(−2πiξ(log a))ζγn(s)−1f(x) for x ∈ NΦ,n, a ∈ A′Φ,n , s ∈ SΦ,n)

with |q(g)p(D)f | bounded on AΦ,nNΦ,n/A
′
Φ,nSΦ,n

for all polynomials p, q on NΦ,n/SΦ,n and all D ∈ U(nΦ,n).

(10.3)

The corresponding limit relative Schwartz space is

C((AΦ,∞NΦ,∞/A
′
Φ,∞SΦ,∞);(exp(2πiξ)⊗ ζγ))

= lim←−C((AΦ,nNΦ,n/A
′
Φ,nSΦ,n); (exp(2πiξ)⊗ ζγn)),
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consisting of all functions f ∈ C∞(AΦ,∞NΦ,∞) such that

f(xas) = exp(−2πiξ(log a))ζγ(s)
−1f(x) for x ∈ NΦ,∞, a ∈ A′Φ,∞ and

s ∈ SΦ,∞ , and |q(g)p(D)f | is bounded on AΦ,∞NΦ,∞/A
′
Φ,∞SΦ,∞

for all polynomials p, q on NΦ,∞/SΦ,∞ and all D ∈ U(nΦ,∞).

(10.4)

Theorem 9.4 and Corollaries 9.5 and 9.6 hold for our groups AΦ,•NΦ,• here
with essentially no change, so we will not repeat them.

We use Casselman’s extension [1, p. 4] of the classical definition for semi-
norms and Schwartz space (which we used for nΦ,n ). First, we have seminorms on
the aΦ,n + nΦ,n as in (9.12) as follows. Fix a continuous norm ||ϕ|| on AΦ,nNΦ,n

such that

||1AΦ,nNΦ,n
|| = 1,||x|| = ||x−1|| = 1 for all x, and

||x||/||y|| 5 ||xy|| 5 ||x|| ||y|| for all x, y.
(10.5)

That gives seminorms

νk,D,n(f) = supx∈AΦ,nNΦ,n
||x||k|Df(x)|(k > 0 and D ∈ U(aΦ,n + nΦ,n)). (10.6)

That defines the Schwartz space C(AΦ,nNΦ,n) as in (9.13):

C(AΦ,nNΦ,n) = {f ∈ C∞(AΦ,nNΦ,n) | νk,D,n(f) <∞} (10.7)

for all k > 0 and D ∈ U(aΦ,n + nΦ,n). Finally we define C(AΦ,∞NΦ,∞) to be
the inverse limit in the category of locally convex topological vector spaces and
continuous linear maps, as in (9.14):

C(AΦ,∞NΦ,∞) =

{f ∈ C∞(AΦ,∞NΦ,∞) | f |AΦ,nNΦ,n
∈ C(AΦ,nNΦ,n)} = lim←−C(AΦ,nNΦ,n).

(10.8)

Lemma 10.3. ([1, Proposition 1.1]) The Schwartz space C(AΦ,∞NΦ,∞) consists
of all functions f ∈ C∞(AΦ,∞NΦ,∞) such that, for all n > 0, νk,D,n(f) < ∞
for all integers k > 0 and all D ∈ U(aΦ,n + nΦ,n). Here νk,D,n is given by
(10.6). The C(AΦ,nNΦ,n) are nuclear Fréchet spaces and C(AΦ,∞NΦ,∞) is an LF
space. The left/right actions of (AΦ,nNΦ,n × AΦ,nNΦ,n) on C(AΦ,nNΦ,n) and of
(AΦ,∞NΦ,∞ × AΦ,∞NΦ,∞) on C(AΦ,∞NΦ,∞) are continuous.

As for the NΦ,n , if f ∈ C(AΦ,nNΦ,n) it is a limit in C(AΦ,nNΦ,n) of finite lin-
ear combinations of the fξ,γ,n(x) =

∫
AΦ,n

∫
SΦ,n

f(xas) exp(2πiξ(log a))ζγn(s)dsda in

C((AΦ,nNΦ,n/A
′
Φ,nSΦ,n), (exp(2πiξ)ζγn)). Specifically, denote ϕx(ξ, γn) := fξ,γn(x).

Then ϕx is a multiple of the classical Fourier transform FΦ,n(`(x)−1f)|AΦ,nSΦ,n
),

and the inverse Fourier transform F−1
Φ,n(ϕx) reconstructs f from the fξ,γn .

The relative Schwartz space C((AΦ,nNΦ,n/A
′
Φ,nSΦ,n), (exp(2πiξ)ζγn)) is dense

in L2((AΦ,nNΦ,n/A
′
Φ,nSΦ,n), (exp(2πiξ)ζγn)). Finite linear combinations of coeffi-

cients of the πΦ,γ,ξ,n along C∞ vectors form dense subset of
C((AΦ,nNΦ,n/A

′
Φ,nSΦ,n), (exp(2πiξ)ζγn)). So every f ∈ C(AΦ,nNΦ,n) is a Schwartz
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wave packet along a∗Φ,n + s∗Φ,n of coefficients of the various πΦ,γ,ξ,n , and the corre-
sponding inverse systems fit together as in (9.15):

C(AΦ,1NΦ,1)
q2,1←−−−− C(AΦ,2NΦ,2)

q3,2←−−−− . . . ←−−−− C(AΦNΦ) = lim←−C(AΦ,nNΦ,n)yr1 yr2 y yr∞
L2(AΦ,1NΦ,1)

p2,1←−−−− L2(AΦ,2NΦ,2)
p3,2←−−−− . . . ←−−−− L2(AΦNΦ) = lim←−L

2(AΦ,nNΦ,n)

(10.9)

As before, the rn are continuous injections with dense image, and it follows that
r∞ : C(AΦ,∞NΦ,∞) ↪→ L2(AΦ,∞NΦ,∞) is a continuous injection with dense image.
As in Proposition 9.8 we conclude

Proposition 10.4. Assume (8.4)(a), so {AΦ,nNΦ,n} is a direct system and
AΦ,∞NΦ,∞ = lim−→AΦ,nNΦ,n is well defined. Let

r∞ : C(AΦ,∞NΦ,∞) ↪→ L2(AΦ,∞NΦ,∞)

as in (10.9). Then L2(AΦ,∞NΦ,∞) is a Hilbert space completion of C(AΦ,∞NΦ,∞).
In particular r∞ defines a pre-Hilbert space structure on C(AΦ,∞NΦ,∞) with com-
pletion L2(AΦ,∞NΦ,∞).

Corollary 10.5. The Hilbert space L2(AΦ,∞NΦ,∞) = lim←−{L
2(AΦ,nNΦ,n), p`,n}

of (10.9) , and the left/right regular representation of (AΦ,∞NΦ,∞)× (AΦ,∞NΦ,∞)
on L2(AΦ,∞NΦ,∞), are independent of the choice of C∞ unit vectors e in the
inclusions Hπ,γ,ξ,n ↪→ Hπ,γ,ξ,` , ` = n, by v 7→ v ⊗ e.

The distribution characters ΘπΦ,γ,ξ,n
= exp(2πiξ)ΘπΦ,γ,n

where ΘπΦ,γ,n
is

given by (1.2). The limit Schwartz space C(AΦ,∞NΦ,∞) = lim←−C(AΦ,nNΦ,n) consists
of all f = (fn) where each fn ∈ C(AΦ,nNΦ,n). As in the case of minimal parabolics
[23, Section 6], the limit Fourier inversion formula is

Theorem 10.6. Suppose that (Ψn \ Φn) ⊂ (Ψ` \ Φ`) for ` = n, so that
AΦ,∞NΦ,∞ = lim−→AΦ,nNΦ,n is well defined. Let Dn be a Dixmier-Pukánszky op-
erator for AΦ,nNΦ,n . Let f = (fn) ∈ C(AΦ,nNΦ,n) and x ∈ AΦ,∞NΦ,∞ . Then
x ∈ AΦ,nNΦ,n for some n and

f(x) = cn

∫
ξ∈(a′Φ,n)∗

∫
s∗Φ,n/Ad∗(AΦ,n)

ΘπΦ,γ,ξ,n
(Dn(rxf))|Pfnn(γn)|dγndξ (10.10)

where cn = ( 1
2π

)dim a′Φ/2 2d1+···+dmnd1!d2! . . . dmn ! as in (1.6a) and mn is the number
of factors Lr in NΦ,n .

Proof. Apply Theorem 5.8 to AΦ,nNΦ,n .

11. Representations of the Limit Groups III: UΦ,∞

We are going to study highest weight limit representations of UΦ,∞ = lim−→UΦ,n .
These are the representations for which there is an explicit Peter-Weyl Theorem
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[18, Theorem 4.3]. We restrict our attention to highest weight representations of
UΦ,∞ for a good reason: as noted in papers ([13], [14], [15] and [16]) of Strătilă and
Voiculescu, irreducible unitary representations of U(∞) and other lim-compact
groups can be extremely complicated, even of Type III. This is summarized in [21,
Section 9].

Recall from Section 8 that G` propagates Gn for ` = n . In particular
Φ = (Φn) where Φn is the simple root system for (mΦ,n + aΦ,n)C and Φn ⊂ Φ`

for ` = n . It is implicit that the maximal compact subgroups Km ⊂ Gm satisfy
Kn ⊂ K` for ` = n , so K := lim−→ Kn is a maximal lim–compact subgroup of
G := lim−→ Gn . We decompose the Cartan subalgebras of gΦ,n and gΦ,∞ along the
lines of the proof of Lemma 6.3, as follows:

hn = cΦ,n + bΦ,n + aΦ,n and h∞ = cΦ,∞ + bΦ,∞ + aΦ,∞ (11.1)

where aΦ,n is as before, cΦ,n+bΦ,n is a Cartan subalgebra of mΦ,n , bΦ,n+aΦ,n = an ,
and cΦ,n is a Cartan subalgebra of uΦ,n . Then aΦ,∞ = lim−→ aΦ,n , bΦ,∞ = lim−→ bΦ,n ,
and cΦ,∞ = lim−→ cΦ,n . Further, aΦ,n = bΦ,n + aΦ,n and cΦ,n = hn ∩ kn . Notice that
CΦ,n := exp(cΦ,n) is a maximal torus in U0

Φ,n .

We define a simple root system for uΦ,n along the lines of an idea of

Borel and de Siebenthal. Let {m(i)
Φ,n} be the simple ideals in mΦ,n and let {Φ(i)

n }
denote the corresponding subsets of Φn . If every root in Φ

(i)
n is compact we set

Σ
(i)
n = Φ

(i)
n . Otherwise Φ

(i)
n contains just one noncompact root, say α

(i)
n . let β

(i)
n

denote the maximal root of m
(i)
Φ,n . If α

(i)
n has coefficient 1 as a summand of β

(i)
n

we set Σ
(i)
n = Φ

(i)
n \ {α(i)

n } . If it has coefficient 2 as a summand of β
(i)
n we set

Σ
(i)
n = (Φ

(i)
n \ {α(i)

n }) ∪ {−β(i)
n } . Now Σn :=

⋃
Σ

(i)
n is a simple root system uΦ,n

and for its semisimple part [uΦ,n, uΦ,n] .

Lemma 11.1. If ` = n then ΣΦ,n ⊂ ΣΦ,` . Thus ΣΦ :=
⋃

ΣΦ,n is a simple root
system for the semisimple part [uΦ,∞, uΦ,∞] := lim−→[uΦ,n, uΦ,n] of uΦ,∞ .

Proof. If α ∈ ΣΦ,n is not simple as a root of uΦ,n+1 , then, as a linear combi-
nation of roots in Φn+1 , it must involve a root from Φn+1 \Φn . That contradicts
the fact that α ∈ ∆((mΦ,n)C, (cΦ,n + bΦ,n)C).

As in Lemma 6.3 we define Fn = exp(ian)∩Kn . It is an elementary abelian
2-subgroup of UΦ,n , central in both UΦ,n and MΦ,n , and has the properties

UΦ,n = FnU
0
Φ,n ,MΦ,n = FnM

0
Φ,n , and EΦ,n = FnE

0
Φ,n .

Further, FnCΦ,n is a Cartan subgroup of UΦ,n . Passing to the limit, we define

F = lim−→Fn = exp(ia) ∩K , and CΦ,∞ = lim−→CΦ,n

so that

UΦ,∞ = FU0
Φ,∞ , and FCΦ,∞ is a lim-compact Cartan subgroup of UΦ,∞ .
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Definition 11.2. Let λn ∈ c∗Φ,n . Then λn is integral if exp(2πiλn) is a well
defined unitary character on the torus CΦ,n , and λn is dominant integral if it is
integral and 〈λn, α〉 = 0 for every α ∈ ΣΦ,n . Write ΛΦ,n for the set of dominant
integral weights in c∗Φ,n .

Let λ = (λn) ∈ c∗Φ,∞ . Then λ is integral if exp(2πiλ) is a well defined
unitary character on the torus CΦ,∞ , in other words if each λn is integral. And
λ is dominant integral if it is integral and 〈λ, α〉 = 0 for every α ∈ ΣΦ , in other
words if each λn is dominant integral. Write ΛΦ,∞ for the set of all dominant
integral weights in c∗Φ,∞ .

Each λn ∈ ΛΦ,n is the highest weight of an irreducible unitary representa-
tion µλ,n of U0

Φ,n . Let Hλn denote the representation space and uλ,n a highest
weight unit vector. Now let λ = (λn) ∈ ΛΦ,∞ . Then uλ,n 7→ uλ,` defines a U0

Φ,n -
equivariant isometric injection Hλn ↪→ Hλ` . Thus λ defines a direct limit highest
weight unitary representation

µλ = lim−→µλ,n ∈ Û0
Φ with representation space Hλ = lim−→Hλn .

Different choices of {uλ,n} lead to equivalent representations. Here recall [11,
Theorem 5.10] that if ` = n then µλ,`|U0

Φ,n
contains µλ,n with multiplicity 1, so

there is no ambiguity (beyond phase changes uλ,n 7→ eiεnuλ,n ) about the inclusion
Hλn ↪→ Hλ` . Now denote

ΞΦ,n =
{
µλ,n,ϕ := ϕ⊗ µλ,n

∣∣∣ϕ ∈ F̂ , λn ∈ ΛΦ,n and ϕ|F∩U0
Φ,n

= µλ,n|F∩U0
Φ,n

}
,

ΞΦ,∞ =
{
µλ,ϕ := ϕ⊗ µλ

∣∣∣ϕ ∈ F̂ , λ = (λn) ∈ ΛΦ,∞ and ϕ|F∩U0
Φ

= µλ|F∩U0
Φ

}
.

(11.2)

Lemma 11.1 shows that the direct system {U0
Φ,n} is strict and is parabolic

in the sense of [18, Eq. 4.2]. Thus we have the Peter-Weyl Theorem for parabolic
direct limits [18, Theorem 4.3], and it follows immediately for the system {UΦ,n} .
Rescaling matrix coefficients with the Frobenius-Schur orthogonality relations as
in (9.5) and (9.6) we obtain Hilbert space projections p`,n : L2(UΦ,`) → L2(UΦ,n)
and an inverse system

L2(UΦ,1)
p2,1←− L2(UΦ,2)

p3,2←− L2(UΦ,3)
p4,3←− ... ←− L2(UΦ,∞) (11.3)

in the category of Hilbert spaces and projections, where the projective limit
L2(UΦ,∞) := lim←−{L

2(UΦ,n), p`,n} is taken in that category. We now have the Hilbert
space projective limit

L2(NΦ,∞) := lim←−{L
2(NΦ,n), p`,n} =

∑
µλ,ϕ∈ΞΦ,∞

Hλ⊗̂H∗λ orthogonal direct sum.

(11.4)
The left/right representation of UΦ,∞ × UΦ,∞ on L2(UΦ,∞) is multiplicity-free,
preserves each summand Hλ⊗̂H∗λ , and acts on Hλ⊗̂H∗λ by the irreducible repre-
sentation of highest weight (λ, λ∗). The connection with matrix coefficients is

C(UΦ,1)
q2,1←−−− C(UΦ,2)

q3,2←−−− . . . ←−−− C(UΦ,∞) = lim←−C(UΦ,n)yr1 yr2 y yr∞
L2(UΦ,1)

p2,1←−−− L2(UΦ,2)
p3,2←−−− . . . ←−−− L2(UΦ,∞) = lim←−L

2(UΦ,n)

(11.5)
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as in (9.15). As in Proposition 9.8 this realizes the limit space L2(UΦ,∞) as a
Hilbert space completion of the Schwartz space C(UΦ,∞) , and because of com-
pactness the latter in turn is the projective limit of spaces C(UΦ,n) = C∞(UΦ,n).
The Fourier inversion formula for UΦ,∞ is given stepwise as in Theorem 9.10.

12. Representations of the Limit Groups IV: UΦ,∞NΦ,∞

We combine some of the results of Sections 9 and 11, extending them to the
subgroup UΦ,∞NΦ,∞ . In view of the discussion culminating in (8.4) we assume
that the direct system {Gn} of real semisimple Lie groups satisfies

if ` = n then Φn ⊂ Φ` and (Ψn \ Φn) ⊂ (Ψ` \ Φ`) so that

UΦ,∞ := lim−→UΦ,n and UΦ,∞NΦ,∞ := lim−→UΦ,nNΦ,n exist.
(12.1)

We also extend Definition 6.2:

Definition 12.1. The direct limit groups NΦ,∞ = LΦ,1LΦ,2LΦ,3 . . . is weakly
invariant if each Ad(UΦ,∞)zΦ,j = zΦ,j .

We’ll need a variation on Lemma 6.3. Recall the maximal lim-compact
subgroup K = lim−→Kn .

Lemma 12.2. Let Fn = exp(iaΦ,n) ∩ Kn and F = exp(iaΦ,∞) ∩ K . Then
F = lim−→Fn is contained in UΦ,∞ and is central in MΦ,∞ ; if x ∈ F then x2 = 1,
UΦ,∞ = FU0

Φ,∞ ; and MΦ,∞ = FM0
Φ,∞ .

Proof. Lemma 6.3 contains the corresponding results for the Fn . It follows
that F is a subgroup of UΦ,∞ central in MΦ,∞ , that describes the components as
stated, and in which every element has square 1.

Lemma 12.3. The action of Ad(F ) on s∗Φ,∞ is trivial.

Proof. Lemma 6.4 shows that Ad(F`) is trivial on s∗Φ,n whenever ` = n .

Now suppose that NΦ,∞ = LΦ,1LΦ,2LΦ,3 . . . is weakly invariant. We con-
tinue as in Section 6.

r∗Φ,∞ = {(γn) ∈ t∗Φ,∞ | each Ad∗(UΦ,n)γn is a principal UΦ,n-orbit on s∗Φ,n}. (12.2)

It is dense, open and Ad∗(UΦ,∞)-invariant in s∗Φ,∞ . Let σ be a measurable
section to r∗Φ,∞ → Ad∗(UΦ,∞)\r∗Φ,∞ on whose image all the isotropy subgroups are
the same. We use the notation

U ′Φ,∞ : isotropy subgp of UΦ,∞ at σ(Ad∗(UΦ,∞)(γ)), independent of γ ∈ r∗Φ,∞ . (12.3)

As a bonus, in view of Lemma 10.1, the isotropy subgroup of UΦ,∞AΦ,∞ at
Ad∗(a)σ(Ad∗(UΦ,∞)(γ)) is U ′Φ,∞A

′
Φ,∞ , independent of a ∈ AΦ,∞ and γ ∈ r∗Φ,∞ .

Note that U ′Φ,∞ = lim−→U ′Φ,n where U ′Φ,n is the isotropy subgroup of UΦ,n at
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σ(Ad∗(UΦ,∞)(γ))n , independent of γ ∈ r∗Φ,∞ . Given µ′ ∈ Û ′Φ,∞ , say µ′ = lim−→µ′n

where µ′n ∈ Û ′Φ,n , and γ is in the image of σ , we have representations

πΦ,γ,µ′,n :=Ind
UΦ,nNΦ,n

U ′Φ,nNΦ,n
(µ′n ⊗ πΦ,γ,n) and

πΦ,γ,µ′,∞ = Ind
UΦ,∞NΦ,∞
U ′Φ,∞NΦ,∞

(µ′ ⊗ πΦ,γ,∞) := lim−→ πΦ,γ,µ′,n .
(12.4)

To be precise here, µ′ must be a cocycle representation of U ′Φ,∞ where the cocycle
ε is the inverse of the Mackey obstruction to extending πΦ,γ,∞ to a representation
of U ′Φ,∞NΦ,∞ .

As in (10.3) the relative Schwartz space C((UΦ,nNΦ,n/U
′
Φ,nSΦ,n), µ′n ⊗ ζγn)

consists of all functions f ∈ C∞(UΦ,nNΦ,n) such that

f(xus) = µ′n(u)−1ζγn(s)−1f(x) (x ∈ NΦ,n, u ∈ U ′Φ,n , s ∈ SΦ,n), and

|q(g)p(D)f | is bounded on UΦ,nNΦ,n/U
′
Φ,nSΦ,n for all

polynomials p, q on NΦ,n/SΦ,n and all D ∈ U(uΦ,n + nΦ,n).

(12.5)

The corresponding limit relative Schwartz space is

C((UΦ,∞NΦ,∞/U
′
Φ,∞SΦ,∞),(µ′ ⊗ ζγ))

= lim←−C((UΦ,nNΦ,n/U
′
Φ,nSΦ,n), (µ′n ⊗ ζγn)),

consisting of all functions f ∈ C∞(UΦ,∞NΦ,∞) such that

f(xus) = µ′(u)−1ζγ(s)
−1f(x) (x ∈ NΦ,∞, u ∈ U ′Φ,∞, s ∈ SΦ,∞ , and

|q(g)p(D)f | is bounded on UΦ,∞NΦ,∞/U
′
Φ,∞SΦ,∞ for all

polynomials p, q on NΦ,∞/SΦ,∞ and all D ∈ U(uΦ,∞ + nΦ,∞).

(12.6)

Theorem 9.4 and Corollaries 9.5 and 9.6 hold for our groups UΦ,nNΦ,n here
with essentially no change, so we will not repeat them.

Following the discussion in Section 10 for C(AΦ,nNΦ,n) and C(AΦ,∞NΦ,∞)
we define seminorms

νk,D,n(f) = supx∈UΦ,nNΦ,n
||x||k|Df(x)| (12.7)

for all k > 0 and D ∈ U(uΦ,n+nΦ,n). As in (9.13) that defines the Schwartz space

C(UΦ,nNΦ,n) =

{f ∈ C∞(UΦ,nNΦ,n) |νk,D,n(f) <∞ for k > 0, D ∈ U(uΦ,n + nΦ,n)} . (12.8)

Finally we define C(UΦ,∞NΦ,∞) to be the inverse limit in the category of locally
convex topological vector spaces and continuous linear maps, as in (9.14):

C(UΦ,∞NΦ,∞) = lim←−C(UΦ,nNΦ,n)

=
{
f ∈ C∞(UΦ,∞NΦ,∞)

∣∣f |UΦ,nNΦ,n
∈ C(UΦ,nNΦ,n)

}
.

(12.9)

Then we have
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Lemma 12.4. The Schwartz space C(UΦ,∞NΦ,∞) consists of all functions f ∈
C∞(UΦ,∞NΦ,∞) such that νk,D,n(f) < ∞ for all integers k > 0 and all D ∈
U(uΦ,∞ + nΦ,∞). Here νk,D,n is given by (12.7). The C(UΦ,nNΦ,n) are nu-
clear Fréchet spaces and C(UΦ,∞NΦ,∞) is an LF space. The left/right actions
of (UΦ,nNΦ,n)× (UΦ,nNΦ,n) on C(UΦ,nNΦ,n) and of (UΦ,∞NΦ,∞)× (UΦ,∞NΦ,∞) on
C(UΦ,∞NΦ,∞) are continuous.

We construct L2(UΦ,∞NΦ,∞) := lim←−L
2(UΦ,nNΦ,n) along the lines of Sec-

tion 9. Let γ = (γn) ∈ r∗Φ,∞ such that γ is in the image of σ . Consider

µ′ = lim−→µ′n ∈ Û ′Φ,∞ where (i) µ′n ∈ Û ′Φ,n and (ii) Hµ′n ⊂ Hµ′`
from a map un 7→ u`

of highest weight unit vectors, for ` = n .
Every f ∈ C(UΦ,nNΦ,n) is a Schwartz wave packet along (u′Φ,n)∗ + s∗Φ,n

of coefficients of the various πΦ,γ,µ′,n , and the corresponding inverse systems fit
together as in (9.15):

C(UΦ,1NΦ,1)
q2,1←−−−− C(UΦ,2NΦ,2)

q3,2←−−−− · ←−−−− C(UΦ,∞NΦ,∞) = lim←−C(UΦ,nNΦ,n)yr1 yr2 y yr∞
L2(UΦ,1NΦ,1)

p2,1←−−−− L2(UΦ,2NΦ,2)
p3,2←−−−− · ←−−−− L2(UΦ,∞NΦ,∞) = lim←−L

2(UΦ,nNΦ,n)

(12.10)

The map r∞ : C(UΦ,∞NΦ,∞) ↪→ L2(UΦ,∞NΦ,∞) is a continuous injection with
dense image, properties inherited from the rn . As in Proposition 9.8 we conclude

Proposition 12.5. Assume (8.4)(d), so that UΦ,∞NΦ,∞ = lim−→UΦ,nNΦ,n is well
defined. Define r∞ : C(UΦ,∞NΦ,∞) ↪→ L2(UΦ,∞NΦ,∞) as in the commutative dia-
gram (12.10). Then L2(UΦ,∞NΦ,∞) is a Hilbert space completion of C(UΦ,∞NΦ,∞).
In particular r∞ defines a pre-Hilbert space structure on C(UΦ,∞NΦ,∞) with com-
pletion L2(UΦ,∞NΦ,∞).

As in [23, Corollary 5.17] C(UΦ,∞NΦ,∞) is independent of the choices we
made in the construction of L2(UΦ,∞NΦ,∞), so

Corollary 12.6. The Hilbert space L2(UΦ,∞NΦ,∞) = lim←−{L
2(UΦ,nNΦ,n), p`,n}

of (12.10) , and the left/right regular representation of (UΦ,∞NΦ,∞)× (UΦ,∞NΦ,∞)
on L2(UΦ,∞NΦ,∞), are independent of the choice of vectors {e} in (9.4)and highest
weight unit vectors {un}.

The limit Fourier inversion formula is

Theorem 12.7. Given πΦ,γ,µλ,ϕ,n ∈ ̂UΦ,nNΦ,n , let ΘπΦ,γ,µλ,ϕ,n
denote its dis-

tribution character. Then ΘπΦ,γ,µλ,ϕ,n
is tempered. Let f ∈ C(UΦ,∞NΦ,∞) and

x ∈ UΦ,∞NΦ,∞ . Then x ∈ UΦ,nNΦ,n for some n and

f(x) = cn

∫
γn∈t∗Φ,n

∑
µ′n∈Û ′Φ,n

ΘπΦ,γ,µ′,n
(rxf) deg(µ′)|Pfnn(γn)|dγn (12.11)

where cn = 2d1+···+dmnd1!d2! . . . dmn ! as in (1.6a) and mn is the number of factors
Lr in NΦ,n .
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Proof. We adapt the computation of [7, Theorem 2.7]. Let h = rxf and apply
[5, Theorem 3.2].

traceπΦ,γ,µ′,n(h) =

∫
x∈UΦ,n/U ′Φ,n

trace

∫
yu∈NΦ,nU ′Φ,n

h(x−1yux) · (πΦ,γ,n ⊗ µ′n)(yu) dy du dx

=

∫
x∈UΦ,n/U ′Φ,n

trace

∫
NΦ,nU ′Φ,n

h(yx−1ux) · (πΦ,γ,n ⊗ µ′n)(xyx−1u) dy du dx.

Now∑
Û′

Φ,n

traceπΦ,γ,µ′,n(h) degµ′n

=
∑

Û′
Φ,n

∫
x∈UΦ,n/U ′Φ,n

trace

∫
NΦ,nU ′Φ,n

h(yx−1ux)(πΦ,γ,µ′,n)(xyx−1u) dy du dx degµ′n

=

∫
x∈UΦ,n/U ′Φ,n

∑
Û′

Φ,n

trace

∫
NΦ,nU ′Φ,n

h(yx−1ux)(πΦ,γ,µ′,n)(xyx−1u) dy du degµ′n dx

=

∫
x∈UΦ,n/U ′Φ,n

trace

∫
NΦ,n

h(y)πΦ,γ,µ′,n(xyx−1)dy dx

=

∫
x∈UΦ,n/U ′Φ,n

trace

∫
NΦ,n

h(y)(x−1 · πΦ,γ,µ′,n)(y)dy dx

=

∫
x∈UΦ,n/U ′Φ,n

trace ((x−1 · πΦ,γ,µ′,n)(h)) dx

=

∫
Ad∗(UΦ,n)γ

traceπΦ,γ,µ′n
(h)|Pf(γn)|dγn.

Summing over the the space of UΦ,n -orbits on s∗Φ,n we now have∫
UΦ,n\s∗Φ,n

∑
Û′

Φ,n

traceπΦ,γ,µ′,n(h) deg µ′n|Pf(γn)|dγn

=

∫
UΦ,n\s∗Φ,n

traceπΦ,γ,µ′,n(h)|Pf(γn)|dγn

=

∫
s∗Φ,n

traceπΦ,γ,n(h)|Pf(γn)|dγn = h(1) = f(x) .

That completes the proof.

13. Representations of the Limit Groups V: UΦ,∞AΦ,∞NΦ,∞

We extend some of the results of Sections 10 and 12 to the maximal amenable
subgroups EΦ,∞ := UΦ,∞AΦ,∞NΦ,∞ of G . Here we are using amenability of the
EΦ,n := UΦ,nAΦ,nNΦ,n .

As in Definition 6.2 the decomposition NΦ,∞ = LΦ,1LΦ,2 . . . is invariant if
each ad (mΦ,∞)zΦ,∞,j = zΦ,∞,j , in other words if each NΦ,n = LΦ,1LΦ,2 . . . LΦ,mn is
invariant. Similarly NΦ,∞ = LΦ,1LΦ,2 . . . is weakly invariant if each ad (uΦ,∞)zΦ,∞,j
= zΦ,∞,j , i.e. if each NΦ,n = LΦ,1LΦ,2 . . . LΦ,mn is weakly invariant.

Recall the principal orbit set r∗Φ,∞ from (12.2) and the measurable sec-
tion σ : Ad∗(UΦ,∞)\r∗Φ,∞ → r∗Φ,∞ on whose image all the isotropy subgroups of
Ad∗(UΦ,∞) are the same. Note that σ is Ad∗(AΦ,∞)-equivariant, so we may view
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it as a section to r∗Φ,∞ → Ad∗(UΦ,∞AΦ,∞)\r∗Φ,∞ on whose image all the isotropy
subgroups of Ad∗(UΦ,∞AΦ,∞) are the same. Following (6.5), (10.1) and (12.3),
and as remarked just after (12.3), that common isotropy subgroup is independent
of γ ∈ r∗Φ,∞ and is given by

U ′Φ,∞A
′
Φ,∞ : isotropy of UΦ,∞AΦ,∞ at σ(Ad∗(UΦ,∞AΦ,∞))(γ). (13.1)

Let γ ∈ t∗Φ,∞ be in the image of σ . Then πΦ,γ,∞ extends to a representation

π†Φ,γ,∞ of U ′Φ,∞A
′
Φ,∞NΦ,∞ on the same space HπΦ,γ∞ . Given µ′ ∈ Û ′Φ,∞ and

ξ′ = (ξ′n) ∈ (a′Φ,∞)∗ the corresponding representation of EΦ,∞ := UΦ,∞AΦ,∞NΦ,∞
is induced from E ′Φ,∞ := U ′Φ,∞A

′
Φ,∞NΦ,∞ as follows.

πΦ,γ,ξ′,µ′,∞ = lim−→πΦ,γ,ξ′,µ′,n where πΦ,γ,ξ′,µ′,n = Ind
EΦ,n

E′Φ,n

(
µ′n ⊗ exp(2πiξ′n)⊗ π†Φ,γ,n

)
,

in other words πΦ,γ,ξ′,µ′,n = Ind
UΦ,nAΦ,nNΦ,n

U ′Φ,nA
′
Φ,nNΦ,n

(
µ′n ⊗ exp(2πiξ′n)⊗ π†Φ,γ,n

)
.

(13.2)

As in Section 10, C((UΦ,nAΦ,nNΦ,n/U
′
Φ,nA

′
Φ,nSΦ,n), (µ′n ⊗ exp(2πiξ′n)⊗ ζγn))

consists of all functions f ∈ C∞(UΦ,nAΦ,nNΦ,n) such that

f(xuas) = µ′n(u)−1 exp(−2πiξ′(log a))ζγn(s)−1f(x)

(x ∈ NΦ,n, u ∈ U ′Φ,n, a ∈ A′Φ,n, s ∈ SΦ,n), and |q(g)p(D)f | is

bounded on UΦ,nAΦ,nNΦ,n/U
′
Φ,nA

′
Φ,nSΦ,n for all polynomials

p, q on AΦ,nNΦ,n/A
′
Φ,nSΦ,n and all D ∈ U(uΦ,n + aΦ,n + nΦ,n).

(13.3)

That is the relative Schwartz space. The corresponding limit relative Schwartz
space is

C((UΦ,∞AΦ,∞NΦ,∞/U
′
Φ,∞A

′
Φ,∞SΦ,∞), (µ′ ⊗ exp(2πiξ′)⊗ ζγ))

= lim←−C((UΦ,nAΦ,nNΦ,n/U
′
Φ,nA

′
Φ,nSΦ,n), (µ′n ⊗ exp(2πiξ′n)⊗ ζγn)).

(13.4)

Again, Theorem 9.4 and Corollaries 9.5 and 9.6 hold mutatis mutandis for
the groups EΦ,n so we won’t repeat them. We extend the definition (12.7) of
seminorms on UΦ,nNΦ,n to EΦ,n = UΦ,nAΦ,nNΦ,n :

νk,D,n(f) = supx∈EΦ,n
||x||k|Df(x)| (k > 0, D ∈ eΦ,n , f ∈ C∞(EΦ,n)). (13.5)

That defines the Schwartz space C(EΦ,n):

C(EΦ,n) = {f ∈ C∞(EΦ,n) |νk,D,n(f) <∞ for k > 0 and D ∈ U(eΦ,n)} . (13.6)

Finally we define C(EΦ,∞) to be the inverse limit in the category of locally convex
topological vector spaces and continuous linear maps,

C(EΦ,∞) =
{
f ∈ C∞(EΦ,∞)

∣∣f |EΦ,n
∈ C(EΦ,n)

}
= lim←−C(EΦ,n). (13.7)

As before

Lemma 13.1. The Schwartz space C(EΦ,∞) consists of all f ∈ C∞(EΦ,∞) such
that νk,D,n(f) < ∞ for all integers k > 0 and all D ∈ U(eΦ,∞). Here νk,D,n is
given by (13.5). The C(EΦ,n) are nuclear Fréchet spaces and C(EΦ,∞) is an LF
space. The left/right actions of (EΦ,n)×(EΦ,n) on C(EΦ,n) and of (EΦ,∞)×(EΦ,∞)
on C(EΦ,∞) are continuous.
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We construct L2(EΦ,∞) := lim←−L
2(EΦ,n) as before. Let γ = (γn) ∈ r∗Φ,∞ be

in the image of σ . Consider µ′ = (µ′n) ∈ Û ′Φ,∞ and ξ = (ξn) ∈ aΦ,n , For ` = n we
consider the maps on representation spaces given by HπΦ,γ,ξ,µ′,n

⊂ HπΦ,γ,ξ,µ′,`
from

maps un 7→ u` of highest weight unit vectors.

Every f ∈ C(EΦ,n) is a Schwartz wave packet along (u′Φ,n)∗a′Φ,n + s∗Φ,n of
coefficients of the various πΦ,γ,ξ,µ′,n . The corresponding inverse systems fit together
as in (9.15):

C(EΦ,1)
q2,1←−−− C(EΦ,2)

q3,2←−−− . . . ←−−− C(EΦ,∞) = lim←−C(EΦ,n)yr1 yr2 y yr∞
L2(EΦ,1)

p2,1←−−− L2(EΦ,2)
p3,2←−−− . . . ←−−− L2(EΦ,∞) = lim←−L

2(EΦ,n)

(13.8)

The rn are continuous injections with dense image, so r∞ : C(EΦ,∞) ↪→ L2(EΦ,∞)
is a continuous injection with dense image. As in Proposition 9.8 we conclude

Proposition 13.2. Assume (8.4)(d), so that EΦ,∞ = lim−→EΦ,n is well defined.
Define r∞ : C(EΦ,∞) ↪→ L2(EΦ,∞) as in (13.8). Then L2(EΦ,∞) is a Hilbert space
completion of C(EΦ,∞). In particular r∞ defines a pre-Hilbert space structure on
C(EΦ,∞) with completion L2(EΦ,∞).

As in [23, Corollary 5.17] C(EΦ,∞) is independent of the choices we made
in the construction of L2(EΦ,∞), so

Corollary 13.3. The Hilbert space L2(EΦ,∞) = lim←−{L
2(EΦ,n), p`,n} of (13.8),

and the left/right regular representation of EΦ,∞×EΦ,∞ on it, are independent of
the choice of vectors {e} in (9.4) and highest weight unit vectors {un}.

The limit Fourier inversion formula is

Theorem 13.4. Given πΦ,γ,ξ,µλ,ϕ,n ∈ ÊΦ,n let ΘπΦ,γ,ξ,µλ,ϕ,n
denote its distribu-

tion character. Then ΘπΦ,γ,ξ,µλ,ϕ,n
is a tempered distribution. Let f ∈ C(EΦ,∞) and

x ∈ EΦ,∞ . Then x ∈ EΦ,n for some n and

f(x) = cn

∫
γn∈t∗Φ,n

∫
ξ∈a′Φ,n

∑
µ′n∈Û ′Φ,n

ΘπΦ,γ,ξ,µ′,n(rxf) deg(µ′)|Pfnn(γn)|dξ dγn (13.9)

where cn = ( 1
2π

)dim a′Φ/2 2d1+···+dmnd1!d2! . . . dmn ! and mn is the number of factors
Lr in NΦ,n .

Proof. We combine the ideas in the proofs of Theorems 5.8 and 12.7. In an
attempt to keep the notation under control we write U ′′n for UΦ,n/U

′
Φ,n and A′′n

for AΦ,n/A
′
Φ,n , and more generally we drop the subscript Φ. We write δ for the
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modular function of QΦ . Let h = rxf . Using [5, Theorem 3.2],

traceπγ,ξ,µ′,n(Dh) =

∫
x∈U ′′nA′′n

δ−1(x) trace

∫
yau∈NnA′nU ′n

(Dh)(x−1yaux)×

× (π†γ,n ⊗ exp(2πiξ)µ′n)(yau) dy da du dx

=

∫
x∈U ′′A′′

trace

∫
NnA′nU

′
n

(Dh)(yx−1aux)×

× (π†γ,n ⊗ exp(2πiξ)µ′n)(xyx−1u) dy da du dx.

Now
∑

Û ′n

∫
Â′n

traceπγ,ξ,µ′,n(Dh)dξ deg µ′n

=
∑

Û ′n

∫
Â′n

∫
x∈U ′′nA′′n

trace

∫
NnU ′nA

′
n

(Dh)(yx−1aux)×

× (π†γ,n ⊗ exp(2πiξ)µ′n)(xyx−1au) dy da du dx dξ deg µ′n

=

∫
x∈U ′′nA′′n

∑
Û ′n

∫
Â′n

trace

∫
NnU ′n

(Dh)(yx−1aux)×

× (π†γ,n ⊗ exp(2πiξ)µ′n)(xyx−1au) dy da du dξ deg µ′n dx

=

∫
x∈U ′′nA′′n

trace

∫
Nn

(Dh)(y)π†γ,n(xyx−1)dy dx

=

∫
x∈U ′′nA′′n

trace

∫
Nn

(Dh)(y)(Ad∗(x)−1 · π†γ,n)(y)dy dx

=

∫
x∈U ′′nA′′n

trace ((Ad∗(x)−1 · π†γ,n)(Dh)) dx

=

∫
x∈U ′′nA′′n

(Ad∗(x)−1 · πγ,n)∗(D) trace (Ad(x)−1 · π†γ,n)(h) dx

=

∫
x∈U ′′nA′′n

(Ad∗(x)D) trace (Ad(x)−1 · π†γ,n)(h) dx

=

∫
x∈U ′′nA′′n

δ(x)trace (Ad(x)−1 · π†γ,n)(h) dx

=

∫
γ′n∈Ad∗(UnAn)γn

traceπ†γ′,n(h)|Pf(γ′n)|dγ′n.

Summing over the the space of UnAn -orbits on s∗n we now have∫
γn∈Ad∗(UnAn)\s∗n

(∑
Û ′n

∫
Â′n

traceπγ,ξ,µ′,n(Dh)dξ deg µ′n

)
dγn

=

∫
γn∈Ad∗(UnAn)\s∗n

(∫
γ′n∈Ad∗(UnAn)γn

traceπ†γ′n(h)|Pf(γ′n)|dγ′n
)
dγn

=

∫
γn∈s∗n

traceπγn(h)|Pf(γn)|dγn = h(1) = f(x) .

That completes the proof.
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[13] Strătilă, S. and D. Voiculescu, “Representations of AF-algebras and of the
Group U(∞),” Lecture Notes Math. 486, Springer-Verlag, 1975.
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