Stepwise Square Integrable Representations:
The Concept and Some Consequences

Joseph A. Wolf

Abstract There are some new developments on Plancherel formula and growth of
matrix coefficients for unitary representations of nilpotent Lie groups. These have
several consequences for the geometry of weakly symmetric spaces and analysis
on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional)
locally nilpotent Lie groups. Many of these consequences are still under development.
Inthis note I'll survey a few of these new aspects of representation theory for nilpotent
Lie groups and parabolic subgroups.

1 Introduction

There is a well developed theory of square integrable representations of nilpo-
tent Lie groups [17]. It is based on the general representation theory of Kirillov
[12] for connected nilpotent real Lie groups. A connected simply connected Lie
group N with center Z is called square integrable if it has unitary representations
7 whose coefficients f, ,(x) = (u, m(x)v) satisfy | f, | € L2(N/Z).If N has one
such square integrable representation then there is a certain polynomial function
P(7) on the linear dual space 3* of the Lie algebra of Z that is key to harmonic
analysis on N. Here P () is the Pfaffian of the antisymmetric bilinear form on n/3
given by by (x, y) = A([x, y]) where v = A|;. The square integrable representations
of N are certain easily-constructed representations ., where v € 3* with P(y) # 0,
Plancherel almost irreducible unitary representations of N are square integrable, and
up to an explicit constant | P(y)| is the Plancherel density of the unitary dual N at
my. This theory has some interesting analytic consequences [26].
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More recently there was a serious extension of that theory [27]. Under certain
conditions, the nilpotent Lie group N has a decomposition into subgroups that have
square integrable representations, and the Plancherel formula then is synthesized
explicitly in terms of the Plancherel formulae of those subgroups. In particular the
extended theory applies to nilradicals of minimal parabolic subgroups [27]. With a
minor technical adjustment it has just been extended to nilradicals of arbitrary real
parabolics [32]. The consequences include explicit Plancherel and Fourier inver-
sion formulas. Applications include analysis on minimal parabolic subgroups [28]
and, more generally, on maximal amenable subgroups of parabolics [32], They also
include analysis on commutative spaces, i.e. on Gelfand pairs [31]. We sketch some
of these developments. Due to constraints of time and space we pass over many
aspects of operator theory and orbit geometry, for example those described in [2—4],
related to stepwise square integrable representations.

In Sect. 2 we recall the basic facts [17], with a few extensions, on square integrable
representations of nilpotent Lie groups. In Sect.3 we recall the concept and main
results for stepwise square integrable nilpotent Lie group.

In Sect.4 we show how nilradicals of minimal parabolic subgroups have the
required decomposition for stepwise square integrability. This is a construction based
on concept of strongly orthogonal restricted roots.

In Sect.5 we indicate the consequences for homogeneous compact nilmanifolds,
and in Sect. 6 we mention the application to analysis on commutative nilmanifolds.

In Sect.7 we start the extension of stepwise square integrability results from the
nilradical N of a minimal parabolic P = M AN to various subgroups that contain
N. This section concentrates on the subgroup M N and takes advantage of principal
orbit theory. That gives a sharp simplification to the Plancherel and Fourier Inversion
formulae. In Sect. 8 we look at P and its subgroup AN. They are not unimodular, so
we introduce the Dixmier—Pukanszky operator D whose semi-invariance balances
that of the modular function. It is a key point for the Plancherel and Fourier Inversion
formulae.

Sections 9 and 10 are a short discussion of work in progress on the extension of
results from minimal parabolics to parabolics in general. There are two places where
matters diverge from the minimal parabolic case. First, there is a technical adjustment
to the definition of stepwise square integrable representation, caused by the fact that
in the non-minimal case the restricted roots need not form a root system. Second,
again for technical reasons, the explicit Plancherel Formula only comes through for
the maximal amenable subgroups U AN of G, and not for all of the parabolic.

This work was partially supported by a Simons Foundation grant and by the
award of a Dickson Emeriti Professorship. It expands a talk at the 11-th International
Workshop “Lie Theory and Its Applications in Physics” in Varna. My thanks to Prof.
Vladimir Dobrev and the others on the organizing committee for hospitality at that
Workshop.
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2 Square Integrable Representations

Let G be a unimodular locally compact group with center Z, and let 7 be an
irreducible unitary representation. We associate the central character x, € Z by
m(z) = Xz (x) - 1 for z € Z. Consider a matrix coefficient f, , : x — (u, m(x)v).
Then | f,,.,] is a well defined function on G/Z. Fix Haar measures jig on G, j1z on
Z and pg/z on G/Z such that dug = dpz dpug,z. The following results are well
known.

Theorem 2.1 The following conditions on € G are equivalent.

(1) There exist nonzero u,v € H, with | f,, ,| € EZ(G/Z).
(2) |fuvl € EZ(G/Z)fOr allu,v € H,.
(3) 7 is a discrete summand of the representation Ind g(Xﬁ).

Theorem 2.2 [fthe conditions of Theorem 2.1 are satisfied for an irreducible m € G,
then there is a number deg ™ > 0 such that

fun @) (DG z(xZ) = gz (u, u') (00) (1
G/Z

forallu,u',v,v' € Hy. If m, m € G are inequivalent and satisfy the conditions of
Theorem 2.1, and X, = Xnr,, then

/ (u, m V) {u', M)V )dpgz(xZ) =0 (2)
G/z

SJorallu,v € H; andallu',v' € H,,.
The main results of [17] shows exactly how this works for nilpotent Lie groups.

Theorem 2.3 Let N be a connected simply connected Lie group with center Z, n
and 3 their Lie algebras, and n* the linear dual space of n. Let \ € n* and let ),
denote the irreducible unitary representation attached to Ad*(N)\ by the Kirillov
theory [12]. Then the following conditions are equivalent.

(1) 7y satisfies the conditions of Theorem 2.1.

(2) The coadjoint orbit Ad*(N)X = {v e n* | v]; = Al;.

(3) The bilinear form by(x, y) = A([x, y]) on n/3 is nondegenerate.
(4) The universal enveloping algebra U(3) is the center of U(n).

The Pfaffian polynomial Pt (b)) is a polynomial function P(\|;) on 3%, and the set
of representations wy for which these conditions hold, is parameterized by the set
{v €3 | P(vy) # 0} (which is empty or Zariski open in 3*).

We will say that the connected simply connected Lie group N is square integrable
if there exists A € n* suchthat P(\|;) # 0}. For convenience we will sometimes write
P()) for P(M];) and m, for my where v = Al;.
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Theorem 2.4 Let N be a square integrable connected simply connected Lie group
with center Z. Then Plancherel measure on N is concentrated on {mz | P(N) # 0},
and there the Plancherel measure is given by the measure |P(\)d\| on 3* and the
formal degree deg my = |P(\];)].

Given v € 3* with P(y) # 0 and a Schwartz class (C(N)) function f on N we
write O(y) for the co-adjoint orbit Ad*(N)y = v+ 31, f, for the restriction of
f-expto O(y), and f, for the Fourier transform of f, on O(v).

Theorem 2.5 Let N be a square integrable connected simply connected Lie group
with center Z and f € C(N). Ify € 3* with P() # O then the distribution character
of m, is given by

O (f) = trace / T @) dpg () = ¢ P! / fdv 3
N v

€O(v)

where ¢ = d'2? and d = dim(n/3)/2 and dv is ordinary Lebesgue measure on the
affine space O(v). The Fourier Inversion formula for N is

fx) = C/ Oy (re HIP (V)| dry where (ry f)(y) = f(yx) (right translate). (4)
5

There also are multiplicity results on £2(N/I") where N is square integrable and
I" is a discrete co-compact subgroup, but they are the same as in the stepwise square
integrable case, so we postpone their description.

3 Stepwise Square Integrability

In order to go beyond square integrable nilpotent groups, we suppose that the con-
nected simply connected nilpotent Lie group decomposes as

N=LL,...L,,_1L,, where
(a) each L, has unitary representations with coeff in LX(L,/Z,),
(b) N, := L{L,...L,isnormalin N with N, = N,_; X L, , (®))
©[L,3;]=0and[l,, ] Coforr > s with[, =3, + v,
wheren=s4+v, s =®3, andv =@v,.
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We will use the following notation.

(@) d, = 3 dim(l,/3,) so 1 dim(n/s) =dy + -+ + dyy ,
and ¢ = 2T g \dy! ... d,!
(b) by, : (x,y) = A([x, y]) viewed as a bilinear form on [, /3,
S=212,...Z, =2 xX--- X Z,, where Z, is the center of L,
(d) P : polynomial P(\) = Pf (by,)Pf (by,)...Pf(by,) ons*
et ={ es" | P(N) #0}
) m € N for \ € 5* with P()\) # 0, irreducible unitary representation

(6)

of N=LL,...L, constructed as follows.

Start with the representation 7y, € N specified by A, € 37 with Pf (b)) # 0.
Choose an invariant polarization p| C n; for the linear functional A} € nj that agrees
with Ay on n; and vanishes on [,. Since L, centralizes S,_;, ad*()(A}) 5,4+, = 0,
so p| = p1 + [ where p; 1s an invariant polarlzatlon for A; € nj. The associated
representations are 77/\ € Nz and 7, € N1 Note that N2/P = Ni/ Py, so the rep-
resentation spaces H. ™, = = L2(N,/P]) = L2(N1/P)) = Hz,,- In other words, 7r/\]
extends 7y, to a unitary representation of N> on the same Hilbert space Hr, , and
dmy (32) = 0. Now the Mackey Little Group method gives us

Lemma 3.1 The irreducible unitary representations of N, whose restrictions to N;
are multiples of ,, are the 7T3\] ®~ where y € L, = N,/ Nj.

Given \, € 3; withPf (b),) # Owehavem,, € Z; with coefficientsin L2 (L,/ Z5).
In the notation of Lemma 3.1 we define

— , o~
Ta+x € N2 by T +XA = 7T)\1®7T/\2 : (N

Proposition 3.2 The coefficients f, ., (xy) = (2, Tx,4+1, @Y)w) of T+, belong to

. . 2 2
L2(N2/S$2), in fact satisfy || franl 72 v, /s,) = Gegonsy-destry -

Proposition 3.2 starts a recursion using N,.; = N, X L,;. We fix nonzero
Ai €3 forl £i £ r+ 1, and we start with the representation )y, 4...45, constructed
step by step from the square integrable representations 7y, € L;for 1 <i = r.The
representation space Hr, , ., = Hr, Q- @'HM. The coefficients of 7y, 4..4),
have absolute value in £>(N, /S,). They satisfy

2 _ Lzl lwl*
||fz,w||[:2(N,/S,) T deg(my,)...deg(my,) ®)

Then 7y, 4.4, extends to a representation 7y , ., of L, on the same Hilbert

space HMM_“W , and it satisfies dﬂ’AIJr__‘Mr (3r+1) = 0. Asin Lemma 3.1,
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Lemma 3.3 The irreducibles 7 € N,H, whose restrzctlons to N, are multiples of
T\ +-+),» aF€ the 71'/\ . ®~y where € L,+1 = ,+1/N

. . , ~
As in Proposition 3.2, define 7y, 4.4, = 7 ;. ®7), . Then

1

Proposition 3.4 The coefficients f ., (x1 ... X41) = (2, Tr 4opr, (X1 X2 - - Xpgp)
W) of T\ 4.4, belong to L2(Ny41/8r41), in fact satisfy

I f ||2 — Lzl [w][?
2WIHL2(N, 1/ S41) deg(my,)...deg(my, )

Since deg ), = |Pf (b),)|, Proposition 3.4 is the recursion step for our construc-
tion. Passing to the end case r + 1 = m we see that Plancherel measure is concen-
trated on {m) | A € t*}. Using (5)(c) to see that conjugation by elements of L has
no effect on the Pf (b)) for r < s, we arrive at

Theorem 3.5 Let N be a connected simply connected nilpotent Lie group that satis-
fies (5). Then Plancherel measure for N is concentrated on {m) | A € t*, P(\) # 0}.
Ifxets, P(\) #0and u,v € Hy,, then the coefficient f, ,(x) = (u, m,(x)v) sat-
isfies

1 fuo Pz ss) = Il PHI0IP/I POV ©)

The distribution character Oy, : f > trace fG fx)m(x)dx of wy is given by
O (f)=c 1PV /O . AEAvA(E) for f € C(N) (10)
N

where C(N)/i\s the Schwartz space, O(\) = Ad*(N)X = s+ + \, fristhelift fr(€) =
f(exp(&)), foisits classical Fourier transform, and dv) is the translate of normalized
Lebesgue measure from s to Ad*(N)\. Further,

F) =c / O, (re P POVIAA for f € C(N). (11)
5

Definition 3.6 The representations 7y of (6)(f) are the stepwise square integrable
representations of N relative to (5). <

The left action (I(x) f)(g) = f(x~'g) and the right action (r(y) f)(g) = f(gy)
of N on functions carries over to coefficients of 7 as [(x)7(¥) fu,o = frur(v- If
™ = T stepwise square integrable, u, v € H, are C* vectors, and if @ and ¥ belong
to the universal enveloping algebra U/ (n), then / (<D)r(lI/) Suv = far@yu.dr(@)v 15 just
another coefficient, C* and £>(N/S). If {) € Sis the quasicentral character of 7y
it follows that f, , belongs to the relative Schwartz space C(N/S, (»). In particular
it follows that | f,, ,| € LP(N/S) for all p = 1. Taking Schwartz class wave packets
over S of coefficient functions of stepwise square integrable representations of N one
can express the Plancherel formula of Theorem 3.5 in terms of coefficient functions.
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4 Nilradicals of Minimal Parabolics

Fix areal simple Lie group G, an Iwasawa decomposition G = K AN, and a minimal
parabolic subgroup Q = M AN in G. Let m = rank gG = dimp A. As usual, write
£ for the Lie algebra of K, a for the Lie algebra of A, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra b of g. Then h) = t + a with t = h N €. Now we
have root systems

A(gc, be): roots of ge relative to he (ordinary roots),
A(g, a): roots of g relative to a (restricted roots), (12)
Ap(g,a) ={a € A(g,a) | 2a ¢ A(g, a)} (nonmultipliable).

Here A(g, a) and Ag(g, a) are root systems in the usual sense. Any positive root
system A1 (ge, he) C A(ge, he) defines positive systems

AT(g,a) = {vla | ¥ € A" (gc, be) and 7] # O},

(13)
A (g, @) = Ao(g, @) N AT (g, ).
We can (and do) choose AT (g, h) so that
n is the sum of the positive restricted root spaces and (14)

if v € A(gc, he) and y|q € A*(g, a) theny € A* (ge, o).

Two roots are called strongly orthogonal if their sum and their difference are not
roots. Then they are orthogonal. The Kostant cascade construction is

B1 € At (g, a) is a maximal positive restricted root and
By+1 € AT (g, a) is a maximum among the roots of A* (g, a) (15)

that are orthogonal to all §; withi < r

Then the 3, are mutually strongly orthogonal. Each 3, € A (g, a), and /3; is unique
because A(g, a) is irreducible. For 1 < r < m define

AT ={ae At (g,a) | B —a e At(g,a)} and

Alg={aed @\ (ATU--UAD | B —ae Af(g o). (1o

Lemma 4.1 Ifa € AT (g, a), either o € {01, ..., B} or « belongs to just one A7 .

Lemmad.2 ATU{(,}={ae€ AT |a L f fori <rand (o, () > 0}.Inpartic-
ular, [1,, I;] C [, where t = min{r, s}.

Lemma 4.1 shows that the Lie algebra n of NV is the direct sum of its subspaces

[ =gg +ZA+ goforl <r<m (17)
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and Lemma 4.2 shows that n has an increasing foliation by ideals
n=hL+bL+---+1forl <r<m. (18)

Now we will see that the corresponding group level decomposition N = L{L; ... L,
and the semidirect product decompositions N, = N,_; x L, satisfy (5). Denote

sp, is the Weyl group reflection in 3, and (19)
or 1 A(g, a) = A(g, a) by 0, () = —s5, ().

Note that o, (8;) = —f3; fors # r, +05; ifs = r. If « € A} we still have o, () L f3;
for i <r and (o,(a), B;) > 0. If 0,(a) <O then B, — 0,(a) > [, contradicting
maximality of §,. Thus, using Lemma 4.2, 0, (A}) = AF.

Lemma 4.3 [fa € Al then a+ o,(«) = (3,. (It is possible that o« = 0, () = %ﬁr
when %ﬂ, isaroot.). If a, o/ € AT and o+ o' € A(g, a) then o+ o/ = 3.

Lemma 4.4 Let n be a nilpotent Lie algebra, j its center, and v a vector space
complement to § in n. Suppose thatv =u+u, u= Y u,andv' =D u,, and 3 =
> 35 with dim3, = 1 in such a way that (i) each [ug, u,] =0 = [u,, 1], (i) if
ay # ap then [u,,, w1 = 0 and (iii) for each a there is a nondegenerate pairing
U, @ U, —> 3, byu @ u' v+ [u, u']. Then nis a direct sum of Heisenberg algebras
3b, + Ug + 1, and the commutative algebra that is the sum of the remaining 3p.

Now one runs through a number of special situations: (1) If g is the split real
form of g¢ then each L, has square integrable representations. (2) If g is simple
but not absolutely simple then each L, has square integrable representations. (3) If
G is the quaternion special linear group SL(n; H) then L; has square integrable
representations. (4) If G is the group E¢ f, of collineations of the Cayley projective
plane then L, has square integrable representations. (5) The group L; has square
integrable representations. (6) If g is absolutely simple then each L, has square
integrable representations. Putting these together, Theorem 3.5 applies to nilradicals
of minimal parabolic subgroups:

Theorem 4.5 Let G be a real reductive Lie group, G = K AN an Iwasawa decom-
position, |, and n, the subalgebras of n defined in (17) and (18), and L, and N,
the corresponding analytic subgroups of N. Then the L, and N, satisfy (5). In
particular, Plancherel measure for N is concentrated on {my | A € t*}. If A e t¥,
and if u and v belong to the representation space H,, of m,, then the coefficient

. 2 2 2 . . .
Juw(x) = (u, m\(x)) satisfies || fuol 72 y/5) = ”72,\(&'1;'” . The distribution character

On, of 7y satisfies O (f) = c'|P(\)|™! fo(/\) H(&dvy(€) for f € C(N). Here
C(N) is the Schwartz space, O()) is the coadjoint orbit Ad*(N)X = s+ + X\, f, is
the lift £, (&) = f(exp(€)) tos™ + A, ﬁ is its classical Fourier transform, and dv is
the translate of normalized Lebesgue measure from s* to Ad*(N)\. The Plancherel
formula on N is f(x) = cft* On, (ry HIP V)| for f € C(N).
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5 Compact Nilmanifolds

Here are the basic facts on discrete uniform (i.e. co-compact) subgroups of connected
simply connected nilpotent Lie groups. See [21, Chap. 2] for an exposition.

Proposition 5.1 The following are equivalent.

e N has a discrete subgroup I" with N/I" compact.

e N = Np where Ny is the group of real points in a unipotent linear algebraic group
defined over the rational number field Q.

e 1 has a basis {£;} for which the coefficients cl’fj in[&, 1= cll.fjﬁk are rational
numbers.

Under those conditions let n,, denote the rational span of {£;} and let n, be the integral
span. Then exp(n,) generates a discrete subgroup Nz, of N = Nr and Nr/Ngy, is
compact. Conversely, if I' is a discrete co-compact subgroup of N then the Z-span
of exp~'(I") is a lattice in n for which any generating set {&;} is a basis of n such
that the coefficients C;"(, jinl&, &= > cf-i &k are rational numbers.

The conditions of Proposition 5.1 hold for the nilpotent groups studied in Sect. 4;
there one can choose the basis {;} of n so that the cf‘ ; are integers.

The basic facts on square integrable representations that occur in compact quo-
tients N/I", as described in [17, Theorem 7], are

Proposition 5.2 Let N be a connected simply connected nilpotent Lie group that
has square integrable representations, and let I" a discrete co-compact subgroup.
Let Z be the center of N and normalize the volume form on n/3 by normalizing Haar
measure on N so that N/ZT has volume 1. Let P be the corresponding Pfaffian
polynomial on 3*. Note that I’ N\ Z is a lattice in Z and exp™"(I' N Z) is a lattice
(denote it A) in 3. That defines the dual lattice A* in 3*. Then a square integrable
representation m occurs in L2(N/T") if and only if \ € A*, and in that case T
occurs with multiplicity | P ()\)|.

Definition 5.3 Let N = Ny be defined over Q as in Proposition 5.1, so we have a
fixed rational form Ng. We say that a connected Lie subgroup L C N is rational if
L N Ng is arational form of L, in other words if [N n, contains a basis of [. We say
that a decomposition (5) is rational if the subgroups L, and N, are rational. <&

The following is immediate from this definition.

Lemma 5.4 Let N be defined over QQ as in Proposition 5.1 with rational structure
defined by a discrete co-compact subgroup I'. If the decomposition (5) is rational
theneach I’ NZ, in Z,, each I’ N L, in L,, each I’ N S, in S,, and each I" N N,
in N,, is a discrete co-compact subgroup defining the same rational structure as the
one defined by its intersection with Ng.
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Now assume that N and I" satisfy the rationality conditions of Lemma 5.4. Then
for each r, Z, N I' is a lattice in the center Z, of L,, and A, :=1log(Z, NI")isa
lattice in its Lie algebra 3,. That defines the dual lattice A} in 3. We normalize the
Pfaffian polynomials on the 3, and thus the polynomial P on s*, by requiring that
the N, /(S, - (N, N I")) have volume 1.

Theorem 5.5 Let )\ € t*. Then a stepwise square integrable representation wy of N
occurs in L*(N/T") if and only if each \, € A¥, and in that case the multiplicity of
7y on L2(N/T) is |P(N)].

6 Commutative Spaces

A commutative space X = G/K, or equivalently a Gelfand pair (G, K), consists
of a locally compact group G and a compact subgroup K such that the convolution
algebra L' (K\G/K) is commutative. When G is a connected Lie group it is equiva-
lent to say that the algebra D(G, K) of G-invariant differential operators on G/K is
commutative. We say that the commutative space G/K is acommutative nilmanifold
if it is a nilmanifold in the sense that some nilpotent analytic subgroup N of G acts
transitively. When G /K is connected and simply connected it follows that N is the
nilradical of G, that N acts simply transitively on G/K, and that G is the semidi-
rect product group N x K, so that G/K = (N x K)/K. In this section we study
the role of square integrability and stepwise square integrability for commutative
nilmanifolds G/K = (N x K)/K.

The cases where G/K and (G, K) are irreducible in the sense that [n, n] (which
must be central) is the center of n and K acts irreducibly on n/[n, n], have been
classified by E.B. Vinberg [22, 23]. See [26, Sect. 13.4B] for the Lie algebra structure
v x v — 3. The classification of commutative nilmanifolds is based on Vinberg’s
work and was completed by O. Yakimova in [34, 35].

It turns out that almost all commutative manifolds correspond to nilpotent groups
that are square integrable. The exceptions are those with a certain direct factor, and
in those cases the nilpotent group is stepwise square integrable in two steps, so in
those cases the Plancherel formula follows directly from the general result above.
See [31] for the details.

7 Minimal Parabolics: Subgroup M N

Fix an Iwasawa decomposition G = K AN for a simple Lie group G and the minimal
parabolic subgroup Q = M AN. As usual, write £ for the Lie algebra of K, a for the
Lie algebra of A, m for the Lie algebra of M, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra h of g. Then we have root systems A(gc, hc),
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A(g, a) and Ag(g, a) described in (12). M is the centralizer of A in K. Write © for
identity component; then Q° = M°AN.

Recall the Pf-nonsingular set t* = {\ € s* | Pf (b)) # 0} of (6)(e); so Ad*
(M)t* = t*. Further, if A € * and ¢ # 0 then ¢\ € t*, in fact Pf (b)) = c4im®/=)/2
Pf (b)).

Fix an M-invariant inner product (u, ) on s*. So Ad*(M) preserves each sphere
si={Aes | (AN = t2}. Two orbits Ad* (M) and Ad* (M )v are of the same orbit
type if the isotropy subgroups M, and M, are conjugate, and an orbit is principal if
all nearby orbits are of the same type. Since M and s; are compact, there are only
finitely many orbit types of M on s, there is only one principal orbit type, and the
union of the principal orbits forms a dense open subset of s; whose complement has
codimension 22. See [5, Chap. 4, Sect. 3] for a complete treatment of this material,
or [10, Part I, Chap. 3, Sect. 1] modulo references to [5], or [18, Chap. 5] for a basic
treatment, still with some references to [5].

The action of M on s* commutes with dilation so the structural results on the s,
also hold on s* = |, s;. Define the Pf-nonsingular principal orbit set as follows:

u* = {\ e t* | Ad*(M)\ is a principal M-orbit on s*}. (20)

Now principal orbit set u* is a dense open set with complement of codimension = 2 in
s*. If A\ € u* and ¢ # O then cA € u* withisotropy M.\ = M. If A € u} :=u* Ns;,
so Ad*(M)\is a Pf-nonsingular principal orbit of M on the sphere 57, then Ad*(M°)\
is a principal orbit of M° on s7. Principal orbit isotropy subgroups of compact
connected linear groups are studied in [11] and the possibilities for the isotropy
(M"), are essentially known. The following lets us go from (M°)) to M.

Proposition 7.1 ([28]) Suppose that G is connected and linear. Then M = F ZgM°
where Zg is the center of G, F = (exp(ia) N K) is an elementary abelian 2-group,
and Ad*(F) acts trivially on 5*. If X\ € w* then the isotropy My = F Zg(M"),.

Thus the groups M, are specified by the work of W.-C. and W.-Y. Hsiang [11].

Given A € u* the stepwise square integrable representation 7 € N one proves
that the Mackey obstruction ¢ € H*(My; U (1)) is trivial, and in fact that 7 extends
to a unitary representation 7Tj\ of N x M) on the representation space of 7.

Each A € u* now defines classes

Q) = {wj ®v|ve A@} L FO) = {Ind%%(ﬂ ®7) |mieye E(A)}
2D

of irreducible unitary representations of N x M and N M. The Mackey little group
method, plus the fact that the Plancherel density on N is polynomial on s*, and
s* \ u* has measure 0 in t*, gives us

Proposition 7.2 Plancherel measure for NM is concentrated on |, . F(N),
equivalence classes of irreducible representations ) , := Ind %% (ﬂl ® ) such that
771 ® v € E(N) and X € u*. Further
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maly = (3 )| = [ (@im o) man dondty).
N M/ M,

There is a Borel section o to u* — u*/Ad*(M) that picks out an element in each
M -orbit so that M has the same isotropy subgroup at each of those elements. In other
words in each M-orbit on u* we measurably choose an element A = o(Ad*(M)\)
such that those isotropy subgroups M) are all the same. Let us denote

M_: isotropy subgroup of M at o(Ad*(M)\) for every A € u* (22)

We replace M) by M., independent of A € u*, in Proposition 7.2. That lets us
assemble to representations of Proposition 7.2 for a Plancherel Formula, as follows.
Since M is compact, we have the Schwartz space C(N M) just as in the discussion
of C(N) between (6) and Theorem 3.5, except that the pullback exp* C(NM) #
C(n + m). The same applies to C(NA) and C(NAM).

Proposition 7.3 Let f € C(NM) and write (f,)(n) = f(nm) = (, f)(m) forn €
N and m € M. The Plancherel density at Ind %%@ (ﬂ'j\ ® ) is (dim ) |Pf (by)| and
the Plancherel Formula for NM is

Fomy =c [ S e fo) - dime) - PE ()l
w /AT M) oy

where ¢ =24+ tnd \\dy\ . d,,!, from (6), as in Theorem 3.5.

8 Minimal Parabolics: MAN and AN

Let G be aseparable locally compact group of type I. Then [14, Sect. 1] the Plancherel
formula for G has form

Fx) = /a trace T(D(r (x) f))dp, () 23)

where D is an invertible positive self adjoint operator on L?(G), conjugation-semi-
invariant of weight equal to the modular function d, and p is a positive Borel measure
on the unitary dual G.If G is unimodular then D is the identity and (23) reduces to
the usual Plancherel formula. The point is that semi-invariance of D compensates
any lack of unimodularity. See [14, Sect. 1] for a detailed discussion. D ® p is unique
(up to normalization of Haar measures) and one tries to find a “best” choice of D.
Given any such pair (D, p) we refer to D as a Dixmier—Pukdnszky Operator on G
and to u as the associated Plancherel measure on G. We will construct a Dixmier—
Pukénszky Operator from the Pfaffian polynomial Pf (b)).



Stepwise Square Integrable Representations ... 193

Let 64n and dy denote the modular functions on AN andon Q = MAN. As M
is compact and Ady(N) is unipotent on p, they are determined by their restrictions
to A, where they are given by d(exp(£)) = exp(trace (ad(£))) with £ = loga € a.

Lemma 8.1 Let £ € a. Then %(dim l, +dim3,) € Zfor1 <r < mand
(i) the trace of ad (&) on I, is 3(dim [, + dim 3,) 53, (&),
(ii) the trace of ad(§) on n and on p is % > (dim [, + dim 3,)3,(€),
(iii) the determinant of Ad(exp(€)) on nwand on p is [], exp(G, (§))%(dim lrtdimg,),
(iv) dg(man) = [, exp(B, (log a)) 2 @m -+dmsn) 4nd 5, = G| an.
Now compute
Lemma 8.2 Let £ € a and a = exp(§) € A. Then ad(§)Pf = (% >, dim(l./ 3,)

B,(©)) PF and Ad(@PF = ([T, exp(d, (€)' It/ dmar)) pf

At this point it is convenient to introduce some notation and definitions.

Definition 8.3 The algebra s is the quasi-center of n. The polynomial function
Dete:(A) := [],(8,(\)%m8 on s* is the quasi-center determinant.

For ¢ € a and a = exp(£) € A compute (Ad(a)Dets)(A\) = Dety-(Ad*(a™")
W) = [1.(B-(Ad@@H)* )™ = [, (5, (exp(B,(£))A) 4™ 9 . In other words,

Lemma 8.4 Let a = exp(§) € A. Then Ad(a)Detg: = (]_[r exp(5, (§))dim3’) Det,-
where £ =loga € a.

Combining Lemmas 8.1, 8.2 and 8.4 we have

Proposition 8.5 The product Pf - Det,- is an Ad(M AN)-semi-invariant (and thus
Ad(AN)-semi-invariant) polynomial on s* of degree %(dim n + dim s) and of weight
equal to the respective modular functions of Q and AN.

Fromn = v 4+ swehave N = VS where V = exp(v) and S = exp(s). Now define
D : Fourier transform of Pf - Det,-, acting on the S variable of N = V' §. (24)

Theorem 8.6 The operator D of (24) is an invertible self-adjoint differential oper-
ator of degree %(dim n+dims) on L>(M AN) with dense domain C(M AN), and
it is Ad(M AN)-semi-invariant of weight equal to the modular function Sy ay. In
other words | D| is a Dixmier—Pukdnszky Operator on M AN with domain equal to
the space of rapidly decreasing C* functions. This applies as well to AN.

Since A € t* has nonzero projection on each summand 37 of 5%, and a € A acts
by the positive real scalar exp(3,(log(a))) on 3,,

A, =exp({£ € a | each 5,(€) = 0}), independent of \ € t*. (25)
Because of this independence, and using a, = {£ € a | each 3,(£) = 0}, we define

A = A, for any (and thus for all) A € t*. (26)
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Lemma 8.7 If \ € o(u*) then the stabilizer (MA)) = MyAs.
There is no problem with the Mackey obstruction:

Lemma 8.8 Ler A € o(u*). Recall the extension (before (21)) 71'1; of T\ to NM,.
Then Tl'j\ extends to ™\ € N M A with the same representation space as ).

When A € o(u*), A, consists of the unitary characters exp(i¢) : a > e/¢(o2a)
with ¢ € a. The representations of Q corresponding to A are the

Taq,e -= Ind %%on(ﬂ ® v ® exp(i¢)) where v € ]T/I; and ¢ € ay . (27)

Ad*(A) fixes v because A centralizes M, and it fixes ¢ because A is commutative,
SO

Toms - Ad((ma) ™) = Tad mayr .0 (28)

Proposition 8.9 Plancherel measure for Q is concentrated on the set of all ) - 4

for \ € o(u¥), v ef/[zand ¢ € af,. The equivalence class of ) ., 4 depends only on
(Ad*(M AN, v, 9).

Representations of AN are the case v = 1. In effect, let 7'&';\ denote the obvious
extension 7| 4 Of the stepwise square integrable representation 7y from N to N A
where ) is given by Lemma 8.8. Denote

Tre = Ind 4 (7} ® exp(i¢)) where A € u* and ¢ € a;. (29)

Corollary 8.10 Plancherel measure for AN is concentrated on the set of all 7y 4 for
A e u* and ¢ € af,. The equivalence class of Ty 4 depends only on (Ad* (M A) X, ¢).

A result of C.C. Moore implies

Lemma 8.11 The Pf-nonsingular principal orbit set u* is a finite union of open
Ad* (M A)-orbits.

Let {O, ..., O,} denote the (open) Ad*(M A)-orbits on u*. Denote \; = o(0;),
so O; = Ad*(MA)\; and (MA)), = My A for 1 <i < v. Then Proposition 8.9
becomes

Theorem 8.12 Plancherel measure for M AN is concentrated on the set (of equiva-
—_—
lence classes of) unitary representations Ty, .o for 1 =i < v,y € My and ¢ € af,.

The Plancherel Formula (or Fourier Inversion Formula) for M AN is

Theorem 8.13 Let Q = M AN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. Given Ty 4 € MAN as described in (27) let O, , :h+—
trace ) ,4(h) denote its distribution character. Then ®r, , is a tempered distri-
bution. If f € C(MAN) then ‘
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f=c> > / O, (DO )IPE (by)|dimy do

—Ja

i=1 ’)’EMQ

where ¢ > 0 depends on normalizations of Haar measures.

The Plancherel Theorem for N A follows similar lines. For the main computation
in the proof of Theorem 8.13 we omit M and ~. That gives

/ trace my, »(Dh) do = trace 7y (h)|Pf (b)) |d A (30)
aj ‘ Ad*(A)\o

In order to go from an Ad*(A)\g to an integral over u* we use M to parameterize
the space of Ad*(A)-orbits on u*. If A € u* one proves Ad*(A)A N Ad* (M)A = {\}.
That leads to

Proposition 8.14 Plancherel measure for N A is concentrated on the equivalence
classes of representations Ty 5 = Ind %ﬁo (7, ® exp(ip)) where X € S; := Ad*(M)
i, 1 £i S v, ) extends 7y from N to NA, and ¢ € af. Representations T , and
Ty.¢ are equivalent if and only if N € Ad*(A)A and ¢ = ¢. Further, wy |y =
j;tEA/AQ 7-I-Ad*(a)/\da'

Theorem 8.15 Let Q = M AN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. If my 4 € AN let O,  : h — trace ) 4(h) denote its distribution
character. Then O, , is a tempered distribution. If f € C(AN) then

f(x) =CZ/ / trace T (D (r (x) f)|Pf (by)|dAd ¢.
i=1 AeAdx(M)N; J a,

where ¢ > 0 depends on normalizations of Haar measures.

9 Parabolic Subgroups in General: The Nilradical

In Sects. 7 and 8 we studied minimal parabolic subgroups Q = M AN in simple Lie
groups, along with certain of their subgroups M N and AN . This section and the next
form a glance at more general parabolics. This material is taken from [32], which is
a work in progress, and is limited to the part that I’ve written down. We start with
the structure of the nilradical.

The condition (c) of (5) does not always hold for nilradicals of parabolic sub-
groups. In this section and the next we weaken (5) to
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N=LL,...L,_{L, where
(a) eachL, has unitary representations with coefficients in L*(L, /Z,),
(b)yeach N, := L{L,...L, = N,_; x L, semidirect,
(c)ifr = sthen[l,, 3,] = 0.

€29

The conditions of (31) are sufficient to construct stepwise square integrable repre-
sentations, but are not always sufficient to compute the Pfaffian that is the Plancherel
density. So we refer to (5) as the strong computability condition and make use of the
weak computability condition

Letl, =, & [’ where ' C 3, and v, C [; then [, [,] C I + v, forr > 5. (32)

where we retain [, = 3, + v, andn =5 + v.

Consider an arbitrary parabolic subgroup of G. It contains a minimal parabolic
O = MAN. Let ¥ denote the set of simple roots for the positive system A% (g, a).
Then the parabolic subgroups of G that contain Q are in one to one correspondence
with the subsets @ C ¥, say Q¢ <> @, as follows. Denote ¥ = {1);} and set

red __ _ aly. J— .
Q" = {a = Zu>iet1/n’7’[}’ € A(g, a) | n; = 0 whenever v¢; ¢ @}

nil _ — b + ) )
oMt = {a = Zuewn’w’ € A" (g, a) | n; > 0 for some v); ¢ CD] .

Vi

(33)

On the Lie algebra level, qp = mgp + agp + ngp where

ap ={Ecal) =0forally € @} = ot
mg + ag is the centralizer of ag in g, sO mg has root system @ and (34)

ng = Z ® o 8as nilradical of q4 , sum of the positive ag-root spaces.
aeP™

Since n = D I, as given in (17) and (18) we have

o= mon) =2 (@ Nne)+Y. @Nno)). (3

As ad(m) is irreducible on each restricted root space, if « € {3,} U A then g, N1y
is 0 or all of g,,.

Lemma 9.1 Suppose gg, Nngp = 0. Then [, Nng = 0.

Lemma 9.2 Suppose gs, Nng # 0. Define J, C A by [, Nng = gp, + 2, da-
Decompose J, = J/ U J! where J! = {a € J, | orac € J,}andJ! ={a € J, | o, ¢
J.}. Then gg + ZJVH go belongs to a single ag-root space in ng, i.e. &t|q, = Brlay,
foreverya e J/.
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Lemma 9.3 Suppose [, Nng # 0. Then the algebra |, Nng has center gg +
Zj,” Yo and [, Nng = (gﬂ, + er” ga') + (Zj’{ ga)) Further, [, Nng = (Zj'”ga)

() (Elﬁ, + (Z jy,ga,)) direct sum of ideals.

It will be convenient to define sets of simple ag-roots
Wi =W and ¥y = (Y€ W | (¢, 5) =Ofor 1 i <), (36)

Note that ¥, is the simple root system for {o € AT (g, a) | « L §; fori < r}.
Lemma 9.4 Ifr > sthen[l, Nng, g3 + > ;18a] = 0.

For our dealings with arbitrary parabolics it is not sufficient to consider linear func-
tionalson ", g, . Instead we have to look at linear functionalson ", (gs, + > 7 da)-
of the form A = > A, where A, € g such that b, is nondegenerate on >_, > ga.
We know that (5)(c) holds for the nilradical of the minimal parabolic g that con-
tains q¢. In view of Lemma 9.4 it follows that b) ([, l;) = A([[;, [;(] = 0 for r > s.
For this particular type of A, the bilinear form b, has kernel > (ggs +> Jv/,ga,) and
is nondegenerate on >, >, go. Then Ny = (L1 N No)(Lo N Ny) . .. (L N No)
satisfies the first two conditions of (5). That is enough to carry out the construction
of stepwise square integrable representations 7 of Ng, but one needs to do more to
deal with Pfaffian polynomials as in (5)(c) and (32).

Let It = {i | Bilay = By la,} Where g is the first index of (5) with 3, |4, # 0.
Next, I, = {i | Bila, = By,la,} Where g is the first index of (5) such that g, ¢ I; and
By las # 0. Continuing as long as possible, Iy = {i | Bila, = B¢ la,} Where g is the
first index of (5) such that g; ¢ (/; U---U L1_1) and B, |q, # 0. Then I; U--- U I,
consists of all the indices i for which §;|4, # 0. For 1 £ j < £ define

[¢’j - zielj([i " n(p) - (Zielj [i) Mo and [;’j - zkif[d)'k ’ (37)

Lemma 9.5 If k = j then [lg, lg ;1 C lp, ;. For each index j, lg ; and [;,j are
[T

subalgebras of ne and e j is an ideal in [y, ;.

Lemma 9.6 Ifk > jthen[loy, o ;1N Zielj gs =0.

In the notation of Lemma 9.2, if r € I; then
[ Nng =0 4" where [ = g5, + er, go and I = Z” o (38)

For 1 £ j £ £ define
sog =2, @+ 1) (39)
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and decompose

lo,; =l + Uy where [, ;= > JGandlg ;= Z,-Ez, . (40)

iel;

Lemma 9.7 Recall [;’j = Z,@j[(p,k Sfrom (37). For each j, both 3¢ ; and [;’),j are

central ideals in [; j» and 3o ; is the center of lp ;.

Decompose

g = 3¢ + g Where 3o = Z?)@.,_i , o = Z by j and vy ; = Z Z Yo -

J J ielj ael!
(41)
Then Lemma 9.7 gives us (32) for the lg ;: lp ; =15 ; @[3 ; with [, ; C 3o ; and
vo,; Clop ;-

Lemma 9.8 For generic \j € 3% jthe kernel of by, onle j is just 3o j, in other words
by, is nondegenerate on vg j > lo j/30 - In particular Lo ; has square integrable
representations.

Theorem 9.9 Let G be a real reductive Lie group and Q a real parabolic sub-
group. Express Q = Qg in the notation of (33) and (34). Then its nilradical Ny has
decomposition No = Lo 1L ... Loy that satisfies the conditions of (5) and (32)
as follows. The center Zg ; of Le . j is the analytic subgroup for 3¢ ; and

(a) each Lo j has unitary representations with coefficients in LZ(L¢_j/Zq),j)
(b) each No j := Lo 1Loy> ... Lo, is anormal subgroup of Ng
with N ; = N¢ j—1 X Lo j semidirect,

(c) [[Qk, 34)7]] = 0and [[qyﬁk, [d).j] Cbg + [Z,!jfork > ]
(42)

In particular Ny has stepwise square integrable representations relative to the
decomposition No = Lo 1Leo ... Lo .

10 Amenable Subgroups of Semisimple Lie Groups

In this section we apply the results of Sect.9 to certain important subgroups of the
parabolic Q¢ = Mg Ay N, specifically its amenable subgroups Ag Ng, Ug Ny and
UpAp Ny where Uy is a maximal compact subgroup of M.

The theory of the group Ug N goes exactlyasinSect.7.When Ny = Lo (Lo . ..
L4 ¢ is weakly invariant we can proceed more or less as in [28]. The argument, but
not the final result, will make use of
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Definition 10.1 The decomposition Ny = L 1Lg ... Ly of Theorem 9.9 is
invariant if each ad(mg)3e,; = 30,;, equivalently if each Ad(M¢)30,; = 3¢,j, In
other words whenever 3¢ ; = 9(0.3,]- The decomposition No = Lo 1Loo... Loy
is weakly invariant if each Ad(U¢)30,; = 30,;- &

Set
tp ={Aesy | P(\) # 0and Ad(Ug)A is a principal Ug-orbiton sj,}.  (43)

Then t}; is dense, open and Ug-invariant in s};. By definition of principal orbit the
isotropy subgroups of Uy at the various points of t;, are conjugate, and we take a
measurable section o to v}, — Ug\t} on whose image all the isotropy subgroups
are the same,

Uy, : isotropy subgroup of Uy at o(Ug (M), independent of A € ¢} . (44)

The prln(:lpal isotropy subgroups Uy, are pinned down in [11]. Given A € t}, and
v e U U7, let 7r denote the extension of ) to a representation of U/, Ny on the space
of my and deﬁne

M, = Ind 237 (y © ). (45)

The first result in this setting, as in [28, Proposition 3.3], is

Theorem 10.2 SupposethatNg = Ly Le ... Lg gasin(31). Thenthe Plancherel

density on lm is concentrated on the representations 7 -, of (45), the Plancherel
density at ) ~ is (dim )| P (\)|, and the Plancherel Formula for Ug Ng is

fun) =c / > traceInd gzgg; Fan(f) - dim(y) - |P(N)|dA
vy /Ad*(Us)

V€Vq

where ¢ = 24t g\dy) .. dy) as in (6).

Recall the notion of amenability. A mean on a locally compact group H is a
linear functional ;1 on L*(H) of norm 1 and such that u( f) 2 0 for all real-valued
f = 0. H is amenable if it has a left-invariant mean. Solvable groups and compact
groups are amenable, as are extensions of amenable groups by amenable subgroups.
In particular E¢ := Ugp Agp Ny and its closed subgroups are amenable.

We need a technical condition [16, p. 132]. Let H be the group of real points in
a linear algebraic group whose rational points are Zariski dense, let A be a maximal
R-split torus in H, let Zy(A) denote the centralizer of A in H, and let Hy be
the algebraic connected component of the identity in H. Then H is isotropically
connected if H = Hy - Zy(A). More generally we will say that a subgroup H C G
is isotropically connected if the algebraic hull of Ads (H) is isotropically connected.

Proposition 10.2 [16, Theorem 3.2]. The groups E¢ := UpAgp No are maximal
amenable subgroups of G. They are isotropically connected and self-normalizing.
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The various @ C ¥ are mutually non-conjugate. An amenable subgroup H C G is
contained in some E¢ if and only if it is isotropically connected.

The isotropy subgroups are the same at every A € t,
Al : isotropy subgroup of Ap at A € ¢, . (46)

Given a stepwise square integrable representation 7y where \ € s}, write 7Tj\ for
the extension of 7 to a representation of A, Ny on the same Hilbert space. That
extension exists because the Mackey obstruction vanishes. The representations of
A, Ng corresponding to 7y are the

Tas :=Ind sz: (exp(i¢) ® 7)) where ¢ € a . (47)

Note also that
UDWN Ad(an) = TAd*(a)\,¢ fora € Aq> andn € No . (48)

The resulting formula f(x) = fﬁ trace m(D(r(x) f))dpg (m), H = Agp Ng, is

Theorem 10.3 Let Q¢ = My Ay Ny be a parabolic subgroup of the real reductive
Lie group G. Given 7y 4 € Ap Ng as described in (47), its distribution character
Or,, - h — trace my 4 (h) is a tempered distribution. If f € C(Ap Ng) then

fx) = C/ (/ Or,,(D(r(x) f))[Pf (b)\)|d>\)d¢
(@) \/ 53 /Ad" (40)

where ¢ = 240t d\\dy! L d,).
The representations of Uy Ag Ng corresponding to 7y are the

UpAp No —

Mo = Ind 2321 (7 @ exp(id) ® 7)) where ¢ € ajy andy € U), . (49)

Combining Theorems 10.2 and 10.3 we arrive at

Theorem 10.4 Let Q¢ = My Ay Ny be a parabolic subgroup of the real reductive
Lie group G and decompose No = L, 1Lp ... Lg g asin(31). Then the Plancherel

density on Up Ap No is concentrated on the ) 4., of (49), the Plancherel density
at my, g is (dim )| P(A)|, the distribution character Oy, , : h > trace my ¢ (h) is
tempered, and if f € C(UpAgp Ng) then

fo=eY / / Or,.,.,(D(r(x) f)) deg(y) [P (by)|d | dg
17; (alp)* 5% /Ad*(Up Ag)

where ¢ = 20t e g \\dy! L d,).
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