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A compact Riemannian homogeneous space G/H, with a bi-invariant orthogonal 
decomposition g = h + m is called positively curved for commuting pairs, if the 
sectional curvature vanishes for any tangent plane in TeH (G/H) spanned by a 
linearly independent commuting pair in m. In this paper, we will prove that on 
the coset space Sp(2)/U(1), in which U(1) corresponds to a short root, admits 
positively curved metrics for commuting pairs. B. Wilking recently proved that this 
Sp(2)/U(1) cannot be positively curved in the general sense. This is the first example 
to distinguish the set of compact coset spaces admitting positively curved metrics, 
and that for metrics positively curved only for commuting pairs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G/H be a compact Riemannian homogeneous space with G compact. With respect to any bi-invariant 
inner product 〈·, ·〉bi on g, there is an invariant orthogonal decomposition g = h + m of the Lie algebra of 
G, and as usual m is identified with the tangent space TeH (G/H).

We call the Riemannian homogeneous space G/H positively curved for commuting pairs, if for any linearly 
independent commuting pair X and Y in m, the sectional curvature of the tangent plane span{X, Y } ⊂
TeH (G/H) is positive. This notion contrasts with the traditional algebraic method for the classification 
of positively curved Riemannian homogeneous spaces [1–4]. In those papers, the method for showing that 
a compact homogeneous space G/H fails to have strictly positive sectional curvature, is to show that 
the sectional curvature vanishes for some commuting pair. It was generally accepted that compact coset 
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spaces admitting homogeneous metrics positively curved for commuting pairs are exactly the homogeneous 
Riemannian manifolds of strictly positive sectional curvature.

While trying to generalize these classifications to the Finsler situation [5,6], we found a problem 
in L. Bérard-Bergery’s classification [2] of odd dimensional positively curved Riemannian homogeneous 
spaces. There is a gap in the argument that the coset space Sp(2)/U(1) (where U(1) corresponds to a short 
root) cannot be positively curved. After a stratified classification of Cartan subalgebras contained in m for 
this Sp(2)/U(1), we saw that the traditional algebraic method mentioned above cannot be used to exclude 
Sp(2)/U(1) from the list of positively curved homogeneous spaces. Formally, we have the following main 
theorem.

Theorem 1.1. Consider the compact homogeneous space G/H = Sp(2)/U(1) in which H corresponds to 
a short root, with the orthogonal decomposition g = h + m for a bi-invariant inner product. Then there 
are G-homogeneous Riemannian metrics on it which are positively curved for commuting pairs, i.e. at 
o = eH ∈ G/H, the sectional curvature K(o, X ∧ Y ) > 0 for any linearly independent commuting pair X
and Y in m = ToM .

After we announced this result, B. Wilking found a way to prove that Sp(2)/U(1) does not admit 
homogeneous Riemannian metrics of positive curvature (see Theorem 5.1 in Section 5). At the same time 
as the problem in [2] was fixed, Theorem 5.1, together with the main theorem, provides us the first example 
of compact homogeneous space that is positively curved for commuting pairs but not positively curved in 
the general sense. As the traditional algebraic method works well in most other cases, non-positively curved 
Riemannian homogeneous spaces which are positively curved for commuting pairs may be very rare. We 
thank Burkhard Wilking and Wolfgang Ziller for several e-mail discussions that led us to this refinement of 
our original note.

2. The basic setup for Sp(2)/U(1)

Let M be the coset space G/H = Sp(2)/U(1), in which H corresponds to a short root. We borrow the 
following construction from [2] with some minor changes. Any matrix

1
2

(
u + w v − λ

v + λ u− w

)

in g = Lie(G) = sp(2) can be identified with a formal row vector (λ, u, v, w), in which the pure imaginary 
quaternions u, v, and w are viewed as column vectors in R3 with the more preferred dot and cross products 
with respect to the standard orthonormal basis {e1, e2, e3}, instead of quaternion multiplication. For the 
bi-invariant inner product of g, the different factors of λ, u, v and w are orthogonal to each other, and 
the restriction of the bi-invariant inner product to each factor of u, v or w coincides with the standard 
inner product up to scalar changes. The subalgebra h = Lie(H) = u(1) can be identified with the subspace 
u = v = w = 0, i.e. the λ-factor, and its bi-invariant orthogonal complement m can be identified with the 
subspace λ = 0. For any two vectors X = (0, u, v, w) and Y = (0, u′, v′, w′) in m, their bracket can be 
presented as

[X,Y ] = (v · w′ − v′ · w, u× u′ + v × v′ + w × w′, u× v′ − u′ × v, u× w′ − u′ × w).

Any G-homogeneous metric on M can be defined from an Ad(H)-invariant inner product on m. Our 
presentation of m naturally splits, with the u-factor corresponding to the trivial H-representation, and the 
other two factors each corresponding to the same non-trivial irreducible H-representation, i.e. for Z =
(1, 0, 0, 0) ∈ h,
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Ad(exp(tZ ))(0, 0, v, w) = (0, 0, cos(2t)v + sin(2t)w,− sin(2t)v + cos(2t)w).

So any Ad(H)-invariant inner product 〈·, ·〉 on m must be of the form 〈·, ·〉 = 〈·, M ·〉bi, in which the linear 
isomorphism M : m → m satisfies,

M(0, u, v, w) = (0,Au,Cv − Bw,Bv + Cw),

where A and C are self adjoint, B is skew adjoint, A > 0 and C−
√
−1B > 0 (or equivalently 

(
C −B
B C

)
> 0). To 

see this, we use Ad(H)-invariance and the fact that Ad(H) is trivial on the u-factor and rotates between the 
v- and w-factors. So M(0, u, v, w) has form (0, Au, B1v+B2w, B3v+B4w). Since the resulting inner product 
on m is Ad(H)-invariant, the 6 ×6 matrix 

(
B1 B2
B3 B4

)
commutes with all rotations 

(
cos tI sin tI
− sin t cos tI

)
. It follows that 

B1 = B4 and B2 = −B3. As M is self adjoint and positive definite, M(0, u, v, w) = (0, Au, Cv−Bw, Bv+Cw)
with A > 0 self adjoint, B skew adjoint, and C self adjoint. Thus the action of M on the v, w 6-plane is 
given by 

(
C −B
B C

)
> 0.

In Bérard-Bergery’s argument, he missed the B-term. In later discussion, we only consider small pertur-
bations of the G-normal Riemannian homogeneous metric which corresponds to M = M0 = Id, so we denote 
Mt = I + tL for t ≥ 0, in which L : m → m is defined by L(0, u, v, w) = (0, Au, Cv − Bw, Bv + Cw) with 
A and C self adjoint, and B skew adjoint. For t sufficiently close to 0, the corresponding G-homogeneous 
metric is denoted as gt.

3. Proof of the main theorem

With respect to the standard basis {e1, e2, e3} of R3, we have linear maps A, B and C defined by the 
matrices

A =
(

0 1 0
1 0 0
0 0 0

)
, B =

(
0 1 0
−1 0 0
0 0 0

)
, and C =

(
1 0 1
0 0 1
1 1 0

)
.

Let L(0, u, v, w) = (0, Au, Cv−Bw, Bv+Cw), Mt = I+tL, and gt the corresponding G-invariant Riemannian 
metric on M for t > 0 sufficiently close to 0.

The sectional curvature Kgt(o, X ∧ Y ) of (M, gt) for the tangent plane t = span{X, Y } at o = eH is 
Kgt(o, X ∧ Y ) = C(X, Y, t)/S(X, Y, t) where

S(X,Y, t) = gt(X,X)gt(Y, Y ) − gt(X,Y )2

and

C(X,Y, t) = −3
4 〈[X,Y ]m, [X,Y ]m〉gt + 1

2 〈[[Y,X]m, Y ]m, X〉gt + 1
2 〈[[X,Y ]m, X]m, Y 〉gt

+ 〈[[X,Y ]h, X], Y 〉gt + 〈U(X,Y, t), U(X,Y, t)〉gt − 〈U(X,X, t), U(Y, Y, t)〉gt .

Here U : m ×m × [0, ε) → m is defined by

〈U(X,Y, t), Z〉gt = 1
2 (〈[Z,X]m, Y 〉gt + 〈[Z, Y ]m, X〉gt),

or equivalently (see the last section of [2])

U(X,Y, t) = 1
2M

−1
t ([X,MtY ] + [Y,MtX]).

When [X, Y ] = 0 and t = 0, Kg0(o, X ∧ Y ) = C(X, Y, 0) = 0 by the sectional curvature formula for normal 
homogeneous spaces [3], and d C(X, Y, t)|t=0 = 0 because U(X, Y, 0) = 0. Thus d2

2K
gt(o, X ∧ Y )|t=0 has 
dt dt
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the same sign (or 0) as d2

dt2C(X, Y, t)|t=0. Furthermore, when they vanish, d3

dt3K
gt(o, X ∧ Y )|t=0 has the 

same sign (or 0) as d3

dt3C(X, Y, t)|t=0. Direct calculation shows, when [X, Y ] = 0,

d2

dt2 〈U(X,Y, t), U(X,Y, t)〉gt |t=0 = 1
2 〈[X,LY ] + [Y,LX ], [X,LY ] + [Y,LX ]〉bi,

and

d2

dt2 〈U(X,X, t), U(Y, Y, t)〉gt |t=0 = 2〈[X,LX ], [Y,LY ]〉bi = 2〈[[X,LX ], Y ],LY 〉bi

= 2〈[X, [LX , Y ]],LY 〉bi = 2〈[X,LY ], [Y,LX ]〉bi,

thus

d2

dt2C(X,Y, t)|t=0 = 1
2 〈[X,LY ] − [Y,LX ], [X,LY ] − [Y,LX ]〉bi. (3.1)

Notice that 1
S(X,Y )1/2 ([X, LY ] − [Y, LX ]) depends only on the tangent plane span{X, Y }. Thus we have

Lemma 3.2. If X, Y ∈ m are linearly independent and commute, then C(X, Y, 0) = d
dtC(X, Y, t)|t=0 = 0, and 

d2

dt2C(X, Y, t)|t=0 � 0, with equality if and only if [X, LY ] = [Y, LX ]. Equivalently, for any Cartan subalgebra 
t ⊂ m, we have

Kg0(o, t) = d
dtK

gt(o, t)|t=0 = 0, (3.3)

and

d2

dt2K
gt(o, t)|t=0 ≥ 0 (3.4)

with equality if an only if [X, LY ] = [Y, LX ] in where t = span{X, Y }.

To distinguish between the situations in which d
2

dt2C(X, Y, t)|t=0 is positive or 0, we will prove the following 
lemma, which is crucial for the proof of the Theorem 1.1.

Lemma 3.5. Let X, Y ∈ m linearly independent and t = span{X, Y }. Suppose that [X, Y ] = 0, so t is a 
Cartan subalgebra of g. Let t0 = span{(0, 0, e1, 0), (0, 0, 0, e2)}. If t /∈ Ad(H)(t0) then

d2

dt2
C(X,Y, t)

∣∣∣
t=0

> 0, or equivalently d2

dt2
Kgt(o, t)

∣∣∣
t=0

> 0. (3.6)

If t ∈ Ad(H)(t0) then

d2

dt2
C(X,Y, t)

∣∣∣
t=0

= 0 and d3

dt3
C(X,Y, t)

∣∣∣
t=0

> 0,

or equivalently,

d2

dt2
Kgt(o, t)

∣∣∣
t=0

= 0 and d3

dt3
Kgt(o, t)

∣∣∣
t=0

> 0 (3.7)

The proof of Lemma 3.5 will be postponed to the next section. We now prove Theorem 1.1, assuming 
Lemma 3.5.

Denote the set of all Cartan subalgebras of g contained in m as C, and the set of all tangent planes at 
o = eH as G. Then G is a Grassmannian manifold, C is a compact subvariety. The isotropy subgroup H



M. Xu, J.A. Wolf / Differential Geometry and its Applications 42 (2015) 115–124 119
has natural Ad(H)-actions on G which preserve C. It is easy to see, for any valid t, the sectional curvature 
function Kgt(o, ·) is Ad(H)-invariant.

If t ∈ C is a Cartan subalgebra contained in m, such that its Ad(H)-orbit does not contain t0 =
span{(0, 0, e1, 0), (0, 0, 0, e2)}, then by (3.6) in Lemma 3.5, we can find an open neighborhood U of t in 
C, and a positive ε (sufficiently close to 0, same below), such that for any Cartan subalgebra t′ ∈ U and 
t ∈ (−ε, ε), d2

dt2K
gt(o, t′) > 0. Together with (3.3) in Lemma 3.2, it indicates for any Cartan subalgebra 

t′ ∈ U and t ∈ (0, ε), Kgt(o, t′) > 0.
If t ∈ C is a Cartan subalgebra contained in m, such that its Ad(H)-orbit contains t0, then by (3.7), we 

can find an open neighborhood U of t in C, and a positive ε, such that for any Cartan subalgebra t′ ∈ U
and t ∈ (−ε, ε), d3

dt3K
gt(o, t′) > 0. Together with (3.3) and (3.4) in Lemma 3.2, it indicates for any Cartan 

subalgebra t′ ∈ U and t ∈ (0, ε), Kgt(o, t′) > 0.
By the compactness of C, we can find a finite cover for it from the open neighborhoods U given above, 

and take a uniform minimum ε > 0. Then for any Cartan subalgebra t ∈ C contained in m and t ∈ (0, ε), 
Kgt(o, t) > 0. This completes the proof of Theorem 1.1.

4. Proof of Lemma 3.5

The proof of Lemma 3.5 is an analysis of the Cartan subalgebras of g contained in m. Observe that C is 
the union of the following Ad(H)-invariant subsets.

Case I. The Cartan subalgebra t is spanned by X = (0, 0, v, w) and Y = (0, 0, v′, w′) in m, it belongs to C1.
Case II. The tangent plane t is spanned by X = (0, u, v, w) and Y = (0, 0, v′, w′) in m, in which u 
= 0, it 

belongs to C2.
Case III. The tangent plane t is spanned by X = (0, u, v, w) and Y = (0, u′, v′, w′) in m, in which u and u′

are linearly independent, it belongs to C3.

The two techniques we will use are change of basis in a given t, and change of t in C by the action of H, to 
reduce our discussion to several cases with very simple X and Y .

Proof of Lemma 3.5 in Case I. Assume that X = (0, 0, v, w) and Y = (0, 0, v′, w′) span the Cartan 
subalgebra t.

First, consider the situation where v and w are linearly dependent. Changing basis of t by a suitable 
Ad(H)-action, we can assume w = 0. Subtracting a multiple of X from Y we can assume v′ · v = 0. Since 
[X, Y ] = 0 we have v× v′ = 0. Thus v′ = 0. Also from [X, Y ] = 0, we have v ·w′ = 0. Both v and w′ can be 
normalized to have length 1.

Next, consider the situation that v and w are linearly independent. Because [X, Y ] = 0, we have

v × v′ = −w × w′, and (4.1)

v · w′ = v′ · w. (4.2)

From (4.1), v′ and w′ are contained in span{v, w}. By a suitable Ad(H)-action, we may assume v · w = 0. 
Replacing Y with a suitable linear combination of X and Y , we can assume v′ · v = 0 as well. If v′ = 0, 
it goes back to the last situation, otherwise we can normalize v and v′ and assume |v| = |v′| = 1. Express 
w = b2v

′ and w′ = c1v + c2v
′, with b2 
= 0. By (4.1) and (4.2), b2 = c1 = ±1. We can further change Y to 

±Y and assume b2 = c1 = 1. Then

X ′′ = Y + 1
2 (−c2 ±

√
c22 + 4X) = (0, 0, v′′, w′′)

where v′′ and w′′ are linearly independent. Replacing X with X ′′, we reduce to the last situation.
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To summarize, for t ⊂ C1, we can find a representative span{(0, 0, v, 0), (0, 0, 0, w′)} in the Ad(H)-orbit 
of t, for which |v| = |w′| = 1 and v · w′ = 0.

Now we may suppose t is spanned by X = (0, 0, v, 0) and Y = (0, 0, 0, w′) with |v| = |w′| = 1 and 
v · w′ = 0. If d2

dt2C(X, Y, t)|t=0 = 0, i.e. [X, LY ] = [Y, LX ], then

w′ · Cv = 0, and (4.3)

v × Bw′ = −w′ × Bv. (4.4)

From (4.4), B preserves the subspace spanned by v and w′, or equivalently span{v, w′}⊥ is an eigenspace 
of B, which must be Re3. So span{v, w′} = span{e1, e2}. Because of (4.3), and the speciality of the chosen 
C, we must have {±v, ±w′} = {±e1, ±e2}, i.e., up to the action of Ad(H),

t = span{(0, 0, e1, 0), (0, 0, 0, e2)}.

To summarize, we have d2

dt2C(X, Y, t)|t=0 > 0 when t ∈ C1 is not contained in the Ad(H)-orbit of 
span{(0, 0, e1, 0), (0, 0, 0, e2)}, and d2

dt2C(X, Y, t)|t=0 = 0, when t ∈ C1 .
Further consider d3

dt3C(X, Y, t)|t=0, we only need to assume X = (0, 0, e1, 0) and Y = (0, 0, 0, e2). By 
direct calculation [X, LY ] = [X, MtY ] = [Y, LX ] = [Y, MtX] = 0, and so

U(X,Y, t) = 0,

U(X,X, t) =
(
0, t2

1−t2 e1 + −t
1−t2 e2, 0, 0

)
,

and [Y, MtY ] = (0, te1, 0, 0). So

C(X,Y, t) = −〈U(X,X), U(Y, Y )〉gt = −〈U(X,X), [Y,MtY ]〉bi = ct3

1 − t2
,

where the constant c > 0 comes from the scalar relation between the standard inner product on R3 and the 
restriction of the bi-invariant inner product of g to the u-factor. Now it is obvious that d3

dt3C(X, Y, t)|t=0 > 0.
Proof of Lemma 3.5 in Case II. Assume that the Cartan subalgebra t ∈ C2 is spanned by X = (0, u, v, w)

and Y = (0, 0, v′, w′) with u 
= 0. We normalize u so that |u| = 1. Because [X, Y ] = 0, we have u × v′ =
u × w′ = 0, i.e. v′, w′ ∈ Ru. We can apply an element of Ad(H) and then scale, so that w′ = 0 and v′ = u. 
Using [X, Y ] = 0 again, we have v × v′ = 0 and v′ · w = u · w = 0. Subtract a suitable multiple of Y from 
X; we then have v · v′ = 0, which implies v = 0.

To summarize, the Ad(H)-orbit of t ∈ C2 contains a Cartan that is spanned by X = (0, u, 0, w) and 
Y = (0, 0, u, 0) with |u| = 1 and u · w = 0.

If further we have [X, LY ] = [Y, LX ], then direct calculation shows

u · Cw = 0, (4.5)

w × Bu + u× Bw = 0, (4.6)

u× (C −A)u = 0, (4.7)

u× Bu = 0. (4.8)

From (4.7) and (4.8), the unit vector u is a common eigenvector of B, i.e. u = ±e3, and u is also an eigenvector 
of A − C. But e3 is not an eigenvector of A − C. So in this case we always have d2

dt2K
gt(o, t)|t=0 > 0.

The proof of Lemma 3.5 in Case III. Let t ∈ C3 be spanned by X = (0, u, v, w) and Y = (0, u′, v′, w′)
with u and u′ linearly independent.
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We had observed that v, w, v′ and w′ are all contained in the subspace spanned by u and u′. By [X, Y ] = 0, 
we have u × v′ = u′ × v, from which we see that v and v′ are linear combinations of u and u′. Similarly w
and w′ are linear combinations of u and u′.

Next, consider the situation where v and w are linearly dependent. They cannot both vanish because the 
u-factor of [X, Y ] does not vanish. Acting by a suitable Ad(H), we can make w = 0. Subtracting a suitable 
multiple of X from Y , we have v ·v′ = 0. Then we can find linear combination Y ′′ = (0, u′′, v′′, w′′) of X and 
Y to substitute for Y , so that v′′ and w′′ are also linearly independent and they cannot both vanish. Using 
a suitable generic Ad(H) transformation, we reduce to the situation where t has basis X = (0, u, v, μ1v)
and Y = (0, u′, v′, μ2v

′) with the properties (i) u and u′ are linearly independent, (ii) v and v′ are nonzero 
vectors in the span of u and u′, and (using [X, Y ] = 0) v and v′ form another basis of span{u, u′}.

Next we go to the general X = (0, u, v, w) and Y = (0, u′, v′, w′) and reduce to the situation above. We 
may assume that v and w are linearly independent, for otherwise the reduction is immediate. Applying 
Ad(H) we can suppose u · v = 0. Subtracting a suitable multiple of X from Y , we also have u ·u′ = 0. With 
suitable scalar changes for X and Y , we normalize u and u′ so that |u| = |u′| = 1. Denote

v = b2u
′, v′ = b′1u + b′2v, w = c1u + c2u

′, and w′ = c′1u + c′2v.

Then [X, Y ] = 0 forces

b′2 = 0, and (4.9)

b2c
′
2 = b′1c1. (4.10)

Note that X ′′ = X + λY = (0, u′′, v′′, w′′) has linearly dependent entries v′′ and w′′ if and only if

det
(

b′1λ b2
c′1λ + c1 c′2λ + c2

)
= b′1c

′
2λ

2 + (b′1c2 − c′1b2)λ− b2c1 = 0.

By (4.10), the above equation must have a real solution. Substituting the corresponding X ′′ for X, we reduce 
the discussion to the case X = (0, u, v, μ1v) and Y = (0, u′, v′, μ2v), and there span{u, u′} = span{v, v′} is 
a two dimension subspace in R3.

If μ1 = μ2, we can apply a suitable element of Ad(H) to make them vanish. By similar tricks, we can 
make u · u′ = 0 and |u| = |u′| = 1. There is a real number λ, such that X ′′ = X + λY = (0, u′′, v′′, 0) =
(0, u + λu′, v + λv′, 0) satisfies

u′′ · v′′ = (u′ · v′)λ2 + (u · v′ + v · u′)λ + u · v = 0,

because we can get u ·v+u′ ·v′ = 0 from [X, Y ] = 0. Replace X with X ′′; then u ·v = 0. Subtract a suitable 
multiple of X from Y ; then u ·u′ = 0 again, i.e. v is a scalar multiple of u′. Also, normalize u and u′ so that 
|u| = |u′| = 1. Express v = ν1u

′ and v′ = ν2u + ν3u
′. From [X, Y ] = 0, we get ν1ν2 = 1 and ν3 = 0. If we 

only require u · u′ = 0 then by suitable scalar changes for Y , we can make ν1 = ν2 = 1.
In this case, we have X = (0, u, ν1u

′, 0) and Y = (0, u′, ν2u, 0), in which |u| = |u′| = 1, u · u′ = 0 and 
ν1ν2 = 1. There is another way to present t = span{X, Y } in which ν1 and ν2 do not appear. Replace Y by 
ν1Y and u′ by ν1u

′. Then we have X = (0, u, u′, 0) and Y = (0, u′, u, 0) in where u · u′ = 0.
If further we have [X, LY ] = [Y, LX ], then

u · Bu′ = 0, (4.11)

u× (A− C)u′ = u′ × (A− C)u (4.12)

u′ × (A− C)u′ = u× (A− C)u, (4.13)
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u× Bu = u′ × Bu′. (4.14)

By (4.14), B preserves span{u, u′}, so span{u, u′} = span{e1, e2}. Then u · Bu′ 
= 0, contradicting (4.11). 
So in this case, d2

dt2C(X, Y, t)|t=0 > 0 when X and Y span t.
If μ1 
= μ2 then, because [X, Y ] = 0, u × v′ = u′ × v and λ2u × v′ = λ1u

′ × v, thus u × v′ = u′ × v = 0. 
Applying a suitable element of Ad(H) we have X = (0, u, ν1u

′, 0) and Y = (0, u′, ν2u, ν3u), with ν1ν2 = 1. 
By similar argument, we may assume ν1 = ν2 = 1.

If further [X, LY ] = [Y, LX ] then

u× ((C −A)u− ν3Bu) = u′ × (C −A)u′, (4.15)

u× (ν3(C −A)u + Bu) = u′ × Bu′. (4.16)

It follows that Bu, Bu′, (C − A)u and (C − A)u′ belong to span{u, u′}. So (span{u, u′})⊥ consists of the 
common eigenvectors of B and C − A. Thus (span{u, u′})⊥ = Re3. But e3 is not an eigenvector of C − A. 
This is a contradiction. That completes the proof of Lemma 3.5. �

As a by-product of the above argument we have the following explicit description for Cartan subalgebras 
contained in m, for the space Sp(2)/U(1). It may be useful for further study of curvature on that space.

Proposition 4.17. Let M = G/H = Sp(2)/U(1) in where U(1) corresponds to a short root, and let g = h +m

be the corresponding orthogonal decomposition. Then the set C of all Cartan subalgebras of g contained in 
m is the union of four Ad(H)-orbits with the following representatives:

(1) span{X, Y }, with X = (0, 0, v, 0) and Y = (0, 0, 0, w′) such that |v| = |w′| = 1 and v · w′ = 0.
(2) span{X, Y }, with X = (0, u, 0, w) and Y = (0, 0, u, 0) such that |u| = 1 and u · w = 0.
(3) span{X, Y }, with X = (0, u, u′, 0) and Y = (0, u′, u, 0) such that u and u′ are linearly independent and 

u · u′ = 0.
(4) span{X, Y }, with X = (0, u, u′, 0) and Y = (0, u′, u, μu) such that u and u′ are linearly independent 

and μ 
= 0.

5. This Sp(2)/U(1) cannot be positively curved

With his permission we present the following unpublished theorem of B. Wilking. This theorem came 
out of discussions of an early version of this note.

Theorem 5.1. The compact homogeneous space G/H = Sp(2)/U(1), in which H corresponds to a short root, 
does not admit a homogeneous Riemannian metric with all sectional curvatures positive.

Let g = h + m be the bi-invariant orthogonal decomposition. Any homogeneous Riemannian metric on 
G/H is one-to-one determined by an Ad(H)-invariant inner product 〈·, ·〉 = 〈·, M ·〉bi in which the self adjoint 
isomorphism M : m → m, with respect to 〈·, ·〉bi, is Ad(H)-invariant and positive definite.

The analytic technique in B. Wilking’s proof can be summarized as the following lemma.

Lemma 5.2. Let G be a compact connected Lie group, H a closed subgroup of G, and g = h +m a bi-invariant 
orthogonal decomposition. Suppose that for any Ad(H)-equivariant linear map M : m → m, positive definite 
with respect to the restriction of the bi-invariant inner product to m, there is an eigenvector X ∈ m for the 
smallest eigenvalue of M , and another Z ∈ m, such that {X, Z} is a linearly independent commuting pair. 
Then G/H does not admit G-homogeneous Riemannian metrics of strictly positive sectional curvature.
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Proof. Any G-homogeneous Riemannian metric is determined by an inner product 〈·, ·〉 = 〈·, M ·〉bi on m, 
where M is a linear map as indicated in the statement of the lemma. We will show the sectional curvature 
at eH vanishes for the tangent plane spanned by X and Y = M−1(Z), where X and Z are indicated by the 
lemma. Denote MX = λX. Because λ > 0 is the smallest eigenvalue of M , for any X ′ ∈ m, we have

〈X ′,M(X ′)〉bi ≥ λ〈X ′, X ′〉bi, and (5.3)

〈X ′,M−1X ′〉bi � λ−1〈X ′, X ′〉bi. (5.4)

Direct calculation shows

[X,MY ] + [Y,MX ] = [X,Z] − λ[X,Y ] = −λ[X,Y ]

is a vector in m (see the last section in [2]), i.e. [X, Y ] ∈ m. It is easy to see X and Y are linearly independent 
because MX = λX and Z = MY are linearly independent.

Now apply the sectional curvature formula to the tangent plane spanned by X and Y , i.e. K(eH , X∧Y ) =
C(X, Y )/S(X, Y ), in which S(X, Y ) > 0, and

C(X,Y ) = −3
4 〈[X,Y ]m, [X,Y ]m〉 + 1

2 〈[[Y,X]m, Y ]m, X〉

+ 1
2 〈[[X,Y ]m, X]m, Y 〉 + 〈[[X,Y ]h, X], Y 〉

+ 〈U(X,Y ), U(X,Y )〉 − 〈U(X,X), U(Y, Y )〉, (5.5)

where U : m ×m → m is defined by

〈U(X ′, Y ′), Z ′〉 = 1
2(〈[Z ′, X ′]m, Y ′〉 + 〈[Z ′, Y ′]m, X ′〉),

or equivalently

U(X ′, Y ′) = 1
2M

−1([X ′,MY ′] + [Y ′,MX ′]),

for any X ′, Y ′ and Z ′ in m. Because X is an eigenvector of M , U(X, X) = 0 and U(X, Y ) =
−1

2λM
−1([X, Y ]). Because [X, Y ] ∈ m, we can simplify (5.5) and estimate it as follows,

C(X,Y ) = −3
4 〈[X,Y ],M([X,Y ])〉bi + 1

2 〈[X,Y ], [MX , Y ] + [X,MY ]〉bi

+ 1
4λ

2〈M−1([X,Y ]), [X,Y ]〉bi

= −3
4 〈[X,Y ],M([X,Y ])〉bi + 1

2λ〈[X,Y ], [X,Y ]〉bi

+ 1
4λ

2〈M−1([X,Y ]), [X,Y ]〉bi

� −3
4λ〈[X,Y ], [X,Y ]〉bi + 1

2λ〈[X,Y ], [X,Y ]〉bi + 1
4λ〈[X,Y ], [X,Y ]〉bi

= 0, (5.6)

in which the inequality makes use of (5.3) and (5.4). This shows K(eH , X ∧ Y ) � 0. That completes the 
proof of Lemma 5.2. �
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Now back to G/H = Sp(2)/U(1) in consideration, and we prove Theorem 5.1.
As mentioned earlier, the Ad(H)-invariant linear map M can be expressed as

M(0, u, v, w) = (0,Au,Cv − Bw,Bv + Cw),

where u, v and w in R3 are column vectors. This is the standard presentation of vectors in m. Here A and (
C −B
B C

)
are positive definite matrices. Any eigenvalue of M is either an eigenvalue of A or an eigenvalue of (

C −B
B C

)
.

If one eigenvalue of A is the smallest eigenvalue of M we can find a nonzero eigenvector u ∈ R
3 accordingly 

for A. Then X = (0, u, 0, 0) and Z = (0, 0, u, 0) satisfy the requirement of the lemma.
If one eigenvalue of 

(
C −B
B C

)
is the smallest eigenvalue of M , let X = (0, 0, v, w) denote the corresponding 

nonzero eigenvector of M . When v and w are linearly dependent, we choose the nonzero vector Z = (0, v, 0, 0)
or Z = (0, w, 0, 0) such that X and Z satisfy the requirement of the lemma. When v and w are linearly 
independent, we can find an element h ∈ H, such that Ad(h)X = (0, 0, v′, w′) such that v′ and w′ are 
nonzero vectors and v′ ·w′ = 0. Take Z = Ad(h−1)(0, 0, v′, 0), then X and Z satisfy the requirement of the 
lemma. This completes the proof of Theorem 5.1.
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