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Abstract. In a recent paper we found conditions for a nilpotent Lie group N to have
a filtration by normal subgroups whose successive quotients have square integrable rep-
resentations, and such that these square integrable representations fit together nicely
to give an explicit construction of Plancherel for almost all representations of N . The
prototype for this sort of group is the group of upper triangular real matrices with 1’s
down the diagonal. More generally, this class of groups contains the nilradicals of minimal
parabolic subgroups of all (finite-dimensional) reductive real or complex Lie groups, in
other words, all groups N in Iwasawa decompositions of reductive real or complex Lie
groups.

The construction of stepwise square integrable representations resulted in explicit
character formulae, Plancherel formulae and multiplicity formulae. Here we extend those
results to direct limits of stepwise square integrable nilpotent Lie groups. There are two
keys to this extension. The first is to set up the corresponding direct system so that it
respects the construction at every finite level. In the case of simple (or more generally
reductive) groups this means that the restricted root Dynkin diagrams increase in a
particular manner. The second is to follow Schwartz space theory through the direct limit
process, develop a Schwartz space theory for certain direct limit nilpotent groups, and use
it to study stepwise square integrability for coefficients of direct limits of stepwise square
integrable nilpotent Lie groups. This leads to the main result, an explicit Fourier inversion
formula for that class of infinite-dimensional Lie groups. One important consequence is
the Fourier inversion formula for nilradicals of classical minimal parabolic subgroups of
finitary real reductive Lie groups such as GL(∞;R), Sp(∞;C) and SO(∞,∞).

1. Introduction

A connected simply connected Lie group N with center Z is called square in-
tegrable if it has unitary representations π whose coefficients fu,v(x) = 〈u, π(x)v〉
satisfy |fu,v | ∈ L2(N/Z). C. C. Moore and the author worked out the structure
and representation theory of these groups [1]. If N has one such square integrable
representation then there is a certain polynomial function Pf (λ) on the linear
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dual space z∗ of the Lie algebra of Z that is key to harmonic analysis on N .
Here Pf (λ) is the Pfaffian of the antisymmetric bilinear form on n/z given by
bλ(x, y) = λ([x, y]). The square integrable representations of N are the πλ (corre-
sponding to coadjoint orbits Ad ∗(N)λ) where λ ∈ z∗ with Pf (λ) 6= 0. Plancherel
almost all irreducible unitary representations of N are square integrable. Up to an
explicit constant |Pf (λ)| is the Plancherel density on the unitary dual N̂ at πλ.
This theory has proved to have serious analytic consequences. For example, for
most commutative nilmanifolds G/K, i.e., Gelfand pairs (G,K) where a nilpotent
subgroup N of G acts transitively on G/K, the group N has square integrable
representations [5]. And it is known just which maximal parabolic subgroups of
semisimple Lie groups have square integrable nilradical [4].

In [9] and [10] the theory of square integrable nilpotent groups was extended
to “stepwise square integrable” nilpotent groups. They are the connected simply
connected nilpotent Lie groups of (1.1) just below. We use L and l to avoid conflict
of notation with the M and m of minimal parabolic subgroups.

N = L1L2 . . . Lm−1Lm where

(a) each factor Lr has unitary representations with coefficients

in L2(Lr/Zr),

(b) each Nr := L1L2 . . . Lr is a normal subgroup of N with
Nr = Nr−1 o Lr,

(c) decompose lr = zr + vr and n = s+ v as vector direct sums

where s =
⊕

zr and v =
⊕

vr; then [lr, zs] = 0 and [lr, ls] ⊂ v

for r > s.





(1.1)

Denote

(a) dr = 1
2 dim(lr/zr) so

1
2 dim(n/s) = d1 + · · ·+ dm, and

c = 2d1+···+dmd1!d2! · · · dm!,

(b) bλr
: (x, y) 7→ λ([x, y]) viewed as a bilinear form on lr/zr,

(c) S = Z1Z2 · · ·Zm = Z1 × · · · × Zm where Zr is the center of Lr,

(d) Pf : polynomial Pf (λ) = Pf l1(bλ1)Pf l2(bλ2) · · ·Pf lm(bλm
) on s∗,

(e) t∗ = {λ ∈ s∗ | Pf (λ) 6= 0},

(f) πλ ∈ N̂ where λ ∈ t∗ : irreducible unitary rep. of N = L1L2 · · ·Lm.





(1.2)

The basic result for these groups is

Theorem 1.3. [10, Thm. 6.16] Let N be a connected simply connected nilpotent
Lie group that satisfies (1.1). Then the Plancherel measure for N is concentrated
on {πλ | λ ∈ t∗}. If λ ∈ t∗, and if u and v belong to the representation space Hπλ

of πλ, then the coefficient fu,v(x) = 〈u, πν(x)v〉 satisfies

||fu,v ||
2
L2(N/S) =

||u||2||v||2

|Pf (λ)|
. (1.4)
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STEPWISE SQUARE INTEGRABLE REPRESENTATIONS

The distribution character Θπλ
of πλ satisfies

Θπλ
(f) = c−1|Pf (λ)|−1

∫

O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N) (1.5)

where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)) of f from N to n,

f̂1 is its classical Fourier transform, O(λ) is the coadjoint orbit Ad ∗(N)λ = v∗+λ,
c = 2d1+···+dmd1!d2! · · · dm! as in (1.2a), and dνλ is the translate of normalized
Lebesgue measure from v∗ to Ad ∗(N)λ. The Fourier inversion formula on N is

f(x) = c

∫

t∗

Θπλ
(rxf)|Pf (λ)|dλ for f ∈ C(N). (1.6)

Definition 1.7. The representations πλ of (1.2(f)) are the stepwise square inte-
grable representations of N relative to the decomposition (1.1).

One of the main results of [9] and [10] is that nilradicals of minimal parabolic
subgroups of finite-dimensional real reductive Lie groups are stepwise square inte-
grable. Even the simplest case, the case of minimal parabolic subgroups in SL(n;R),
was a definite improvement over earlier results on the group of strictly upper trian-
gular real matrices. Here we extend the construction of stepwise square integrable
representations to a class of locally nilpotent groups that are direct limits in a man-
ner that respects the basic setup (1.1) of the finite-dimensional case, and we show
how this applies to the nilradicals of direct limit minimal parabolic subgroups of
the real and complex finitary reductive Lie groups, including GL(∞;F), SL(∞;F),
U(p, q;F) and SU(p, q;F) (F = R,C or H and p+ q =∞), Sp(∞;F) (F = R or C),
and SO∗(2∞).

At present, the main application of this theory is to the nilradicals of the direct
limit minimal parabolic subgroups just mentioned. However, even for SL(∞;R) =
lim
−→

SL(n;R), where the nilpotent group consists of the real finitary upper trian-
gular matrices with 1’s on the diagonal, the arguments are no less delicate than
in the general case treated here. So we would not save much effort by restricting
considerations to the case of nilradicals of direct limit minimal parabolic subgroups
of the real and complex finitary reductive Lie groups.

In Section 2 we examine strict direct systems {Nn, ϕm,n} of finite-dimensional
connected and simply connected nilpotent Lie groups that satisfy (1.1) in a manner
that respects the maps ϕm,n : Nn → Nm (m = n). We show how this leads to
sequences {πγn

} of closely related stepwise square integrable representations of the
groups Nn, and then to their unitary representation limits πγ = lim

←−
πγn

.
In Section 3 we prove stepwise Frobenius-Schur orthogonality relations and re-

striction theorems for the coefficients of the representations πγn
. This will make

it possible in Section 4 to apply a variation on the renormalization method of [6],
[7] and [8] for coefficients of the limits πγ = lim

←−
πγn

of stepwise square integrable
representations.

In Section 4 we apply the tools of Section 3 to obtain inverse systems, by
restriction, of the spaces A(πγn

) of coefficients of the representations πγn
. Then

we combine density of A(πγn
) in Hπγn

⊗̂H∗
πγn

with the renormalization method of
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[8] to construct inverse systems, in the Hilbert space category, of the Hπγn
⊗̂H∗

πγn
.

These mirror the inverse systems of the A(πγn
), resulting in an interpretation

of the function space A(πγ) = lim
←−
A(πγn

) as a dense subspace of the Hilbert

space Hπγ
⊗̂H∗

πγ
= lim
←−
Hπγn

⊗̂H∗
πγn

. This is somewhat analogous to the infinite-
dimensional Peter–Weyl Theorem of [7, Sect. 4].

In Section 5 we set up the Schwartz space machinery that will allow us to carry
over the somewhat abstract Hπγ

⊗̂H∗
πγ

= lim
←−
Hπγn

⊗̂H∗
πγn

to an explicit Fourier

inversion formula. This, incidentally, strengthens the stepwise L2 property for
coefficients involving C∞ vectors from L2 to L1.

In Section 6 we work out the explicit Fourier inversion formula for the direct
limit group N = lim

−→
Nn. See Theorem 6.1.

In Section 7 we discuss the classical direct systems {Gn, ϕm,n} of finite-dimensio-
nal real reductive Lie groups. We study conditions on their restricted root sys-
tems ∆(gn, an), that lead to an appropriate limit restricted root system ∆(g, a) =
lim
←−

∆(gn, an) of the Lie algebra of G = lim
−→
{Gn, ϕm,n}. This describes the stepwise

square integrable structure of the nilradicals of minimal parabolic subgroups.
Finally, in Section 8, we arrive at the goal of this paper, Theorem 8.4, an

explicit Fourier inversion formula for the classical direct limit of the nilradicals of
those minimal parabolics. This is done by combining the tools of Section 7 with
Theorem 6.1

I thank Michael Christ for useful discussions of Schwartz spaces related to the
Heisenberg group.

2. Alignment and construction

For our direct limit considerations it will be necessary to adjust the decompo-
sitions (1.1) of the connected simply connected nilpotent Lie groups Nn. This is
so that the adjusted decompositions will fit together as n increases. We do that
by reversing the indices and keeping the Lr constant as n goes to infinity. First,
we suppose that

{Nn} is a strict direct system of connected

simply connected nilpotent Lie groups,
(2.1)

in other words, the connected simply connected nilpotent Lie groups Nn have the
property that Nn is a closed analytic subgroup of N` for all ` = n. As usual, Zr

denotes the center of Lr. For each n, we require that

Nn = L1L2 · · ·Lmn
where

(a) Lr is a closed analytic subgroup of Nn for 1 5 r 5 mn and

(b) each Lr has unitary representations with coefficients in L2(Lr/Zr).

Let Lp,q = Lp+1Lp+2 · · ·Lq for p < q and N`,n=Lm`+1Lm`+2 · · ·Lmn
=

Lm`,mn
for ` < n. Then

(c) N`,n is normal in Nn and Nn = Nr nNr,n semidirect product,

(d) decompose lr = zr + vr and nn = sn + un as vector space

direct sums where sn =
⊕

r5mn
zr and un =

⊕
r5mn

vr;

then [lr, zs] = 0 and [lr, ls] ⊂ v for r < s.





(2.2)
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STEPWISE SQUARE INTEGRABLE REPRESENTATIONS

With this setup we can follow the lines of the constructions in [10, Sect. 5].
We have the Pfaffian polynomials on the z∗r and on s∗n as follows. Given λr ∈ z∗r ,
extended to an element of l∗r by λr(vr) = 0, we have the antisymmetric bilinear
form bλr

on lr/zr defined as usual by bλr
(x, y) = λr([x, y]), and Pf r(λr) denotes

its Pfaffian. If γn = λ1 + · · · + λmn
∈ s∗n with each λr ∈ z∗r , then we have the

product
Pn(γn) = Pf 1(λ1)Pf 2(λ2) · · ·Pf mn

(λmn
) (2.3)

and the nonsingular set

t∗n = {γn ∈ s∗n | Pn(γn) 6= 0}. (2.4)

Recall the construction ([10]) of stepwise square integrable representations πγn

of Nn, where γn ∈ t∗n, and where we adjust the indices to our situation. If mn = 1
then πγn

is just the square integrable representation πλ1 of L1 defined by γn = λ1.
Letmn > 1 and useNn = (L1L2 · · ·Lmn−1)nLmn

= L0,mn−1nLmn
. By induction

on mn we have the stepwise square integrable representation πλ1+···+λmn−1 of
L0,mn−1, and we view it as a representation of Nn whose kernel contains Lmn

. We
also have the square integrable representation πλmn

of Lmn
. Write π′

λmn
for the

extension of πλmn
to a unitary representation of Nn on the same Hilbert space

Hπλmn
(the Mackey obstruction vanishes). Now

πγn
= πλ1+···+λmn−1⊗̂π

′
λmn

. (2.5)

The parameter space for our representations of the direct limit Lie group N =
lim
−→

Nn will be

t∗ =
⋃

n>0

{
γ =

∑
λr ∈ s∗

∣∣∣ γ` ∈ t∗` for ` 5 n and λr = 0 ∈ z∗r for r > mn

}
(2.6)

where s∗ :=
⋃

`>0 s
∗
` =

∑
r>0 z

∗
r . The representations πγ of N are defined in a

manner similar to that of (2.5). Given γ =
∑
λr ∈ t∗ we have the index n = n(γ)

defined by γ` ∈ t∗` for ` 5 n(γ) and λr = 0 ∈ z∗r for ` > mn(γ). Express

N = Nn(γ) nNn(γ),∞ semidirect product, where Nn(γ),∞ =
∏

r>mn(γ)

Lr. (2.7)

In particular, the closed normal subgroup Nn(γ),∞ satisfies Nn(γ)
∼= N/Nn(γ),∞,

and we denote

πγ : lift to N of the stepwise square integrable πλ1+···+λmn(γ)
∈ N̂n(γ). (2.8)

The representation space of πγ is the projective (jointly continuous) tensor product

Hπγ
= Hπλ1

⊗̂Hπλ2
⊗̂ · · · ⊗̂Hπλn(γ)

(2.9)

These representations πγ are the limit stepwise square integrable representations
of N . We go on to see the extent to which their coefficients and characters imitate
the properties of Theorem 1.3.
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3. Coefficient functions

Let Hπγ
denote the representation space of πγ and 〈 · , · 〉πγ

the hermitian inner
product on Hπγ

. Given u, v ∈ Hπγ
we have the coefficient function on N given by

fπγ ,u,v(g) = 〈u, πγ(g)v〉πγ
. (3.1)

We use the standard (r(x)f)(g) = f(gx) and (`(y)f)(g) = f(y−1g). These right
and left translations commute with each other. They are well defined on the fπγ ,u,v

and satisfy
`(x)r(y) : fπγ ,u,v 7→ fπγ ,πγ(x)u,πγ(y)v. (3.2)

By our construction (2.8), the value fπγ ,u,v(g) depends only on the coset gN ′′
n(γ).

In other words, it really is a function on Nn(γ)
∼= N/N ′′

n(γ). Further, |fπγ ,u,v(g)| de-

pends only on the coset gSn(γ)N
′′
n(γ) where Sn(γ) is the quasicenter Z1Z2 · · ·Zmn(γ)

of Nn(γ) = L1L2 · · ·Lmn(γ)
. Building on (1.4), we have the following variation on

the Frobenius-Schur orthogonality relations for finite groups:

Proposition 3.3. If γ ∈ t∗ and n = n(γ) then

||fπγ ,u,v||
2
L2(N/SnN ′′

n ) =
||u||2πγ

||v||2πγ

|Pn(γ)|
.

Proof. This is an induction on n. The case n = 1 is (1.4). Now go from n to n+1.
Express Nn+1 = Nn nNn,n+1 where

Nn = L1L2 · · ·Lmn
and Nn,q = Lmn+1Lmn+2 · · ·Lmq

for q > n.

Then Sn+1 = Sn × Sn,n+1 where the quasi-centers

Sn = Z1Z2 · · ·Zmn
and Sn,q = Zmn+1Zmn+2 · · ·Zmq

for q > n.

Now let γn ∈ t∗n and γn,n+1 ∈ t∗n,n+1 where, as before, t∗ is the nonzero set of

the Pfaffian in s∗. Note that πγn
∈ N̂n and πγn,n+1 ∈ N̂n,n+1 are stepwise square

integrable. Write π′
γn,n+1

for the extension of πγn,n+1 from Nn,n+1 to Nn+1. Let
u, v ∈ Hπγn

and x, y ∈ Hπγn,n+1
so u⊗ x, v ⊗ y ∈ Hπγn+1

. Let a run over Nn and

let b run over Nn,n+1. Compute

||fπγn+1
,u⊗x,v⊗y||

2
L2(Nn+1/Sn+1)

=

∫

Nn+1/Sn+1

|〈u⊗ x, (πγn
⊗̂π′

γn,n+1
)(ab)(v ⊗ y)〉|2da db

=

∫

Nn+1/Sn+1

|〈u⊗ x, πγn
(a)π′

γn,n+1
(b)(v)⊗ πγn,n+1(b)(y)〉|

2da db

=

∫

Nn,n+1/Sn,n+1

(∫

Nn/Sn

|〈u, πγn
(a)π′

γn,n+1
(b)(v)〉|2da

)
|〈x, πγn,n+1(b)(y)〉|

2db

=

∫

Nn,n+1/Sn,n+1

||u||2||π′
γn,n+1

(b)(v)||2

|Pf n(γn)|
|〈x, πγn,n+1(b)(y)〉|

2db

=

∫

Nn,n+1/Sn,n+1

||u||2||v||2

|Pf n(γn)|
|〈x, πγn,n+1(b)(y)〉|

2db

=
||u||2||v||2

|Pf n(γn)|
·

||x||2||y||2

|Pf n,n+1(γn,n+1)|
=
||u⊗ x||2||v ⊗ y||2

|Pf n+1(γn+1)|
.
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The proposition follows. �

In the notation of the proof of Proposition 3.3,

fπγn+1
,u⊗x,v⊗y(a) = 〈u, πγn

(a)v〉 · 〈x, y〉 = 〈x, y〉fπγn ,u,v(a) for a ∈ Nn. (3.4)

In other words, fπγn+1
,u⊗x,v⊗y|Nn

= 〈x, y〉fπγn ,u,v . In particular, the case where
x = e = y, where e is a unit vector, is

fπγn+1
,u⊗e,v⊗e|Nn

= fπγn ,u,v (3.5)

Iterating this and combining it with Proposition 3.3 we arrive at

Proposition 3.6. Let γ ∈ t∗ and n = n(γ). Let γ′ ∈ t∗ and n′ = n(γ′) with n′ > n
and γ′|sn = γ. Then πγ′ |Nn

is an infinite multiple of πγ . Split Hπγ′ = Hπγ
⊗̂H′′

where H′′ = Hπγ′
n+1
⊗̂ · · · ⊗̂Hπγ′

n′
in the notation of (2.9). Choose a unit vector

e ∈ H′′. Then
Hπγ

↪→ Hπγ′ by v 7→ v ⊗ e (3.7)

is a well-defined Nn–equivariant isometric injection. If u, v ∈ Hπγ
then

||fπγ′ ,u⊗e,v⊗e||
2
L2(N/Sn′N ′′

n′ )
=
|Pn(γ)|

|Pn′(γ′)|
||fπγ ,u,v||

2
L2(N/SnN ′′

n ). (3.8)

Proposition 3.6 will lead to construction of a Hilbert space L2(N). Corollary
5.17 will use coefficients and Schwartz class functions to show that L2(N) is inde-
pendent of choice of the vectors e in (3.7).

4. Hilbert space limits

Now we combine the restriction maps of Section 3. Let γ ∈ t∗ and n = n(γ).
Then γ defines a unitary character ζγ = exp(2πiγ) by

ζγ(exp(ξ)y) = e2πiγ(ξ) where ξ ∈ sn and y ∈ N ′′
n . (4.1)

That defines the Hilbert space

L2(N/SnN
′′
n , ζγ): functions f : N → C such that f(gx) = ζγ(x)

−1f(g)

and |f | ∈ L2(N/SnN
′′
n ) for g ∈ N and x ∈ SnN

′′
n .

(4.2)

The finite linear combinations of the coefficients fπγ ,u,v (where u, v ∈ Hπγ
) form a

dense subspace of L2(N/SnN
′′
n , ζγ), and that gives an N ×N equivariant Hilbert

space isomorphism
L2(N/SnN

′′
n , ζγ)

∼= Hπγ
⊗̂H∗

πγ
. (4.3)

We know that the stepwise square integrable group Nn = N/N ′′
n satisfies

L2(Nn) = L2(N/N ′′
n ) =

∫

γ∈t∗ and n(γ)=n

(Hπγ
⊗̂H∗

πγ
)|Pn(γ)|dγ. (4.4)
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In brief, that expands the functions onN that depend only on the firstm(n) factors
in N = N1N2N3 · · · . To expand the functions that depend on more factors, say
the first m(n′) factors in the notation of Proposition 3.6, we would like to inject

L2(N/N ′′
n ) =

∫

γ∈t∗n

L2(N/SnN
′′
n , ζγ)|Pn(γ)|dγ

into

L2(N/N ′′
n′) =

∫

γ′∈t∗
n′

L2(N/Sn′N ′′
n′ , ζγ′)|Pn′(γ′)|dγ′

using the renormalizations of (3.8). However, γ has many extensions γ ′ with the
given n(γ′) = n′, so this will not work directly. But we can take the orthogonal
projections dual to the injections of (3.8) and form an inverse system of Hilbert
spaces.

To start, if u, v ∈ Hπγ
and x, y ∈ H′′, using (3.4) and Proposition 3.6,

pγ′,γ : fπγ′ ,u⊗x,v⊗y 7→ 〈x, y〉

∣∣∣∣
Pn(γ)

Pn′(γ′)

∣∣∣∣
1/2

fπγ ,u,v (4.5)

is the orthogonal projection dual to the isometric inclusion (3.7). Since γ is the
restriction of γ′ from sn(γ′) to sn(γ) we can reformulate (4.5) as

pγ′,n : fπγ′ ,u⊗x,v⊗y 7→ 〈x, y〉

∣∣∣∣
Pn(γ

′|sn)

Pn′(γ′)

∣∣∣∣
1/2

fπγ′|sn,u,v
where n = n(γ). (4.6)

The maps pγ,n of (4.6) sum to a Hilbert space projection, essentially restriction of
coefficients,

pn′,n : L2(Nn′)→ L2(Nn) for n = n(γ′|sn) and n
′ = n(γ′) = n (4.7)

where pn′,n =
(∫

γ′∈s∗
n′
pγ′,n dγ

′

)
. The maps pn′,n of (4.7) define an inverse system

in the category of Hilbert spaces and partial isometries:

L2(N1)
p2,1
←−− L2(N2)

p3,2
←−− L2(N3)

p4,3
←−− · · · ←− L2(N) (4.8)

where the projective limit L2(N) := lim
←−
{L2(Nn), pn′,n} is taken in the category of

Hilbert spaces and partial isometries. We now have the Hilbert space

L2(N) := lim
←−
{L2(Nn), pn′,n}. (4.9)

5. The Schwartz spaces

In order to refine (4.9) to a Fourier inversion formula we must first make it
more explicit. The span A(πγn

) of the coefficients of the representation πγn
is

dense in the space of functions on Nn given by Hπγn
⊗̂Hπγn

. The idea in the
background here is to realize Schwartz class functions as wave packets f(a) =

870
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∫
s∗n
ϕ(γn)fπγn ,u(γn),v(γn)(a)dγn where ϕ is a Schwartz class function on sn and

where u(γn) and v(γn) are fields of C
∞ unit vectors in the Hπγn

. More concretely,
we show that the coefficient fπγn,u,v

belongs to an appropriate Schwartz space (and
thus an appropriate L1 space) when u and v are C∞ vectors for πγn

.

We first collect some standard facts from Kirillov theory concerning the analog
of the Schrödinger representation of the Heisenberg group. Let L be a connected
simply connected nilpotent Lie group that has square integrable representations.
Z is the center of L, and λ ∈ z∗ with Pf l(λ) 6= 0. Let p and q be totally real
polarizations for λ, p = z + a and q = z + b, and suppose that we chose them so
that bλ(x, y) = λ([x, y]) gives a nondegenerate pairing of a with b. In this setting,
the square integrable representation πλ of L is IndN

P (exp(2πiλ), and it represents L
on L2(N/P ) = L2(B). Further, here πλ maps the universal enveloping algebra U(l)
onto the set of all polynomial (in linear coordinates from exp: b→ B) differential
operators on B. In particular,

Lemma 5.1. The C∞ vectors for the representation πλ are the Schwartz class
functions on B. In other words, if p and q are polynomials on B, then D is a
constant coefficient differential operator on B. Further, if u : B → C is a C∞

vector for πλ, then |q(x)p(D)u| is bounded.

In order to extend this to stepwise square integrable representations we must
take into account the problem that Sn need not be central in Nn. We do this by
decomposing

Nn ' L1 × · · · × Lm(n) (5.2)

where ' is the measure preserving Cω diffeomorphism given by the polynomial
map exp′ : nn → Nn, defined by

exp′(ξ1 + · · ·+ ξm(n)) = exp(ξ1) exp(ξ2) · · · exp(ξm(n)) where each ξr ∈ lr. (5.3)

Using the part of (2.2d) that says [lr, zs] = 0 for r < s the decomposition (5.2)
gives us

Nn/Sn = {xm(n) · · ·x2x1Zm(n) · · ·Z2Z1 | xr ∈ Lr}

= {xm(n)Zm(n) · · ·x2Z2x1Z1 | xr ∈ Lr}

= (Lm(n)/Zm(n))× · · · × (L1/Z1)

' (L1/Z1)× · · · × (Lm(n)/Zm(n)).

(5.4)

Now let γn = λ1 + · · ·+ λm(n) ∈ t∗n. Let pr and qr be totally real polarizations on
lr for λr, paired as above by bλr

. We do not claim that p =
∑

pr and q =
∑

qr are
polarizations on nn for γn (we do not know that they are algebras), but still pr =
zr+ar and qr = zr+br where bλr

pairs ar with br, so bγn
is a nondegenerate pairing

of a =
∑

ar with b =
∑

br. Now the stepwise square integrable representation
πγn

of Nn is realized on L2(B) where B = exp′(b) in the notation of (5.3). Again,
in this setting, πγn

maps the universal enveloping algebra of nn onto the set of all
polynomial (in linear coordinates from exp′ : b → B) differential operators on B.
This extends Lemma 5.1 to
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Lemma 5.5. Identify B = exp′(b) with the real vector space b. The C∞ vectors
for the representation πγn

are the Schwartz class functions on B. In other words,
if p and q are polynomials on B, if D is a constant coefficient differential operator
on B, and if u : B → C is a C∞ vector for πγn

, then |q(x)p(D)u| is bounded.

Now consider the Schwartz space analog of the definition (4.2). We define
the relative Schwartz space C(N/SnN

′′
n , ζγ) = C(Nn/Sn, ζγn

) to be all functions
f ∈ C∞(N) such that

f(xs) = ζγ(s)
−1f(x) for all x ∈ Nn and s ∈ Sn, and |q(x)p(D)f |

is bounded for all polynomials p, q on Nn/Sn and all D ∈ U(nn).
(5.6)

It is a nuclear Fréchet space and is dense in L2(N/SnN
′′
n , ζγ) = L2(Nn/Sn, ζγn

).
We define C∞

c (N/SnN
′′
n , ζγ) = C∞

c (Nn/Sn, ζγn
) to be the space of all functions

f ∈ C∞(Nn) such that f(xs) = ζγ(s)
−1f(x) for x ∈ Nn and s ∈ Sn, and where

|f | ∈ C∞
c (Nn/Sn) = C∞

c (N/SnN
′′
n ). It is dense in the corresponding Schwartz

space. Thus we have the expected continuous inclusions C∞
c ↪→ C ↪→ L2 with

dense images.

Theorem 5.7. Let u and v be C∞ vectors for the stepwise square integrable rep-
resentation πγn

of Nn. Define ζγ and ζγn
as in (4.1), and A = exp′(a) and

B = exp′(b) as in the discussion following (5.4). Then the coefficient function
fπγn ,u,v belongs to the relative Schwartz space C(N/SnN

′′
n , ζγ) = C(Nn/Sn, ζγn

).

Proof. Write fu,v for fπγn ,u,v and π for πγn
. So fu,v(x) = 〈u, π(x)v〉. The left/right

action of the enveloping algebra is Dfu,vE = fπ(D)u,π(E)v. View u ∈ C(A) and v ∈
C(B). Here π(D)u is the image of u under the (arbitrary) polynomial differential
operator π(D) on A and π(E)v is the image of v under the (arbitrary) polynomial
differential operator π(D) on B. Together they give the image of fu,v under the
polynomial differential operator π(D)⊗π(E) on A×B = Nn/Sn. Every polynomial
differential operator on A×B is a finite sum of such operators π(D)⊗π(E). Since
coefficients are bounded, here |fπ(D)u,π(E)v(x)| 5 ||π(D)u|| · ||π(E)v||, and since
fπ(D)u,π(E)v(xs) = ζ(s)−1fπ(D)u,π(E)v(x), the coefficient fu,v ∈ C(Nn/Sn, ζγn

).
�

Corollary 5.8. Let u and v be C∞ vectors for the stepwise square integrable rep-
resentation πγn

of Nn. Then the coefficient function fπγn ,u,v ∈ L
1(Nn/Sn, ζγn

).

Corollary 5.9. Let L be a connected simply connected nilpotent Lie group, Z its
center, and π a square integrable representation of L. Let ζ ∈ Ẑ such that π|Z is
a multiple of ζ. Let u and v be C∞ vectors for π. Then fπ,u,v ∈ L

1(L/Z, ζ).

Any norm |ξ| on nn carries over to a norm | exp(ξ)| := |ξ| on Nn. We have the
standard Schwartz space C(Nn), given by the seminorms

νk,D,E(f) = supx∈Nn
|(1 + |x|2)k(DfE)(x)|

where k is a positive integer and D,E ∈ U(nn) acting on the left and right. Since
exp: nn → Nn is a polynomial diffeomorphism it gives a topological isomorphism
of C(Nn) onto the classical Schwartz space C(nn). Fourier transform and inverse
Fourier transform of Schwartz class functions preserve C(Nn).
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Remark 5.10. If γn ∈ s∗n and f ∈ C(Nn) define fγn
(x) =

∫
Sn
f(xs)ζγn

(s)ds. Then

fγn
∈ C(Nn/Sn, ζγn

). Let z ∈ Sn. Since Sn is commutative,

fγn
(xz) =

∫

Sn

f(xzs)ζγn
(s)ds =

∫

Sn

f(xsz)ζγn
(s)ds

=

∫

Sn

f(xs)ζγn
(z−1s)ds = ζγn

(z)−1fγn
(x).

Given x ∈ Nn we view fγn
(x) as a function on s∗n by ϕx(γn) := fγn

(x). Note that
ϕx is (a multiple of) the Fourier transform of the left translate (`(x−1)f)|Sn

, say
FSn

(`(x−1)f)|Sn
. The inverse Fourier F−1

Sn
(ϕx) transform reconstructs f from the

fγn
. Each of the fγn

is a limit (in C(Nn/Sn, ζγn
)) of finite linear combinations of

coefficient functions fπγn ,u,v. Thus every f ∈ C(Nn) is approximated (in C(Nn)) by
Schwartz class function packets of coefficient functions of stepwise square integrable
representations.

Proceeding as in Section 4, let n′ = n and consider γn′ ∈ t∗n′ with γn′ |sn = γn.
For brevity write γ = γn and γ′ = γn′ . We reformulate (4.7) through (4.9) for the
Schwartz spaces:

qn′,n : C(Nn′)→ C(Nn) by f 7→ f |Nn
. (5.11)

The maps qn′,n of (5.11) define an inverse system in the category of complete
locally convex topological vector spaces

C(N1)
q2,1
←−− C(N2)

q3,2
←−− C(N3)

q4,3
←−− · · · . (5.12)

We define the projective limit

C(N) := lim
←−
{C(Nn), qn′,n} (5.13)

to be the Schwartz space of N = lim
−→

Nn. This is dual to our earlier construction
in [8, (2.20)]. Now we relate it to (4.9). We scale the natural injections to maps

rn,γ : C(Nn/Sn, ζγ)→ L2(Nn/Sn, ζγ) by f 7→ |Pf nn
(γ)|1/2f. (5.14)

They sum to maps

rn =

(∫

s∗n

rn,γ dγ

)
: C(Nn)→ L2(Nn) (5.15)

that are equivariant for the maps pn′,n and qn′,n. The arguments leading to [8,
Prop. 2.22] can be dualized from direct limits to projective limits. Thus, dual to
[8, Prop. 2.22]:

Proposition 5.16. The maps rn of (5.15) satisfy pn′,n · rn′ = rn · qn′,n for n′ = n
and send the inverse system {C(Nn), qn′,n} into the inverse system {L2(Nn), pn′,n}.
That defines a continuous N–equivariant injection

r : C(N)→ L2(N)

with dense image. In particular r defines a pre-Hilbert space structure on C(N)
with completion isometric to L2(N).

Since C(N) is independent of the choices involved in the construction of L2(N)
we have
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Corollary 5.17. The limit Hilbert space L2(N) = lim
←−
{L2(Nn), pn′,n}} of (4.9),

and the left/right regular representation of N ×N on L2(N), are independent of
the choice of vectors e in (3.7).

6. Fourier inversion for the limit group

In this section we apply the material of Section 5 to extend the Fourier inversion
portion of Theorem 1.3 from the Nn to the limit group N = lim

−→
Nn. To set this

up recall that

• t∗ = lim
←−

t∗n consists of all collections γ = (γn) where each γn ∈ t∗n and if
n′ = n then γn′ |sn = γn.

• Given γ = (γn) ∈ t∗ the limit representation πγ = lim
←−

πγn
is constructed as

in Section 2.
• The distribution character Θπγn

are given by (1.5).
• C(N) = lim

←−
C(Nn) consists of all sets f = (fn) where each fn ∈ C(Nn), and

where if n′ = n then fn′ |Nn
= fn.

Then the limit Fourier inversion formula is

Theorem 6.1. Suppose that N = lim
−→

Nn where {Nn} satisfies (2.2). Then the
Plancherel measure for N is concentrated on t∗. Let f = (fn) ∈ C(N) and x ∈ N .
Then x ∈ Nn for some n and

f(x) = cn

∫

t∗n

Θπγn
(rxf)|Pf nn

(γn)|dγn (6.2)

where cn = 2d1+···+dmd1!d2! · · · dm! as in (1.2a) and m is the number of factors Lr

in Nn.

Proof. Apply Theorem 1.3 toNn: f(x) = fn(x) = cn
∫
t∗n
Θπγn

(rxf)|Pf nn
(γn)| dγn.

�

Remark 6.3. A Plancherel Formula of the sort ||f ||2L2 =
∫
||π(f)||2HS dπ usually is

somewhat easier than a Fourier inversion formula. This in part is because it usually
is easier to prove that operators π(f) are Hilbert-Schmidt than to prove that (for
appropriate functions f) they are of trace class. Thus one might expect that
a formula ||f ||2L2(N) = lim c′n

∫
t∗n
||πγn

(f |Nn
)||2HS |Pf nn

(γn)| dγn would be easier to

prove than (6.2). But it is not clear how to relate the Hilbert–Schmidt norms to the
limit process, because we have not yet found an appropriate form of the Frobenius–
Schur orthogonality relations. Thus the “less delicate” Plancherel Formula remains
problematical.

7. Nilradicals of parabolics in finite-dimensional groups

In Section 8 we will specialize our results to nilradicals of minimal parabolic
subgroups of finitary real reductive Lie groups such as the infinite special and gen-
eral linear groups and the infinite real, complex and quaternionic unitary groups.
In order to do that, in this section we review the relevant restricted root structure
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that gives the finite-dimensional case, reversing some of the enumerations used in
[10] to be appropriate for our direct limit systems.

Let G be a finite-dimensional connected real reductive Lie group. We recall
some structural results on its minimal parabolic subgroups, some standard and
some from [10].

Fix an Iwasawa decomposition G = KAN . Write k for the Lie algebra of K, a
for the Lie algebra of A, and n for the Lie algebra of N . Complete a to a Cartan
subalgebra h of g. Then h = t+ a with t = h ∩ k. Now we have root systems

• ∆(gC, hC): roots of gC relative to hC (ordinary roots), and
• ∆(g, a): roots of g relative to a (restricted roots).
• ∆0(g, a) = {γ ∈ ∆(g, a) | 2γ /∈ ∆(g, a)} (nonmultipliable restricted roots).

Sometimes we will identify a restricted root γ = α|a, α ∈ ∆(gC, hC) and α|a 6= 0,
with the set

[γ] := {α′ ∈ ∆(gC, hC) | α
′|a = γ} (7.1)

of all roots that restrict to it. Further, ∆(g, a) and ∆0(g, a) are root systems in the
usual sense. Any positive system ∆+(gC, hC) ⊂ ∆(gC, hC) defines positive systems

• ∆+(g, a) = {α|a | α ∈ ∆+(gC, hC) and α|a 6= 0} and
• ∆+

0 (g, a) = ∆0(g, a) ∩∆+(g, a).

We can (and do) choose ∆+(g, h) so that

• n is the sum of the positive restricted root spaces and
• if α ∈ ∆(gC, hC) and α|a ∈ ∆+(g, a) then α ∈ ∆+(gC, hC).

Recall that two roots are strongly orthogonal if their sum and their difference
are not roots. Then they are orthogonal. We define

β′
1 ∈ ∆+(g, a) is a maximal positive restricted root and

β′
r+1 ∈ ∆+(g, a) is a maximum among the roots of ∆+(g, a)

that are orthogonal to all β′
i with i 5 r.

(7.2)

Then the β′
r are mutually strongly orthogonal. Note that each β ′

r ∈ ∆+
0 (g, a). This

is the Kostant cascade coming down from the maximal root. Denote

{β′
1, . . . , β

′
m} : the set of strongly orthogonal roots constructed in (7.2). (7.3)

The enumeration (7.3) is not appropriate for the direct limit process, but we need
it for some of the lemmas below. For direct limit considerations we will use the
reversed ordering

βr = β′
m−r+1, so the ordered sets {β1, . . . , βm} = {β

′
m, . . . , β

′
1}. (7.4)

For 1 5 r 5 m define

∆+
m = {α ∈ ∆+(g, a) | βm − α ∈ ∆+(g, a)} and

∆+
m−r−1 = {α ∈ ∆+(g, a) \ (∆+

m ∪ · · · ∪∆+
m−r) | βm−r−1 − α ∈ ∆+(g, a)}.

(7.5)
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Lemma 7.6 ([10, Lemma 6.3]). If α ∈ ∆+(g, a) then either α ∈ {β1, . . . , βm} or
α belongs to exactly one of the sets ∆+

r . In particular the Lie algebra n of N is
the vector space direct sum of its subspaces

lr = gβr
+
∑

∆+
r

gα for 1 5 r 5 m. (7.7)

Lemma 7.8 ([10, Lemma 6.4]). The set ∆+
r of (7.5) satisfies

∆+
r ∪ {βr} = {α ∈ ∆+ | α ⊥ βi for i > r and 〈α, βr〉 > 0}.

In particular, [lr, ls] ⊂ lt where t = max{r, s}. Thus n has an increasing foliation
based on the ideals

lr,m = lr+1 + · · ·+ lm for 0 5 r < m (7.9)

with a corresponding group level decomposition by normal subgroups Lr,m where

N = L0,m = L1L2 · · ·Lm and Lr,m = Lr+1 nNr+1,m for 0 5 r < m. (7.10)

The structure of ∆+
r , and later of lr, is exhibited by a particular Weyl group

element of ∆(g, a) and the negative of that Weyl group element. Denote

sβr
: Weyl reflection in βr and σr : ∆(g, a) → ∆(g, a) by σr(α) = −sβr

(α). (7.11)

Here σr(βs) = −βs for s 6= r, +βs if s = r. If α ∈ ∆+
r we still have σr(α) ⊥ βi for

i > r and 〈σr(α), βr〉 > 0. If σr(α) is negative then βr−σr(α) > βr, contradicting
the maximality property of βm−r+1. Thus, using Lemma 7.8, σr(∆

+
r ) = ∆+

r . This
divides each ∆+

r into pairs:

Lemma 7.12 ([10, Lemma 6.8]). If α ∈ ∆+
r then α + σr(α) = βr. (Of course it

is possible that α = σr(α) = (1/2)βr when (1/2)βr is a root.) If α, α′ ∈ ∆+
r and

α+ α′ ∈ ∆(g, a) then α+ α′ = βr.

It comes out of Lemmas 7.6 and 7.8 that the decompositions of (7.5), (7.7)
and (7.9) satisfy (2.2), so Theorem 1.3 applies to nilradicals of minimal parabolic
subgroups. In other words, as in Theorem 1.3,

Theorem 7.13 ([10, Thm. 6.16]). Let G be a real reductive Lie group, G = KAN
an Iwasawa decomposition, lr and nr the subalgebras of n defined in (7.7) and
(7.9), and Lr and Nr the corresponding analytic subgroups of N . Then the Lr and
Nr satisfy (2.2). In particular, the Plancherel measure for N is concentrated on
{πλ | λ ∈ t∗}. If λ ∈ t∗, and if u and v belong to the representation space Hπλ

of
πλ, then the coefficient fu,v(x) = 〈u, πλ(x)v〉 satisfies

||fu,v ||
2
L2(N/S) =

||u||2||v||2

|Pf (λ)|
. (7.14)

The distribution character Θπλ
of πλ satisfies

Θπλ
(f) = c−1|Pf (λ)|−1

∫

O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N) (7.15)
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where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)), f̂1 is its clas-
sical Fourier transform, O(λ) is the coadjoint orbit Ad ∗(N)λ = v∗ + λ, c =
2d1+···+dmd1!d2! · · · dm! as in (1.2a), and dνλ is the translate of normalized Lebesgue
measure from v∗ to Ad ∗(N)λ. The Fourier inversion formula on N is

f(x) = c

∫

t∗

Θπλ
(rxf)|Pf (λ)|dλ for f ∈ C(N). (7.16)

8. Nilradicals of parabolics in infinite-dimensional groups

We now look at the classical real forms of the three classical simple locally finite
countable–dimensional Lie algebras gC = lim

−→
gn,C, and their real forms gR. The

Lie algebras gC are the classical direct limits, sl(∞,C) = lim
−→

sl(n;C), so(∞,C) =
lim
−→

so(2n;C) = lim
−→

so(2n + 1;C), and sp(∞,C) = lim
−→

sp(n;C), where the direct

systems are given by the inclusions of the form A 7→ ( A 0
0 0 ) or A 7→

(
0 0 0
0 A 0
0 0 0

)
.

We often consider the locally reductive algebra gl(∞;C) = lim
−→

gl(n;C) along with
sl(∞;C).

Let Gn be a real (this includes complex) simple Lie group of classical type and
real rank n. We have just described it as sitting in a direct system {Gn} of Lie
algebras in the same series. Set G = lim

−→
Gn as above. Then we have coherent

Iwasawa decompositions Gn = KnAnNn with Kn ⊂ K`, An ⊂ A` and Nn ⊂ N`

for ` = n. We need to do this so that the direct limit respects the restricted root
structures, in particular the strongly orthogonal root structures, of the Nn. To
do that we enumerate the set Ψn = Ψ(gn, hn) of nonmultipliable simple restricted
roots so that, in the Dynkin diagram, for type A we spread from the center of the
diagram. For types B, C and D ψ1 is the right endpoint; in other words, for ` = n
Ψ` is constructed from Ψn adding simple roots to the left end of their Dynkin
diagrams. Thus

A2`+1
a
ψ−` p p p a

ψ−n
p p p a

ψ0
p p p a

ψn
p p p a

ψ` ` = n = 0

A2`
a
ψ−` p p p a

ψ−n
p p p a

ψ−1
a
ψ1

p p p a
ψn

p p p a
ψ` ` = n = 1

(8.1)

B`
b
ψ`

p p p b
ψn

b
ψn−1

p p p b
ψ2

r
ψ1

` = n = 2

C`
r

ψ`
p p p r

ψn
r

ψn−1
p p p r

ψ2
b

ψ1
` = n = 3

D`

b
ψ`

p p p b
ψn

b
ψn−1

p p p b
ψ3
H
H bψ1

�
�

bψ2

` = n = 4

(8.2)

We describe this by saying that G` propagates Gn. For types B, C and D this
is the same as the notion of propagation in [2] and [3], but for type A it is a bit
different. With the simple root enumeration of (8.1) and (8.2) the set {β1, . . . , βm}
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of strongly orthogonal positive restricted roots of (7.4) is

A2n+1 : β1 = ψ0;β2 = ψ−1 + ψ0 + ψ1; . . . ;βr = ψ−r+1 + βr−1 + ψr−1; . . .

A2n : β1 = ψ−1 + ψ1;β2 = ψ−2 + ψ−1 + ψ1 + ψ2; . . . ;βr = ψ−r + βr−1 + ψr; . . .

B2n+1 : β1 = ψ1;β2 = ψ3 and β3 = 2(ψ1 + ψ2) + ψ3; . . . ;

β2r = ψ2r+1 and β2r+1 = 2(ψ1 + · · ·ψ2r) + ψ2r+1; . . .

B2n : β1 = ψ2 and β2 = 2ψ1 + ψ2;β3 = ψ4 and β4 = 2(ψ1 + ψ2 + ψ3) + ψ4; . . . ;

β2r+1 = ψ2r−1 and β2r = 2(ψ1 + . . . ψ2r−1) + ψ2r; . . .

Cn : β1 = ψ1;β2 = ψ1 + 2ψ2; . . . ;βr = ψ1 + 2(ψ2 + · · ·+ ψr); . . .

D2n+1 : β1 = ψ3;β2 = ψ1 + ψ2 + ψ3;β3 = ψ5;β4 = ψ1 + ψ2 + 2(ψ3 + ψ4) + ψ5;

β2r−1 = ψ2r+1 and β2r = ψ1 + ψ2 + 2(ψ3 + · · ·+ ψ2r) + ψ2r+1; . . .

D2n : β1 = ψ1;β2 = ψ2;β3 = ψ4 and β4 = ψ1 + ψ2 + 2ψ3 + ψ4;β5 = ψ6; and

β6 = ψ1 + ψ2 + 2(ψ3 + ψ4 + ψ5) + ψ6; . . . ;β2r−1 = ψ2r; and

β2r = ψ1 + ψ2 + 2(ψ3 + · · ·+ ψ2r−1) + ψ2r; . . .

In order to simplify use of these constructions we denote

Definition 8.3. Let G = lim
−→

Gn be a classical simple locally finite countable-
dimensional Lie group. Possibly passing to a cofinal subsequence, suppose that we
have coherent Iwasawa decompositions Gn = KnAnNn such that G` propagates
Gn for ` = n. Then, passing to a cofinal subsequence if necessary, we can assume
that all of the nonmultipliable restricted root systems ∆0(gn, an) are of the same
type A2n+1, A2n, B2n+1, B2n, Cn, D2n+1 or D2n. Then we will say that the direct
system {Gn} is well aligned.

The condition that {Gn} be well aligned is exactly what we need for {Nn} to
satisfy (2.2), and given G we have a realization G = lim

−→
Gn for which {Gn} is well

aligned. In summary,

Theorem 8.4. Let G be a classical connected countable-dimensional real reductive
Lie group. Express G = lim

−→
Gn with {Gn} well aligned. Then {Nn} satisfies (2.2).

In particular, Theorem 7.13 holds for the maximal locally unipotent subgroup N =
lim
−→

Nn of G.

Remark 8.5. In Theorem 8.4 the possibilities for G are the finite-dimensional
simple Lie groups and the infinite-dimensional SL(∞;C), SO(∞;C), Sp(∞;C),
SL(∞;R), SL(∞;H), SU(∞, q) with q 5∞, SO(∞, q) with q 5∞, Sp(∞, q) with
q 5 ∞, Sp(∞;R) and SO∗(2∞). Further, the normalizer P = MAN of N in G
is a classical minimal parabolic subgroup lim

−→
(Pn = MnAnNn) where Pn is the

minimal parabolic in Gn that is the normalizer of Nn.
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