
Journal of Lie Theory
Volume 24 (2014) 791–808
c© 2014 Heldermann Verlag

The Plancherel Formula for Minimal Parabolic Subgroups

Joseph A. Wolf

Communicated by J. Hilgert

Abstract. In a recent paper we found conditions for a nilpotent Lie group
to be foliated into subgroups that have square integrable unitary representa-
tions that fit together to form a filtration by normal subgroups. That resulted
in explicit character formulae, Plancherel Formulae and multiplicity formulae.
We also showed that nilradicals N of minimal parabolic subgroups P = MAN
enjoy that “stepwise square integrable” property. Here we extend those results
from N to P . The Pfaffian polynomials, which give orthogonality relations and
Plancherel density for N , also give a semi-invariant differential operator that
compensates lack of unimodularity for P . The result is a completely explicit
Plancherel Formula for P .
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1. Introduction

A connected simply connected Lie group N with center Z is called square inte-
grable if it has unitary representations π whose coefficients fu,v(x) = 〈u, π(x)v〉
satisfy |fu,v| ∈ L2(N/Z). C.C. Moore and the author worked out the structure
and representation theory of these groups [11]. If N has one such square inte-
grable representation then there is a certain polynomial function Pf (λ) on the
linear dual space z∗ of the Lie algebra of Z that is key to harmonic analysis on
N . Here Pf (λ) is the Pfaffian of the antisymmetric bilinear form on n/z given
by bλ(x, y) = λ([x, y]). The square integrable representations of N are the πλ
where λ ∈ z∗ with Pf (λ) 6= 0, Plancherel almost all irreducible unitary represen-
tations of N are square integrable, and up to an explicit constant |Pf (λ)| is the

Plancherel density of the unitary dual N̂ at πλ . This theory has proved to have
serious analytic consequences. For example, for most commutative nilmanifolds
G/K , i.e. Gelfand pairs (G,K) where a nilpotent subgroup N of G acts transi-
tively on G/K , the group N has square integrable representations [15]. And it
is known just which maximal parabolic subgroups of semisimple Lie groups have
square integrable nilradical [14].
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In [17] and [18] the theory of square integrable nilpotent groups was ex-
tended to “stepwise square integrable” nilpotent groups. By definition they are
the connected simply connected nilpotent Lie groups that satisfy (1.1) just be-
low. We use L and l to avoid conflict of notation with the M and m of minimal
parabolic subgroups. Zr denotes the center of Lr and vr is a vector space com-
plement to zr in lr .

N = L1L2 . . . Lm−1Lm where

(a) each Lr has unitary representations with coefficients in L2(Lr/Zr),

(b) each Nr := L1L2 . . . Lr is normal in N with Nr = Nr−1 o Lr semidirect,

(c) decompose lr = zr + vr and n = s + v as vector direct sums where

s = ⊕ zr and v = ⊕ vr; then [lr, zs] = 0 and [lr, ls] ⊂ v for r > s .
(1.1)

The choice of the vr is not important in (1.1), as long as [lr, ls] ⊂ v for r > s ,
because integration and Lie brackets in lr are really over lr/zr rather than vr .
Denote

(a) dr = 1
2

dim(lr/zr) so 1
2

dim(n/s) = d1 + · · ·+ dm ,

and c = 2d1+···+dmd1!d2! . . . dm!

(b) bλr : (x, y) 7→ λ([x, y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . . Zm = Z1 × · · · × Zm where Zr is the center of Lr

(d) Pf : polynomial Pf (λ) = Pf l1(bλ1)Pf l2(bλ2) . . .Pf lm(bλm) on s∗

(e) t∗ = {λ ∈ s∗ | Pf (λ) 6= 0}

(f) πλ ∈ N̂ where λ ∈ t∗ : irreducible unitary rep. of N = L1L2 . . . Lm

(1.2)

We recall the Schwartz space C(N), following the lines of the exposition in
[2, Section 1]. Start with a norm on N . For example the operator norm ||α(x)|| ,
where α is a faithful finite dimensional representation of N by unipotent linear
transformations of a Hilbert space, defines a norm |x| = sup(||α(x)||, ||α(x−1)||).
Or one can use |x| = (1 +distance(x, 1)2) with a left invariant Riemannian metric
on N . The properties we need are that the norm be continuous and satisfy (i)
|1| = 1, (ii) |x| = 1, (iii) |x−1| = |x| and (iv) |x| · |y|−1 5 |xy| 5 |x| · |y| . Write
` for the left action of the universal enveloping algebra U(n) on C∞(N) and r
for the right action. The Schwartz space C(N), also called the space of rapidly
decreasing smooth functions on N , consists of all f ∈ C∞(N) such that

νa,k(f) := sup
x∈N
|x|k|`(a)(f)(x)| <∞ for every a ∈ U(n) and every integer k = 0.

The seminorms νa,k define a nuclear Fréchet space topology on C(N) and we
have continuous inclusions C∞(N) ↪→ C(N) ↪→ L2(N) with dense images. Two
continuous norms that satisfy our conditions (i) through (iv) are equivalent (each
bounded by a multiple of the other), so they give the same Schwartz space. If
f ∈ C(N) then `(a) r(b) (f) ∈ C(N) ⊂ L2(N) for all a, b ∈ U(n). Since N is
connected, simply connected and nilpotent, the exponential map exp : n → N is
polynomial, and f ∈ C(N) if and only if its lift f1(ξ) = f(exp(ξ)) belongs to the
classical Schwartz space of the real vector space n .
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If π ∈ N̂ and f ∈ C(N) then π(f) :=
∫
N
f(x)π(x)dx is trace class and

Θπ : f 7→ traceπ(f) is a tempered distribution (distribution that extends by
continuity from C∞c to C ) on N called the distribution character of π . The point,

now, is that Plancherel measure on N̂ is concentrated on {πλ | λ ∈ t∗} , and

Theorem 1.3. Let N be a connected simply connected nilpotent Lie group that
satisfies (1.1). Then Plancherel measure for N is concentrated on {πλ | λ ∈ t∗} .
If λ ∈ t∗ , and if u and v belong to the representation space Hπλ of πλ , then the
coefficient fu,v(x) = 〈u, πν(x)v〉 satisfies

||fu,v||2L2(N/S) =
||u||2||v||2

|Pf (λ)|
. (1.4)

Recall c = 2d1+···+dmd1!d2! . . . dm! from (1.2(a)) . Then the distribution character
Θπλ of πλ satisfies

Θπλ(f) = c−1|Pf (λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N) (1.5)

where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)) , f̂1 is its
classical Fourier transform, O(λ) is the coadjoint orbit Ad ∗(N)λ = v∗ + λ , and
dνλ is the translate of normalized Lebesgue measure from v∗ to Ad ∗(N)λ . The
Plancherel Formula on N is

f(x) = c

∫
t∗

Θπλ(rxf)|Pf (λ)|dλ for f ∈ C(N). (1.6)

Definition 1.7. The representations πλ of (1.2(f)) are the stepwise square
integrable representations of N relative to the decomposition (1.1). ♦

One of the main results of [17] and [18] is that nilradicals of minimal
parabolic subgroups are stepwise square integrable. Even the simplest case, the
case of a minimal parabolic in SL(n;R), was a big improvement over earlier results
on the group of strictly upper triangular real matrices. Here we extend the results
of [17] and [18] to obtain explicit Plancherel Formulae for the minimal parabolic P
itself. This is done by construction of a Dixmier–Pukánszky operator on L2(P ),
i.e. a pseudo–differential operator that compensates lack of unimodularity on P .
The Dixmier–Pukánszky operator is explicit; it is constructed from the Pfaffian
polynomials of (1.2(d)). The construction gives a beautiful relation between the
Dixmier–Pukánszky operator of P and the Plancherel density of its nilradical.

In Section 2 we review the restricted root structure, stepwise square in-
tegrable representations, character formulae and the Plancherel (or Fourier In-
version) Formula for nilradicals of minimal parabolic subgroups. Some of the
restricted root results are discussed further in Section 7, a sort of appendix, where
we placed them because they add to, but are not needed for, the main results.

Is Section 3 we discuss the structure and action of the group M in a minimal
parabolic P = MAN . The notion of principal orbit gives a uniform description of
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the stabilizers of stepwise square integrable representations of N . We also show
triviality of a certain Mackey obstruction, leading to an explicit Plancherel Formula
for MN .

In Section 4 we work out the Dixmier–Pukánszky operator of P in terms of
the Pfaffian (which gives Plancherel density on N ) and a certain explicit “quasi–
central determinant” polynomial.

In Section 5 we apply the Mackey machine to give an explicit description
of subsets of P̂ and ÂN that carry Plancherel measure. The point here is that
the description is explicit.

Finally in Section 6 we give explicit Plancherel Formulae for the minimal
parabolic subgroups P = MAN and their exponential solvable subgroups AN .

2. Minimal Parabolics: Structure of the Nilradical

Let G be a real reductive Lie group. We recall some structural results on its
minimal parabolic subgroups, some standard and some from [18].

Fix an Iwasawa decomposition G = KAN . As usual, write k for the Lie
algebra of K , a for the Lie algebra of A , and n for the Lie algebra of N . Complete
a to a Cartan subalgebra h of g . Then h = t + a with t = h ∩ k . Now we have
root systems

• ∆(gC, hC): roots of gC relative to hC (ordinary roots), and

• ∆(g, a): roots of g relative to a (restricted roots).

• ∆0(g, a) = {γ ∈ ∆(g, a) | 2γ /∈ ∆(g, a)} (nonmultipliable restricted roots).

Sometimes we will identify a restricted root γ = α|a , α ∈ ∆(gC, hC) and α|a 6= 0,
with the set

[γ] := {α′ ∈ ∆(gC, hC) | α′|a = α|a} (2.1)

of all roots that restrict to it. Further, ∆(g, a) and ∆0(g, a) are root systems
in the usual sense. Any positive system ∆+(gC, hC) ⊂ ∆(gC, hC) defines positive
systems

• ∆+(g, a) = {α|a | α ∈ ∆+(gC, hC) and α|a 6= 0} and

• ∆+
0 (g, a) = ∆0(g, a) ∩∆+(g, a).

We can (and do) choose ∆+(g, h) so that

• n is the sum of the positive restricted root spaces and

• if α ∈ ∆(gC, hC) and α|a ∈ ∆+(g, a) then α ∈ ∆+(gC, hC).

Two roots are called strongly orthogonal if their sum and their difference
are not roots. Then they are orthogonal. We define

β1 ∈ ∆+(g, a) is a maximal positive restricted root and

βr+1 ∈ ∆+(g, a) is a maximum

among the roots of ∆+(g, a) orthogonal to all βi with i 5 r

(2.2)
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Then the βr are mutually strongly orthogonal. This is Kostant’s cascade construc-
tion. Note that each βr ∈ ∆+

0 (g, a). Also note that β1 is unique if and only if
∆(g, a) is irreducible. For 1 5 r 5 m define

∆+
1 = {α ∈ ∆+(g, a) | β1 − α ∈ ∆+(g, a)} and

∆+
r+1 = {α ∈ ∆+(g, a) \ (∆+

1 ∪ · · · ∪∆+
r ) | βr+1 − α ∈ ∆+(g, a)}.

(2.3)

Lemma 2.4. [18, Lemma 6.3] If α ∈ ∆+(g, a) then either α ∈ {β1, . . . , βm} or
α belongs to exactly one of the sets ∆+

r . In particular the Lie algebra n of N is
the vector space direct sum of its subspaces

lr = gβr +
∑

∆+
r

gα for 1 5 r 5 m (2.5)

Lemma 2.6. [18, Lemma 6.4] The set ∆+
r ∪ {βr} = {α ∈ ∆+ | α ⊥ βi for i <

r and 〈α, βr〉 > 0}. In particular, [lr, ls] ⊂ lt where t = min{r, s} . Thus n has an
increasing filtration by ideals

nr = l1 + l2 + · · ·+ lr for 1 5 r 5 m (2.7)

with a corresponding group level decomposition by normal subgroups Nr where

N = L1L2 . . . Lm with Nr = Nr−1 o Lr for 1 5 r 5 m. (2.8)

The structure of ∆+
r , and later of lr , is exhibited by a particular Weyl

group element sβr ∈ W (g, a) and its negative. Specifically,

sβr is the Weyl group reflection in βr and

σr : ∆(g, a)→ ∆(g, a) by σr(α) = −sβr(α).
(2.9)

Here σr(βs) = −βs for s 6= r , +βs if s = r . If α ∈ ∆+
r we still have σr(α) ⊥ βi for

i < r and 〈σr(α), βr〉 > 0. If σr(α) is negative then βr−σr(α) > βr contradicting
the maximality property of βr . Thus, using Lemma 2.6, σr(∆

+
r ) = ∆+

r . This
divides each ∆+

r into pairs:

Lemma 2.10. [18, Lemma 6.8] If α ∈ ∆+
r then α + σr(α) = βr . (Of course

it is possible that α = σr(α) = 1
2
βr when 1

2
βr is a root.). If α, α′ ∈ ∆+

r and
α + α′ ∈ ∆(g, a) then α + α′ = βr .

It comes out of Lemmas 2.4 and 2.6 that the decompositions of (2.3), (2.5)
and (2.7) satisfy (1.1), so Theorem 1.3 applies to nilradicals of minimal parabolic
subgroups. In other words,

Theorem 2.11. [18, Theorem 6.16] Let G be a real reductive Lie group,
G = KAN an Iwasawa decomposition, lr and nr the subalgebras of n defined
in (2.5) and (2.7), and Lr and Nr the corresponding analytic subgroups of N .
Then the Lr and Nr satisfy (1.1). In particular, Plancherel measure for N
is concentrated on {πλ | λ ∈ t∗} . If λ ∈ t∗ , and if u and v belong to the
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representation space Hπλ of πλ , then the coefficient fu,v(x) = 〈u, πλ(x)v〉 satisfies

||fu,v||2L2(N/S) =
||u||2||v||2

|Pf (λ)|
. (2.12)

The distribution character Θπλ of πλ satisfies

Θπλ(f) = c−1|Pf (λ)|−1

∫
O(λ)

f̂1(ξ)dνλ(ξ) for f ∈ C(N) (2.13)

where C(N) is the Schwartz space, f1 is the lift f1(ξ) = f(exp(ξ)) , f̂1 is its
classical Fourier transform, O(λ) is the coadjoint orbit Ad ∗(N)λ = v∗ + λ , and
dνλ is the translate of normalized Lebesgue measure from v∗ to Ad ∗(N)λ . The
Plancherel Formula on N is

f(x) = c

∫
t∗

Θπλ(rxf)|Pf (λ)|dλ for f ∈ C(N). (2.14)

3. Minimal Parabolics: M-Orbit Structure

Recall the Iwasawa decomposition G = KAN and the corresponding minimal
parabolic subgroup P = MAN where M is the centralizer of A in K . We write
0 for identity component, so P 0 = M0AN .

Lemma 3.1. Recall the Pf –nonsingular set t∗ = {λ ∈ s∗ | Pf (λ) 6= 0} of
(1.2e). Then Ad ∗(M)t∗ = t∗ . Further, if λ ∈ t∗ and c 6= 0 then cλ ∈ t∗ , in fact
Pf (cλ) = cdim(n/s)/2Pf (λ) .

Proof. All the ingredients in the formula for λ 7→ Pf (λ) are Ad ∗(M)–
equivariant, so Ad ∗(M)t∗ = t∗ . By definition the bilinear form bλ on n/s satisfies
bcλ = cbλ , so Pf (cλ) = cdim(n/s)/2Pf (λ).

Choose an M –invariant inner product (µ, ν) on s∗ . Denote s∗t = {λ ∈
s∗ | (λ, λ) = t2} , the sphere of radius t . Consider the action of M on s∗t . Recall
that two orbits Ad ∗(M)µ and Ad ∗(M)ν are of the same orbit type if the isotropy
subgroups Mµ and Mν are conjugate, and an orbit is principal if all nearby orbits
are of the same type. Since M and s∗t are compact, there are only finitely many
orbit types of M on s∗t , there is only one principal orbit type, and the union
of the principal orbits forms a dense open subset of s∗t whose complement has
codimension = 2. There are many good expositions of this material, for example
[1, Chapter 4, Section 3] for a complete treatment, [4, Part II, Chapter 3, Section
1] modulo references to [1], and [12, Cap. 5] for a more basic treatment but still
with some references to [1].

Since the action of M on s∗ commutes with dilation, the above mentioned
structural results on the st also hold on s∗ =

⋃
t≥0 s

∗
t . Define the Pf -nonsingular

principal orbit set as follows:

u∗ = {λ ∈ t∗ | Ad ∗(M)λ is a principal M -orbit on s∗}. (3.2)

Summarizing the short discussion,
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Lemma 3.3. The principal orbit set u∗ is a dense open set with complement
of codimension = 2 in s∗ . If λ ∈ u∗ and c 6= 0 then cλ ∈ u∗ with isotropy
Mcλ = Mλ .

Fix λ ∈ u∗t := u∗ ∩ s∗t , so Ad ∗(M)λ is a Pf -nonsingular principal orbit of
M on the sphere s∗t . Then Ad ∗(M0)λ is a principal orbit of M0 on s∗t . Principal
orbit isotropy subgroups of compact connected linear groups are studied in detail
in [5] so the possibilities for (M0)λ are essentially known.

Lemma 3.4. Let G be connected and linear. Then M = (exp(ia) ∩K)ZGM
0

where ZG is the center of G , and its action on a restricted root space gα has
form exp(iα(ξ))|gα = ±1 . In particular (exp(ia) ∩ K) is an elementary abelian
2-subgroup of M that meets each of its topological components.

Proof. A Cartan subgroup B ⊂ M meets every component of M . The
complex Cartan (BA)C = exp(bC) exp(aC) ⊂ GC is connected, and exp(b) and
exp(a) are connected as well, so the components of (BA) ∩ G are given by
exp(ib) exp(ia) ∩ G . As exp(ib) is split over R the components of (BA) ∩ G
are given by exp(ia) ∩ G = exp(ia) ∩ K . The Cartan involution θ of G with
fixed point set K fixes every element of K and sends every element of exp(ia)
to its inverse, so exp(ia) ∩K is an elementary abelian 2-group that meets every
component of M . The restricted root spaces gα are joint eigenspaces of a , so
every element of exp(ia) ∩K acts on each gα by a scalar multiplication ±1.

Define F to be the elementary abelian 2-subgroup exp(ia) ∩ K of M
considered in Lemma 3.4. In order to see exactly how F acts on s∗ we use a
result of Kostant applied to the centralizer of ZM(M0)A :

Lemma 3.5. [16, Theorem 8.13.3] Suppose that G is connected. Then the
adjoint representation of M on g preserves each restricted root space, say acting
by ηα on gα , and each ηα|M0 is irreducible.

Now we have the action of F on s∗ , as follows.

Proposition 3.6. The group Ad ∗(F ) acts trivially on s∗ .

Proof. Each of the strongly orthogonal roots gives us a θ -stable subalgebra
g[βr] ∼= sl(2;R) of g . It has standard basis {xr, yr, hr} where hr ∈ a and each
xr ∈ zr ⊂ s . Now a = a♦ ⊕

⊕∑
Rxr where a♦ (notation to be justified by

(5.1)) is the intersection of the kernels of the βr . As defined, ad ∗(a♦) vanishes
on
∑

Rxr . By strong orthogonality of {βr} , each ad ∗(hsC) is trivial on Rxr
for s 6= r . Further ad (exp(Chr) ∩ K) is trivial on Rxr by a glance at sl(2;R).
We have shown that Ad (F )xr = xr for each r . Since M0 is irreducible on each
zr = gβr by Lemma 3.5, and M centralizes A , now Ad (F )x = x for all x ∈ zr
and all r .

Combining Lemma 3.4 and Proposition 3.6, the action of Mλ is given by
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the action of the identity component of M :

Lemma 3.7. If λ ∈ t∗ then its M -stabilizer Mλ is given by Mλ = F · (M0)λ .

In view of Lemma 3.7, the group Mλ is specified by the work of W.–C. and
W.–Y. Hsiang [5] on the structure and classification of principal orbits of compact
connected linear groups.

Fix λ ∈ t∗ , so πλ ∈ N̂ is stepwise square integrable (Definition 1.7). Con-
sider the semidirect product group N o Mλ . We write Hλ for the representa-
tion space of πλ . The next step is to extend the representation πλ to a uni-
tary representation π†λ of N oMλ on the same representation space Hλ . By [3,
Théorème 6.1] the Mackey obstruction ε ∈ H2(Mλ;U(1)) to this extension, where
U(1) = {|z| = 1} , has order 1 or 2. But here the Mackey obstruction is trivial so
we can be more precise:

Lemma 3.8. The stepwise square integrable πλ extends to a representation π†λ
of N oMλ on the representation space of πλ .

Proof. The group M preserves each z∗r , so Mλ =
⋂
λr
Mλr where λ =

∑
λr

with λr ∈ z∗r . Recall the construction of πλ from the decomposition N = L1 . . . Lm
of (1.1) and the square integrable representations πλr of the Heisenberg (or abelian)

groups Lr from [18] . The point is that πλ1 extends to π̃λ1 ∈ L̂1L2 and then we

have πλ1+λ2 := π̃λ1⊗̂πλ2 , πλ1+λ2 extends to π̃λ1+λ2 ∈ L̂1L2L3 giving πλ1+λ2+λ3 :=
π̃λ1+λ2⊗̂πλ3 , etc. Note that we use tilde to denote extension to the next step in
the decomposition (1.1) of N .

The Fock representation of the 2n + 1 dimensional Heisenberg group H
extends to the semidirect product HoU(n) [13]; so each πλr extends to LroMλr .
We use this to modify the construction of πλ just described. We will use dagger
to denote extension from N∗ to N∗ oM∗ , prime to denote dagger together with
tilde, and double prime to denote an appropriate restriction of dagger or prime.

Let π†λ1 denote the extension of πλ1 from L1 to L1oMλ1 . Now extend π†λ1
(instead of πλ1 ), obtaining an extension π′λ1 of πλ1 from L1oMλ1 to (L1L2)oMλ1 .
It restricts to a representation π′′λ1 of (L1L2) o (Mλ1 ∩ Mλ2). We have the

extension π†λ2 of πλ2 from L2 to L2 o Mλ2 ; let π′′λ2 denote its restriction to

L2 o (Mλ1 ∩Mλ2). That gives us an extension π†λ1+λ2
:= π′′λ1⊗̂π

′′
λ2

of πλ1+λ2 from
L1L2 to (L1L2) o (Mλ1 ∩Mλ2). Continuing this way, we construct the extension
of πλ from N to N oMλ .

Remark 3.9. One can also prove Lemma 3.8 by combining the Mackey obstruc-
tions [γr] ∈ H2(Mλr ;U(1)) to extension of πλr from Nr to Nr oMλr . In effect
the cocycle γ ∈ Z2(Mλ;U(1)) whose cohomology class is the Mackey obstruction
to extension of πλ from N to N oMλ , is cohomologous to the pointwise product
of the (γr)|Mλ×Mλ

, and each [(γr)|Mλ×Mλ
] ∈ H2(Mλ;U(1)) is trivial because each

[γr] ∈ H2(Mλr ;U(1)) is trivial.
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Each λ ∈ t∗ now defines classes

E(λ) :=
{
π†λ ⊗ γ | γ ∈ M̂λ

}
and

F(λ) :=
{

IndNM
NMλ

(π†λ ⊗ γ) | π†λ ⊗ γ ∈ E(λ)
} (3.10)

of irreducible unitary representations of N o Mλ and NM . The Mackey little
group method, plus the fact that the Plancherel density on N̂ is polynomial on
s∗ , and s∗ \ u∗ has measure 0 in t∗ , gives us

Proposition 3.11. Plancherel measure for NM is concentrated on the set⋃
λ∈u∗ F(λ) of (equivalence classes of ) irreducible representations given by ηλ,γ :=

IndNM
NMλ

(π†λ ⊗ γ) with π†λ ⊗ γ ∈ E(λ) and λ ∈ u∗ . Further

ηλ,γ|N =
(

IndNM
NMλ

(π†λ ⊗ γ)
)∣∣∣

N
=

∫
M/Mλ

(dim γ) πAd ∗(m)λ d(mMλ).

In view of Lemma 3.3 there is a Borel section σ to u∗ → u∗/Ad ∗(M) which
picks out an element in each M -orbit so that M has the same isotropy subgroup
at each of those elements. In other words in each M -orbit on u∗ we measurably
choose an element λ = σ(Ad ∗(M)λ) such that those isotropy subgroups Mλ are
all the same. Let us denote

M♦: isotropy subgroup of M at σ(Ad ∗(M)λ) for every λ ∈ u∗ (3.12)

Then we can replace Mλ by M♦ , independent of λ ∈ u∗ , in Proposition 3.11. That
lets us assemble to representations of Proposition 3.11 for a Plancherel Formula,
as follows. Since M is compact, we have the Schwartz space C(NM) just as in
the discussion of C(N) between (1.2) and Theorem 1.3, except that the pullback
exp∗ C(NM) 6= C(n + m). The same applies to C(NA) and C(NAM)

Proposition 3.13. Let f ∈ C(NM) and write (fm)(n) = f(nm) = (nf)(m) for
n ∈ N and m ∈M . The Plancherel density at IndNM

NM♦
(π†λ⊗ γ) is (dim γ)|Pf (λ)|

and the Plancherel Formula for NM is

f(nm) = c

∫
u∗/Ad ∗(M)

∑
F(λ)

trace ηλ,γ(nfm) · dim(γ) · |Pf (λ)|dλ

where c = 2d1+···+dmd1!d2! . . . dm! , from (1.2), as in Theorem 1.3.

4. The Pfaffian and the Dixmier–Pukánszky Operator

Let Q be a separable locally compact group of type I. Then [9, §1] the Plancherel
Formula for Q has form

f(x) =

∫
Q̂

traceπ(D(r(x)f))dµ
Q

(π) (4.1)

where D is an invertible positive self adjoint operator on L2(Q), conjugation–
semi-invariant of weight equal to the modular function δQ , and µ is a positive
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Borel measure on the unitary dual Q̂ . The operator D is needed for the following
reason. If Q were unimodular its Plancherel Formula would be of the form f(1) =∫
Q̂

traceπ(f))dµ
Q

(π) with both sides invariant under conjugation by elements of

Q . In general, however, the left hand side f(1) is conjugation–invariant while
conjugation transforms π(f) =

∫
Q
f(x)π(x)dx , and thus the the right hand side∫

Q̂
traceπ(f))dµ

Q
(π), by the modular function. Thus the modular function has

to be somehow compensated, and that is the role of D . If Q is unimodular then
D is the identity and (4.1) reduces to the usual Plancherel Formula. The point is
that semi-invariance of D compensates any lack of unimodularity. See [9, §1] for
a detailed discussion, including a discussion of the domain of D and D1/2 .

Uniqueness of the pair (D,µ) remains unsettled, though of course D ⊗ µ
is unique (up to normalization of Haar measures), so one tries to find a “best”
choice of D . Given any such pair (D,µ) we refer to D as a Dixmier–Pukánszky

Operator on Q and to µ as the associated Plancherel measure on Q̂ .

In this section we exhibit an explicit Dixmier–Pukánszky Operator for the
minimal parabolic P = MAN and its solvable subgroup AN . Those groups
are never unimodular. Our Dixmier–Pukánszky Operator is constructed from the
Pfaffian polynomial Pf (λ) and a certain “quasi-central determinant” function on
s∗ .

Let δ denote the modular function on P = MAN . As M is compact
and Ad P (N) is unipotent on p , MN is in the kernel of δ . So δ is determined
by its values on A , where it is given by δ(exp(ξ)) = exp(trace (ad (ξ))). There
ξ = log a ∈ a .

Lemma 4.2. Let ξ ∈ a . Then 1
2
(dim lr + dim zr) ∈ Z for 1 5 r 5 m and

(i) the trace of ad (ξ) on lr is 1
2
(dim lr + dim zr)βr(ξ) ,

(ii) the trace of ad (ξ) on n and on p is 1
2

∑
r(dim lr + dim zr)βr(ξ) , and

(iii) the determinant of Ad (exp(ξ)) on n and on p is
∏

r exp(βr(ξ))
1
2

(dim lr+dim zr) .

Proof. Decompose lr = zr+vr where zr = gβr is its center and vr =
∑

α∈∆+
r
gα .

The set ∆+
r is the disjoint union of sets {α, βr − α} and (if 1

2
βr is a root)

{1
2
βr} . That proves the integrality assertion. From (2.9) and Lemma 2.10 we

have dim gα = dim gβr−α . So the trace of ad (ξ) on vr adds up to 1
2
(dim vr)βr(ξ).

On zr = gβr it is of course (dim zr)βr(ξ). That proves (i). For (ii) we take the
sum over {β1, . . . , βm} and then for (iii) we exponentiate.

Since δ = det Ad , Lemma 4.2(iii) can be formulated as

Lemma 4.3. The modular function δ = δP of P = MAN is δ(man) =∏
r exp(βr(log a))

1
2

(dim lr+dim zr) . The modular function δAN of AN is δP |AN .

We consider semi-invariance of the Pfaffian. Let ξ ∈ a and consider a
basis {xi} of vr , each element in some gα with α ∈ ∆+

r , in which bλ has matrix
consisting of 2 × 2 blocks ( 0 1

−1 0 ) down the diagonal. But −ad ∗(ξ)(λ)[xi, xj] =
λ(ad (ξ)[xi, xj]) = λ[ad (ξ)xi, xj] +λ([xi, ad (ξ)xj] = βr(ξ)λ([xi, xj]) as in the proof
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of Lemma 4.2. Now (ad (ξ)Pf )|vr(λ) = Pf |vr(−ad ∗(ξ)(λ)) = 1
2

dim vr βr(ξ)Pf |vr .
Sum over r :

Lemma 4.4. Let ξ ∈ a and a = exp(ξ) ∈ A . Then

ad (ξ)Pf =

(
1

2

∑
r

dim(lr/zr)βr(ξ)

)
Pf

and

Ad (a)Pf =

(∏
r

exp(βr(ξ))
1
2

dim(lr/dim zr)

)
Pf .

At this point it is convenient to introduce some notation and definitions.

Definition 4.5. The algebra s is the quasi-center of n . Then Dets∗(λ) :=∏
r(βr(λ))dim gβr is a polynomial function on s∗ , the quasi-center determinant.

If ξ ∈ a and a = exp(ξ) ∈ A we compute

(Ad (a)Dets∗)(λ) = Dets∗(Ad ∗(a−1)(λ))

=
∏

r
(βr(Ad (a−1)∗λ))dim gβr =

∏
r
(βr(exp(βr(ξ))λ))dim gβr .

(4.6)

Combining Lemmas 4.2 and 4.4 with (4.6) we have

Proposition 4.7. The product Pf · Dets∗ is an Ad (MAN)-semi-invariant
polynomial on s∗ of degree 1

2
(dim n + dim s) and of weight equal to the modular

function δMAN .

Our fixed decomposition n = v + s gives N = V S where V = exp(v) and
S = exp(s). Now define

D : Fourier transform of Pf ·Dets∗ , acting on MAN = MAV S by acting on S .
(4.8)

We use the fact that the definition of C(N) between (1.2) and Theorem 1.3 applies
to C(MAN):

Theorem 4.9. The operator D of (4.8) is an invertible self-adjoint differential
operator of degree 1

2
(dim n + dim s) on L2(MAN) with dense domain C(MAN) ,

and it is Ad (MAN)-semi-invariant of weight equal to the modular function δMAN .
In other words |D| is a Dixmier–Pukánszky Operator on MAN with domain equal
to the space of rapidly decreasing C∞ functions.

Proof. Since it is the Fourier transform of a real polynomial, D is a differ-
ential operator which is invertible and self-adjoint on L2(MAN). Its degree as a
differential operator is the same as that of the polynomial. Further, it has dense
domain C(MAN). Proposition 4.7 ensures that the degree is 1

2
(dim n+dim s) and

that D is Ad (MAN)–semi–invariant as asserted.



802 Wolf

5. Generic Representations

In this section we complete the description of a dense open subset of the unitary

dual of P̂ = M̂AN that carries Plancherel measure. In the next section we will
combine this with Theorem 4.9, using the framework of (4.1), to obtain explicit
Plancherel Formulae for MAN and AN .

There are two paths here. We can obtain the generic representations of P
by inducing the representations IndNM

NMλ
ηλ,γ discussed in Proposition 3.11. But

one has a cleaner final statement if he avoids that induction by stages and induces
directly from N o (MA)λ to P .

Since λ ∈ t∗ has nonzero projection on each summand z∗r of s∗ , and a ∈ A
acts by the positive real scalar exp(βr(log(a))) on zr ,

Aλ = exp({ξ ∈ a | each βr(ξ) = 0}), independent of λ ∈ t∗. (5.1)

Because of this independence, and in view of our earlier definition of
a♦ = {ξ ∈ a | each βr(ξ) = 0} ,

we define
A♦ = Aλ for any (and thus for all) λ ∈ t∗. (5.2)

Lemma 5.3. In the notation of (3.12) and (5.2), if λ ∈ σ(u∗) then the stabilizer
(MA)λ = M♦A♦ .

Proof. As λ ∈ t∗ it has expression λ =
∑
λr with 0 6= λr ∈ z∗ = gβr . Let

ξ ∈ a and m ∈ M with Ad ∗(exp(ξ)m)λ = λ . Then each Ad ∗(exp(ξ)m)λr = λr .
In an Ad ∗(M)-invariant inner product, ||Ad ∗(exp(ξ)m)λr|| = exp(βr(ξ))||λr|| so
each βr(ξ) = 0, i.e. ξ ∈ a♦ and Ad ∗(exp(ξ)m)λ = Ad ∗(m)λ . Thus m ∈M♦ and
exp(ξ) ∈ A♦ , as asserted.

Now we are ready to use the Mackey little group method. First, there is no
problem with obstructions:

Lemma 5.4. Let λ ∈ σ(u∗) and note the extension π†λ of πλ from N to NM♦
defined by Lemma 3.8. Then π†λ extends further to a unitary representation π̃λ of
NM♦A♦ on the representation space of πλ .

Proof. Since A♦ is a vector group, it retracts to a point, so H2(A♦;U(1)) =
H2(point;U(1)) = {1} . Thus the Mackey obstruction vanishes.

Let λ ∈ σ(u∗). Note that Â♦ consists of the unitary characters exp(iφ) :
a 7→ eiφ(log a) with φ ∈ a∗♦ . With that notation, the representations of P corre-
sponding to λ are the

πλ,γ,φ := IndNMA
NM♦A♦

(π̃λ ⊗ γ ⊗ exp(iφ)) where γ ∈ M̂♦ and φ ∈ a∗♦ . (5.5)

Here the action of A fixes γ because A centralizes M , and it fixes φ because A
is commutative, so

πλ,γ,φ · Ad ((ma)−1) = πAd ∗(ma)λ,γ,φ (5.6)
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Proposition 5.7. Plancherel measure for MAN is concentrated on the set of
unitary equivalence classes of representations πλ,γ,φ for λ ∈ σ(u∗) , γ ∈ M̂♦ and
φ ∈ a∗♦ . The equivalence class of πλ,γ,φ depends only on (Ad ∗(MA)λ, γ, φ) .

Representations of AN are the case γ = 1. In effect, let π′λ denote the
obvious extension π̃λ|AN of the stepwise square integrable representation πλ from
N to NA♦ where π̃λ is given by Lemma 5.4. Denote

πλ,φ = IndNA
NA♦

(π′λ ⊗ exp(iφ)) where λ ∈ u∗ and φ ∈ a∗♦. (5.8)

Then πλ,φ and πλ′,φ are equivalent if and only if λ′ ∈ Ad ∗(A)λ . We have proved

Corollary 5.9. Plancherel measure for AN is concentrated on the set {πλ,φ |
λ ∈ u∗ and φ ∈ a∗♦} of (equivalence classes of ) irreducible representations of
AN = NA described in (5.8).

Finally we describe the set Ad ∗(MA)λ of Proposition 5.7. A result of C.C.
Moore says that Ad (PC) has a Zariski open orbit on n∗

C
, so there is a finite set

of open Ad (P )-orbits on N̂ such that Plancherel measure is concentrated on the
union of those open orbits. Moore presented this and a number of related results in
a January 1972 seminar at Berkeley but he didn’t publish it. Carmona circulated
a variation on this but he also seems to have left it unpublished. Using Lemma
5.3, Moore’s result leads directly to

Lemma 5.10. The Pf -nonsingular principal orbit set u∗ is a finite union of
open Ad ∗(MA)-orbits.

Let {O1 , . . .Ov} denote the (open) Ad ∗(MA)-orbits on u∗ . Denote λi =
σ(Oi) so

Oi = Ad ∗(MA)λi and (MA)λi = M♦A♦ for 1 5 i 5 v. (5.11)

Then Proposition 5.7 becomes

Theorem 5.12. Plancherel measure for MAN is concentrated on the set (of

equivalence classes of ) unitary representations πλi,γ,φ for 1 5 i 5 v , γ ∈ M̂♦ and
φ ∈ a∗♦ .

6. Non–Unimodular Plancherel Formulae

Recall the Dixmier–Pukánsky operator D from (4.8) and Theorem 4.9. The
Plancherel Formula (or Fourier inversion formula) for MAN is

Theorem 6.1. Let P = MAN be a minimal parabolic subgroup of the real

reductive Lie group G . Given πλ,γ,φ ∈ M̂AN as described in statement (5.5),
let Θπλ,γ,φ : h 7→ traceπλ,γ,φ(h) denote its distribution character. Then Θπλ,γ,φ is
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a tempered distribution. If f ∈ C(MAN) then

f(x) = c

v∑
i=1

∑
γ∈M̂♦

∫
a∗♦

Θπλi,γ,φ
(D(r(x)f))|Pf (λi)| dim γ dφ

where c > 0 depends on normalizations of Haar measures.

Proof. We compute along the lines of the argument of [10, Theorem 2.7],
ignoring multiplicative constants that depend of normalizations of Haar measures.
From [6, Theorem 3.2], traceπλi,γ,φ(Dh)traceπλi,γ,φ(Dh)

=

∫
x∈MA/M♦A♦

δ(x)−1trace

∫
NM♦A♦

(Dh)(x−1nmax) · (πλi ⊗ γ ⊗ exp(iφ))(nma) dn dmda dx

=

∫
x∈MA/M♦A♦

trace

∫
NM♦A♦

(Dh)(nx−1max) · (πλi ⊗ γ ⊗ exp(iφ))(xnx−1ma) dn dmda dx.

Now
∫
M̂♦A♦

traceπλi,γ,φ(Dh) dim γ dφ

=

∫
M̂♦A♦

traceπλi,γ,φ(Dh) dim γ dφ

=

∫
M̂♦A♦

∫
x∈MA/M♦A♦

trace

∫
NM♦A♦

(Dh)(nx−1max)×

× (πλi ⊗ γ ⊗ exp(iφ))(xnx−1ma) dn dmda dx dim γ dφ

=

∫
x∈MA/M♦A♦

∫
M̂♦A♦

trace

∫
NM♦A♦

(Dh)(nx−1max)×

× (πλi ⊗ γ ⊗ exp(iφ)(xnx−1ma) dn dmda dim γ dφ dx

=

∫
x∈MA/M♦A♦

trace

∫
N

(Dh)(n)πλi(xnx
−1)dn dx

=

∫
x∈MA/M♦A♦

trace

∫
N

(Dh)(n)(x−1 · πλi)(n)dn dx

=

∫
x∈MA/M♦A♦

trace ((x−1 · πλi)(Dh)) dx

=

∫
x∈MA/M♦A♦

(x−1 · πλi)∗(D) trace (x−1 · πλi)(h)dx

=

∫
x∈MA/M♦A♦

(πλi)∗(x ·D) trace (x−1 · πλi)(h) dx

=

∫
x∈MA/M♦A♦

δMAN(x) trace (x−1 · πλi)(h) dx =

∫
Ad ∗(MA)λi

traceπλ(h)|Pf (λ)|dλ.

(6.2)
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Summing over the orbits Oi of Ad ∗(MA) on u∗ we now have

v∑
i=1

∑
γ∈M̂♦

∫
a∗♦

traceπλi,γ,φ(Dh) dim γ dφ =
v∑
i=1

∫
M̂♦A♦

traceπλi,γ,φ(Dh) dim γ dφ

=
v∑
i=1

∫
Oi

traceπλ(h)|Pf (λ)|dλ =

∫
u∗

traceπλ(h)|Pf (λ)|dλ = h(1N) = h(1P ) .

(6.3)
Let h denote any right translate of f . The theorem follows.

The Plancherel Theorem for NA follows similar lines. For the main com-
putation (6.2) in Theorem 6.1 we omit M and γ . That gives∫

a∗♦

traceπλ0,φ(Dh) dφ =

∫
Ad ∗(A)λ0

traceπλ(h)|Pf (λ)|dλ (6.4)

In order to go from an Ad ∗(A)λ0 in (6.4) to an integral over u∗ we use M to
parameterize the space of Ad ∗(A)-orbits on u∗ . We first note that

If λ ∈ u∗ then Ad ∗(A)λ ∩ Ad ∗(M)λ = {λ} (6.5)

because Ad ∗(A) acts on each z∗r be positive scalars and Ad ∗(M) preserves the
norm on each z∗r . Thus the space of Ad ∗(A)-orbits on u∗ is partitioned by
the space of Ad ∗(M)-orbits on u∗/Ad ∗(A). Each such Ad ∗(M)-orbit is in
fact an Ad ∗(MA)-orbit on u∗ . Recall the decomposition u∗ =

⋃
Oi where

Oi = Ad ∗(MA)λi with λi = σ(Ad ∗(M)λi). Define Si = Ad ∗(M)λi , so u∗ =⋃
i Ad ∗(A)Si . Now

Proposition 6.6. Plancherel measure for NA is concentrated on the equiva-
lence classes of representations πλ,φ = IndNA

NA♦
(π′λ ⊗ exp(iφ)) where λ ∈ Si :=

Ad ∗(M)λi (1 5 i 5 v) , π′λ is the extension of πλ from N to NA� and φ ∈ a∗� .
Representations πλ,φ and πλ′,φ′ are equivalent if and only if λ′ ∈ Ad ∗(A)λ and
φ′ = φ . Further, πλ,φ|N =

∫
a∈A/A♦

πAd ∗(a)λda .

Now we sum both sides of (6.4) as follows.∑
i

∫
λ′∈Si

∫
a∗♦

traceπλ′,φ(Dh) dφ dλ′ =
∑
i

∫
Oi

traceπλ(h)|Pf (λ)|dλ

=

∫
u∗

traceπλ(h)|Pf (λ)|dλ = h(1N) = h(1AN).

(6.7)

Again taking h = r(x)f we have

Theorem 6.8. Let P = MAN be a minimal parabolic subgroup of the real
reductive Lie group G . Given πλ,φ ∈ ÂN as described in Proposition 6.6 let
Θπλ,φ : h 7→ traceπλ,φ(h) denote its distribution character. Then Θπλ,φ is a
tempered distribution. If f ∈ C(AN) then

f(x) = c

v∑
i=1

∫
λ∈Si

∫
a∗♦

traceπλ,φ(D(r(x)f))|Pf (λ)|dλdφ.
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where c = 2d1+···+dmd1!d2! . . . dm! , from (1.2), as in Theorem 1.3 and Proposition
3.13.

7. Remark on Strongly Orthogonal Restricted Roots

The goal of this paper was to extend our earlier result, Theorem 2.11, from nilradi-
cals of minimal parabolic subgroups to the minimal parabolics themselves. In part
we needed to extend some results of Kostant ([7], [8]) on strongly orthogonal roots
from Borel subalgebras of complex semisimple Lie algebras to minimal parabolic
subalgebras of real semisimple algebras. But some of the technical results in ([7],
[8]), which we didn’t use but are of strong independent interest, also extend. We
use the notation of Section 2.

Lemma 7.1. ∆+
r = {α ∈ ∆(g, a) | α ⊥ βi for i < r and 〈α, βr〉 > 0} .

Proof. In view of (2.3) we need only show that if α ∈ −∆+(g, a) and α ⊥ βi
for i < r then 〈α, βr〉 5 0. But if that fails, so 〈α, βr〉 > 0, then βr − α is a root
greater than βr and ⊥ βi for i < r , which contradicts the construction (2.2) of
the cascade of strongly orthogonal roots βj .

Proposition 7.2. The composition sβ1sβ2 . . . sβr sends (∆+
1 ∪ · · · ∪ ∆+

r ) to
−(∆+

1 ∪ · · · ∪ ∆+
r ) . In particular, the longest element of the restricted Weyl

group W = W (g, a,∆+) , defined by w0(∆+(g, a)) = −∆+(g, a) , is given by
w0 = sβ1sβ2 . . . sβm .

Proof. This is an induction on r . For r = 1 the statement is in the discussion
immediately preceding Lemma 2.10. Now suppose that sβ1sβ2 . . . sβr−1 sends (∆+

1 ∪
· · · ∪ ∆+

r−1) to its negative. Since sβr(βi) = βi for i < r , Lemma 7.1 shows that
sβr preserves (∆+

1 ∪ · · · ∪ ∆+
r−1), so sβ1sβ2 . . . sβr sends (∆+

1 ∪ · · · ∪ ∆+
r−1) to

its negative. But Lemma 7.1 also shows that sβ1sβ2 . . . sβr−1 preserves ∆+
r , and

the discussion just before Lemma 2.10 shows that sβr sends ∆+
r to its negative.

This completes the induction. In view of Lemma 2.4, the case r = m says that
sβ1sβ2 . . . sβm∆+(g, a) = −∆+(g, a).

Corollary 7.3. Let ν ∈ a∗ be the highest weight of an irreducible finite
dimensional representation τν of g , so the dual representation τ ∗ν has highest

weight ν∗ := −w0(ν) . Then ν + ν∗ =
∑ 2〈ν,βi〉
〈βi,βi〉βi , integral linear combination of

β1, . . . , βm .

Proof. Write (α, γ) = 2〈α,γ〉
〈γ,γ〉 . Compute sβ1(ν) = ν−(ν, β1)β1 , then sβ2sβ1(ν) =

ν − (ν, β1)β1 − (ν, β2)β2 , continuing on to sβmsβm−1 . . . sβ1(ν) = ν −
∑

(ν, βi)βi .
Using the last statement of Proposition 7.2 now ν + ν∗ = ν − w0(ν) =

∑
(ν, βi)βi

as asserted.
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