
Münster J. of Math. 4 (2011), 1–28 Münster Journal of Mathematics

urn:nbn:de:hbz:6-32449575202 c© Münster J. of Math. 2011

Branching of representations to symmetric

subgroups

Michael G. Eastwood and Joseph A. Wolf

(Communicated by Linus Kramer)

Abstract. Let g be the Lie algebra of a compact Lie group and let θ be any automorphism
of g. Let k denote the fixed point subalgebra gθ . In this paper we present LiE programs
that, for any finite dimensional complex representation π of g, give the explicit branching
π|k of π on k. Cases of special interest include the cases where θ has order 2 (corresponding
to compact Riemannian symmetric spaces G/K), where θ has order 3 (corresponding to
compact nearly-Kaehler homogeneous spaces G/K), where θ has order 5 (which include the
fascinating 5-symmetric space E8/A4A4), and the cases where k is the centralizer of a toral
subalgebra of g.

1. Introduction

There are many situations where one wants to see the explicit branching
of a particular representation from the Lie algebra g of a compact Lie group
to a Lie subalgebra k. In many cases the situation corresponds to a compact
homogeneous space G/K of some geometric interest, such as the cases where
G/K is a Riemannian symmetric space, a nearly-Kaehler manifold, or the
compact group realization of a complex flag manifold. Here we follow the
standard convention that G has Lie algebra g and K has Lie algebra k. Most
cases of geometric interest have the interesting property that k is the fixed
point set of an automorphism θ of g. In essentially all cases one can compute
the branching by hand, but the time and effort involved may be extreme.
This situation is greatly ameliorated by use of the public domain computer
program LiE [9]. In this paper we produce the LiE routines that carry out the
branching of representations from g to k explicitly when k is the fixed point set
of an automorphism θ of g.

MGE: Research supported by the Australian Research Council and by hospitality from
the University of California, Berkeley.

JAW: Research partially supported by NSF Grant DMS 99-88643, by the Australian

Research Council, and by hospitality from the University of Adelaide.

2 Michael G. Eastwood and Joseph A. Wolf

One might expect the built-in branch routine of LiE to do the job for us
without any additional programming. One problem is that LiE reorders the
simple roots of k to put them in the Bourbaki order of k, not of g. This makes
iteration of branching very difficult and causes serious problems for identifying
the restriction in cases where there is a symmetry of the Dynkin diagram
of k. That problem is exacerbated when one iterates restrictions. Worse,
and this is crucial for many geometric applications, on each summand of the
restricted representation LiE renormalizes the restriction to the center of k in a
complicated manner. This causes serious problems for geometric and analytic
applications where negativity of vector bundles is needed and is controlled by
restriction to the center of k. Another problem is that the LiE database of
restriction matrices is limited to rank ≦ 8, and there it has gaps. Our LiE
routines specifically address and solve those problems.

We developed many of these LiE routines for use in our work [5] on the
range of the double fibration transform [6, Chap. 14], where we need explicit
information on branching from the Levi component of a parabolic subgroup
to its intersection with a maximal compact subgroup. These LiE programs
are based on structural information on Lie algebras and automorphisms to be
found in [2], [10], [11], [7] and [8].

In all cases the LiE routines are written so that one can copy and paste
them from a pdf of this paper directly into an ascii file that can then be read
by the LiE program.

We necessarily start out by describing the use of the LiE program and how
its use varies with the properties of (g, θ). Thus in Section 2 we indicate
root orderings and their role in computing LiE’s restriction matrix. Then in
Section 2A we reduce questions of branching to the cases where g is simple
and k is a maximal θ-stable subalgebra of g, where there are three essentially
different situations. The case where g is simple and rank k < rankg is described
in Section 2B. It relies on information from [10], [11] and [7]. The case where g
is simple, rank k = rankg and k is not semisimple, is the subject of Section 2C.
It relies on information from [2], [7], and the standard structure theory of
parabolic subgroups. Then the case where g is simple, rank k = rank g and k is
semisimple, is indicated in Section 2D. This is the most delicate case, and it
depends on methods from [2], [7] and [8].

In Section 3 we list all cases where g is simple, k is θ-maximal and rank k <
rank g. For each of them we describe how to find the restriction matrix and we
give the listing of a LiE program that computes branching from g to k. The
programs are (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8). In all but
two of these, θ2 = 1 so G/K is a Riemannian symmetric space, and in those
two we have θ3 = 1.

In Section 4 we discuss the LiE programs for the cases where g is simple,
rank k = rank g and k is not semisimple. Those essentially are the cases where g
is simple and k is the centralizer of a toral subalgebra, where the LiE programs
are described in Section 2C.

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 3

Section 5 gives the LiE branching programs for the cases where g is simple,
θ2 = 1 and rank k = rankg. The programs (5.1), (5.2) and (5.3) apply when
g is classical. There one has no surprises on the root orders, but when g

is exceptional the LiE program scrambles the root order going from g to k.
In (5.4), (5.5), (5.6), (5.12), (5.13) and (5.14) this is fairly straightforward,
as there is not much flexibility for the location of k inside g. However, in
applications [5] we need to keep track of the various simple roots, and we must
deal with the fact that there are three combinatorially distinct A1A5’s in E6

and two essentially distinct A1D6’s in E7. This results in more programs than
one might expect, specifically in (5.7), (5.8), (5.9), (5.10) and (5.11).

Section 6 completes the results of Section 5, providing the LiE routines for
the seven remaining cases, those where g is simple, θ3 = 1 or θ5 = 1, and
rank k = rankg. These routines are (6.1), (6.2), (6.3), (6.4) (6.5), (6.6) and
(6.7). There, as in the exceptional group cases of Section 5, we label the simple
roots of k to minimize any departure from the root ordering of g.

As indicated in Section 2A, this completes the analysis of branching of finite
dimensional irreducible representations from the Lie algebra g of a compact
Lie group to the fixed point set k of any automorphism θ of g.

2. Restriction Matrices and Branching in LiE

All our LiE routines are given by files with names of the form branch X Y.lie
where X is the LiE designation of the type of g, e.g. E6, and Y is the LiE
designation of the type of k, e.g. F4. They are called within the LiE program
by first reading in the file, (> read branch X Y.lie) and then giving the
command (> branch X Y(v)) where v = [v1, . . . , vn] represents the highest
weight

∑

viξi of an irreducible representation π of g to be branched on k. Here
the ξi are the fundamental simple highest weights. Note that this depends on
the ordering of the simple roots ψi. LiE uses (and therefore we use) Bourbaki
order [3], given as follows on the Dynkin diagrams.

c

ψ1

c

ψ2

q q q c

ψℓ

(type Aℓ , ℓ ≧ 1)

c

ψ1

c

ψ2

q q q c

ψℓ−1

〉 c

ψℓ

(type Bℓ , ℓ ≧ 2)

c

ψ1

c

ψ2

q q q c

ψℓ−1

〈 c

ψℓ

(type Cℓ , ℓ ≧ 3)

c

ψ1

c

ψ2

q q q c

ψℓ−2

H
H
H c

ψℓ−1

�
�
�

c

ψℓ

(type Dℓ , ℓ ≧ 4)

c

ψ1

〈 c

ψ2

(type G2)

Münster Journal of Mathematics Vol. 4 (2011), 1–28

4 Michael G. Eastwood and Joseph A. Wolf

c

ψ1

c

ψ2

〉 c

ψ3

c

ψ4

(type F4)

c
ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c ψ2

(type E6)

c
ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

c ψ2

(type E7)

c
ψ1

c
ψ3

c
ψ4

c
ψ5

c
ψ6

c
ψ7

c
ψ8

c ψ2

(type E8)

where, if there are two root lengths, the arrow points from the long roots to
the short roots.

If k is a subalgebra of g then the LiE program computes branching of rep-
resentations by use of a “restriction matrix”. This is the matrix whose rows
are the restrictions, from a Cartan subalgebra t of g to a Cartan subalgebra
s ⊂ t of k, of the fundamental simple weights of g as linear combinations of
the fundamental simple weights of k. Obviously this depends on the relation
between our choices of simple root systems for g and k.

2A. Reduction to the cases where g is simple and k is θ-maximal.
We start with the Lie algebra g of a compact connected Lie group G and
an automorphism θ of g. The fixed point algebra is k = gθ, and K is the
corresponding analytic subgroup of G. We start also with an irreducible finite
dimensional representation π of g. We want to describe π|k explicitly.

We indicate how to reduce our branching questions to the case where g is
simple and k = gθ is maximal among the θ-stable subalgebras of g. That done,
we have three essentially different possibilities. The methods appropriate to
those three situations are addressed in Sections 2B, 2C and 2D below, and
carried out completely in the remainder of this paper.

Our branching procedures all use the LiE program. We give listings of the
relevant LiE routines, and when the programming aspects are not so obvious
we give an exposition of the mathematics behind our branching routines.

Write g = g′ ⊕ z where g′ is semisimple and z is the center of g. Each
summand is θ-stable, so k = (k ∩ g′) ⊕ (k ∩ z). Also π = π′ ⊠ χ, exterior
tensor product, where π′ represents g′ and χ is a 1-dimensional representation
of z. Now π|k = (π′|k∩g′) ⊠ (χ|k∩z) and evaluation of the latter factor is just
restriction of a linear functional to a linear subspace. Thus we need only worry
about computing π′|k∩g′ . That is the first reduction: it suffices to consider the
case where g is semisimple.

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 5

Decompose g as a direct sum of simple ideals. Then θ gives a permutation
on that set of ideals, and as such it is a product of disjoint cycles. In other
words, we have a decomposition g = h1 ⊕ · · · ⊕ hr where θ preserves each
hi and induces a cyclic permutation on its simple direct summands. Now
k = gθ = hθ1 ⊕ · · ·⊕ hθr . That is the second reduction: it suffices to consider the
case where θ induces a cyclic permutation on the simple ideals of g.

Now we have reduced to the case g = g1⊕ · · ·⊕ gm where the gi are simple,
θ(gi−1) = gi for 1 < i ≦ m, and θ(gm) = g1. We interpret the θ : gi−1

∼= gi as
identifications. That done,

(2.1)
g =g1 ⊕ · · · ⊕ g1 (m summands)

where θ(ξ1, . . . , ξm) = (γ(ξm), ξ1, . . . , ξm−1) for ξi ∈ g1.

Here γ is an automorphism on g1. Now we have

(2.2) θm(ξ1, . . . , ξm) = (γ(ξ1), . . . , γ(ξm)).

Thus k = gθ = (gγ1 ⊕ · · · ⊕ g
γ
1)
θ where there are m summands g

γ
1 . Denote

k1 = g
γ
1 . From (2.1) and (2.2) we have

(2.3) k = gθ = {(ξ1, . . . , ξ1) | ξ1 ∈ k1 = g
γ
1} = diag k1 .

Now it suffices to consider the case where g is simple.
We address the programming aspects. Suppose that we are given an irre-

ducible representation π of g = g1 ⊕ · · · ⊕ g1 (m summands). Then π is the
exterior tensor product π1 ⊠ · · ·⊠ πm of irreducible representation πi of g1. In
view of (2.3), π|k is the interior tensor product of the restrictions of the πi to
the k1 = g

γ
1 . We can do this in two stages. First we compute the restrictions

πi|k1 , which only involves cases where we branch from a simple Lie algebra, and
then we decompose the tensor product. In the latter setting we have reduced
to the case where γ = 1 but gγ1 may no longer be simple. Still, gθ decomposes
under the action of θ in the setting of a cycle of simple ideals. This is the third
reduction: the branching problem is reduced to the case where g = g1⊕· · ·⊕g1,
sum of m simple ideals, and θ acts by θ(ξ1, . . . , ξm) = (ξm, ξ1, . . . , ξm−1). In
this case π = π1 ⊗ · · · ⊗ πm and k is the diagonal diag g1 in g.

We have reduced the case of branching from nonsimple g to two parts:
branching from simple proper subalgebras of g and decomposing tensor prod-
ucts of irreducible representations of g. The latter is done in LiE as follows.
Let v be a matrix of m rows, each row v[i] a vector of length equal to the rank
n of g1, where the row v[i] = [v[i, 1], ..., v[i, n]] describes the highest weight
λi =

∑

j v[i, j]ξj of πi in terms of the fundamental simple weights ξj . If m = 2
and the default is set to the Cartan type of g1 then we can use LiE’s built-in
function

tensor(v[2],v[1])

for the tensor product decomposition. If m > 2 we do this recursively, but we
must first convert the v[i] to polynomials in the LiE sense,

w = null(m,n); for i = 1 to m do w[i] = tensor(v[i],null(n)) od

and then we can issue the LiE command

Münster Journal of Mathematics Vol. 4 (2011), 1–28

6 Michael G. Eastwood and Joseph A. Wolf

w = w[1]; for i = 2 to m do w = tensor(w[i],w) od

Here is a general LiE routine to systematize this. It is called in LiE by
branch diag(v,g) where g is the Lie type of a simple Lie algebra such as
A3, C7, G2, F4 or E8, and where v is a matrix of nonnegative integers whose
rows have length rank g representing highest weights of the representations of
g to be tensored together.

(2.4)

file branch_diag.lie

usage: branch_diag(v,g) where g is a simple Lie algebra type

(An, ..., E8) and v is a matrix of rank g columns, whose rows

specify the highest weights of reps π_i of g; It returns

the (interior) tensor product of the π_i.

branch_diag(mat v; grp g) = setdefault(g);

loc u = tensor(null(Lie_rank),null(Lie_rank));

for r row(v) do u = tensor(u,tensor(r,null(Lie_rank))) od;

print("the branching from product of "+n_rows(v)+" copies of "

+Lie_group(Lie_code[1],Lie_code[2])+" to the diagonal is"); u

2B. Case g simple and rank k < rank g. Suppose first that g is simple
and rank k < rankg. Choose respective Cartan subalgebras s ⊂ t. Then there
is a simple root system Ψ = {ψ1, . . . , ψn} for (g, t) such that the restrictions
ψ1|s, . . . ψn|s form a simple root system Φ = {ϕ1, . . . , ϕr} for k. See [10]. In
that case we have a root restriction matrix res rt whose jth row is given by
res rt[j] = [mj,1, . . . ,mj,r] where ψj |s =

∑

kmj,kϕk. LiE however requires
the corresponding restriction matrix of fundamental simple weights, and can
compute it from res rt as

(2.5) res wt = i Cartan(g)*res rt*Cartan(k)/det Cartan(g)

where i Cartan(g)/det Cartan(g) is the inverse of the Cartan matrix of g
using Ψ and Cartan(k) is the Cartan matrix of k using Φ.

Here is an example. Let g = su(7) and k = so(7). The Dynkin diagram of k
is obtained by folding that of g,

c
ψ1

c
ψ2

c
ψ3

c

ψ6

c

ψ5

c

ψ4

 c
ϕ1

c
ϕ2

c〉
ϕ3

In other words, the simple root restrictions are ψ1 7→ ϕ1, ψ2 7→ ϕ2, ψ3 7→ ϕ3,
ψ4 7→ ϕ3, ψ5 7→ ϕ3 and ψ6 7→ ϕ1. Thus

res rt =

1 0 0
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0

Now (2.5) gives

res wt =

1 0 0
0 1 0
0 0 2
0 0 2
0 1 0
1 0 0

 .

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 7

If the LiE default group is set to A6 for su(7) then branching of the adjoint rep-
resentation of su(7) on so(7) is given by branch([1,0,0,0,0,1],B3,res wt),
resulting in 1X[0,1,0] +1X[2,0,0].

2C. Case g simple, rank k = rank g and k is not semisimple. Suppose
that g is simple and k is of equal rank but is not semisimple. Recall that
k is θ-maximal in the sense that it is maximal among the θ-stable proper
subalgebras of g. It follows that k is the centralizer of its center, so it is a
compact real form of the reductive (Levi) component of a parabolic subalgebra
of gC. We remark that the centralizer of a toral subalgebra e ⊂ t of g is always
the fixed point of an automorphism θ ∈ Ad(exp(e)), for example θ = Ad(t)
where the powers of t form a dense subgroup of the torus exp(e). Now g has
a simple root system Ψ = {ψ1, . . . , ψn} such that some subset Φ ⊂ Ψ is a
simple root system for k. We use the notation of Baston and Eastwood [1]
to indicate these Levi components, i.e. to indicate these centralizers in g of
subtori of its Cartan subalgebra. Thus if ψ ∈ Ψ \ Φ we replace the circle
◦ for ψ by a cross ×. We refer to this as the diagram of the corresponding
parabolic subalgebra qΦ of gC, the corresponding parabolic subgroup QΦ of
GC, and our algebra k = qΦ ∩ g which is a compact real form of the Levi
component of qΦ. For example, the parabolic subalgebra qΦ of sl(n + 1;C)
that corresponds to the complex projective space Pn(C) = SL(n + 1;C)/QΦ

is given by Ψ = {ψ1, . . . , ψn} and Φ = {ψ1, . . . , ψn−1}, so it has diagram
c c q q q c ×, and the parabolic subalgebra for the Grassmannian

of incident point, hyperplane pairs in Pn(C) is given by Φ = {ψ2, . . . , ψn−1}
and has diagram × c q q q c ×. These correspond to the cases

k = u(n) ⊂ su(n+ 1) = g and

k = {x ∈ u(1)⊕ u(n− 1)⊕ u(1) | tracex = 0} ⊂ su(n+ 1) = g.

Suppose that Φ consists of all but one element γ = ψi of Ψ, in other words that
qΦ is a maximal parabolic subalgebra of gC. That is the case where there is only
one × on the diagram of qΦ. Then there is a simple LiE routine (from the LiE
manual [9]) that describes branching of representations from g to k = qΦ ∩ g:

(2.6)

file Levi_branch.lie

Levi_mat(int i) = fundam(id(Lie_rank) - i)

Levi_type(int i) = Cartan_type(Levi_mat(i))

Levi_diagram(int i) = diagram(Levi_type(i))

Levi_res_mat(int i) = res_mat(Levi_mat(i))

Levi_branch(vec v; int i) = loc m = Levi_mat(i);

r = res_mat(m);

branch(v, Cartan_type(m), r)

To use it, say with g = E7 and k = E6T1, do read(Levi branch.lie), then
setdefault(E7), then diagram in LiE to see that γ = ψ7, do v = [v 1, v 2,

v 3, v 4, v 5, v 6, v 7] for the highest weight
∑

viξi of π, and compute
the restriction by Levi branch(v,7). The result is a sum of vectors with

Münster Journal of Mathematics Vol. 4 (2011), 1–28

8 Michael G. Eastwood and Joseph A. Wolf

multiplicities, e.g.

1X[0, 0, 0, 0, 0, 2,−6] + 2X[0, 0, 0, 0, 0, 2,−4] + 4X[0, 0, 0, 0, 0, 2,−2] + . . .

where the last entries (-6, -4, -2) refer to the central torus. For the meaning
of the others do Levi diagram(7) in order to compare the root orderings (in
the LiE program) for g and k.

Suppose next that Φ consists of all but two elements ψi and ψj of Ψ, in other
words that there are two ×’s on the diagram of qΦ. We modify the routine
(2.6) to accommodate this. Here it is important that i > j so that we remove
rows i and j from a matrix by removing the ith and then the jth of that.

(2.7)

file Levi_branch2.lie

Levi_mat(int i, j) = fundam((id(Lie_rank) - i) - j)

Levi_type(int i, j) = Cartan_type(Levi_mat(i,j))

Levi_diagram(int i, j) = diagram(Levi_type(i,j))

Levi_res_mat(int i, j) = res_mat(Levi_mat(i,j))

Levi_branch2(vec v; int i, j) = loc m = Levi_mat(i,j);

r = res_mat(m);

branch(v, Cartan_type(m), r)

Similarly if Φ consists of all but three elements ψi, ψj and ψk of Ψ, i > j > k,

(2.8)

file Levi_branch3.lie

Levi_mat(int i, j, k) = fundam(((id(Lie_rank) - i) - j) - k)

Levi_type(int i, j, k) = Cartan_type(Levi_mat(i,j,k))

Levi_diagram(int i, j, k) = diagram(Levi_type(i,j,k))

Levi_res_mat(int i, j, k) = res_mat(Levi_mat(i,j,k))

Levi_branch3(vec v; int i, j, k) = loc m = Levi_mat(i,j,k);

r = res_mat(m);

branch(v, Cartan_type(m), r)

At this point the pattern is clear. For example, try

read Levi_branch3.lie

setdefault(E8)

Levi_branch3([1,0,0,0,0,0,0,1],8,6,4)

The first five entries in each resulting 8-tuple give the branching on the semisim-
ple part A2A1A1A1 of k = qΨ\{ψ8,ψ6,ψ4}, but with some roots permuted. To
see the permutation look at the restriction matrix

Levi res mat(int 8, 6, 4)

and remove rows 8, 6 and 4, and remove the last three columns. In LiE this
can be implemented as

((((((Levi_res_mat(8, 6, 4) - 8) - 6) - 4) -8) -7) -6)

In this way the Levi branch LiE routines give the restriction to the semisimple
part of k.

Of course, these routines also give the action of the center of k on each
irreducible summand but, unfortunately, this is implemented in a rather ad

hoc fashion. We now explain how to specify the central action in a more
systematic and useful manner. At the same time, we avoid having to deal

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 9

with the permutations introduced by the programs Levi_branch, as above.
The problems with these programs can be illustrated with the following simple
examples. With setdefault(F4) in place we have LiE calculate the following
matrices.

(2.9)

i_Cartan Levi_res_mat(3) Levi_res_mat(4) Levi_res_mat(4,3)

[[2,3,4,2]

,[3,6,8,4]

,[2,4,6,3]

,[1,2,3,2]

]

[[0,1,0,4]

,[1,0,0,8]

,[0,0,0,6]

,[0,0,1,3]

]

[[1,0,0,2]

,[0,1,0,4]

,[0,0,1,3]

,[0,0,0,2]

]

[[0,1,2,0]

,[1,0,4,0]

,[0,0,3,0]

,[0,0,0,1]

]

In this particular case, the matrices Levi_res_mat(i) are easy to understand.
The first three columns specify a permutation of the uncrossed nodes and the
last column is the ith column of the inverse Cartan matrix i_Cartan. It is easy
to check that the element of the Cartan subalgebra t ⊂ g defined by the ith

column of the inverse Cartan matrix with respect to the basis of fundamental
weights is in the center of the corresponding Levi subalgebra k. (Indeed, this is
minus the so-called ‘grading element’ of the corresponding maximal parabolic
subalgebra [4].) Thus, the restriction matrix specifies a permutation of the
uncrossed nodes and a particular element of the center. Here is the branching
of the adjoint representation given by Levi_branch([1,0,0,0],3).

[0, 1, 0, 4]⊕ [0, 0, 1, 3]⊕ [1, 0, 2, 2]⊕ [0, 1, 1, 1]

⊕
(

[0, 0, 2, 0]⊕ [1, 1, 0, 0]⊕ [0, 0, 0, 0]
)

⊕ [1, 0, 1,−1]⊕ [0, 1, 2,−2]⊕ [0, 0, 1,−3]⊕ [1, 0, 0,−4],

(where the ordering is given by the value of the grading element taken from [4]
from −4 to 4, bearing in mind that this is minus the value naturally provided
by LiE).

g = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 ⊕ g4

= [0, 1, 0, 4]⊕ [0, 0, 1, 3]⊕ · · · ⊕ [1, 0, 0,−4]

(and this is exactly the realization of g as the 4-graded Lie algebra correspond-
ing to the parabolic subalgebra qΦ = g0 ⊕ · · · ⊕ g4 as in [4, Theorem 3.2.1]).

The restriction matrix Levi_res_mat(4,3) in (2.9) is more difficult to un-
derstand. Certainly, we could use

[[0,1,4,2]

,[1,0,8,4]

,[0,0,6,3]

,[0,0,3,2]

]

as a more easily understandable restriction matrix. It is obtained by using the
jth and ith columns of i_Cartan to replace the last two columns of r, a change
that is easily implemented in LiE by adding

for k = 1 to Lie_rank do r[k,Lie_rank-1] = i_Cartan[k,j] od;

for k = 1 to Lie_rank do r[k,Lie_rank] = i_Cartan[k,i] od;

Münster Journal of Mathematics Vol. 4 (2011), 1–28

10 Michael G. Eastwood and Joseph A. Wolf

as the penultimate two lines of Levi_branch2.lie. In comparison with (2.9),
the last two columns of Levi_res_mat(4,3) are some linear combination of
the appropriate columns of the inverse Cartan matrix. Moreover, the case
g = F4 is deceptively simple because its Cartan matrix has unit determinant.
In general, because LiE is restricted to integer arithmetic, it is only reasonable
to use the appropriate columns from i_Cartan, as above. In particular, the
grading element will not be simply minus the sum of these columns but, in
addition, one must divide by det_Cartan. Although the grading element takes
on integral values on the adjoint representation (from −k to k where g is |k|-
graded by the parabolic subalgebra qΦ), for a general irreducible representation
its values will be rational with det_Cartan as denominator. In any case,
the raw instructions Levi_res_mat(i,j) and Levi_res_mat(i,j,k) produce
rather bizarre changes of basis from the more natural normalization provided
by the inverse Cartan matrix and even Levi_res_mat(i) is better modified
by

for j = 1 to Lie_rank do r[j,Lie_rank] = i_Cartan[j,i] od;

to avoid spurious factors.
For many purposes, however, it is better to write all weights as linear com-

binations of the fundamental weights of (g, t) and, following [1], attach the
resulting coefficients to the corresponding nodes of the Dynkin diagram. In

our example, the adjoint representation a a a a〉1 0 0 0 decomposes as

(2.10)
a a × a〉1 0 0 0 ⊕ a a × a〉0 0 0 1 ⊕ a a × a〉0 1 −2 2 ⊕ a a × a〉1 0 −1 1 ⊕

a a × a〉0 0 −1 2

⊕
a a × a〉1 1 −2 0

⊕
a a × a〉0 0 0 0

⊕ a a × a〉0 1 −2 1 ⊕ a a × a〉1 0 −2 2 ⊕ a a × a〉0 0 −1 1 ⊕ a a × a〉0 1 −2 0 .

The conversion between these two conventions is the definition of the restric-
tion matrix. Therefore, no matter what restriction matrix is used, to convert
back to the conventions of [1], one simply needs to invert the restriction matrix
and apply this inverse matrix by right multiplication to each term obtained
from branch(v, Cartan_type(m), r). Since LiE allows only integer multi-
plication, inverting a matrix with integer entries requires some care. In the
following program, the restriction matrix r is inverted by first extracting from
it a permutation matrix p, noting that permutation matrices are orthogonal,
and forming (*p)*r. The result necessarily has the form

1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

... ∗
0 0 · · · 1 ∗
0 0 0 0 ∗

,

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 11

which is inverted by a dint of an explicit formula.

(2.11)

file Levi_branch_improved.lie

Levi_mat(int i) = fundam(id(Lie_rank) - i)

Levi_type(int i) = Cartan_type(Levi_mat(i))

Levi_diagram(int i) = diagram(Levi_type(i))

Levi_res_mat(int i) = res_mat(Levi_mat(i))

div(pol p;int k) = loc l = 0X(null(n_vars(p)));

for i=1 to length(p) do l = l+coef(p,i)X(expon(p,i)/k) od; l

Levi_branch(vec v; int i) = loc m = Levi_mat(i);

loc r = res_mat(m); loc p = r;

for j = 1 to Lie_rank do p[j,Lie_rank] = 0 od;

p[i,Lie_rank] = 1;

loc q = (*p)*r; loc det_q = q[Lie_rank,Lie_rank];

loc qq = q;

for j = 1 to Lie_rank do qq[j,Lie_rank] = -q[j,Lie_rank] od;

qq[Lie_rank,Lie_rank] = 1;

loc s = null(Lie_rank,Lie_rank);

for j = 1 to Lie_rank do s[j,j] = det_q od;

s[Lie_rank,Lie_rank] = 1; loc i_q = qq*s;

loc b = branch(v, Cartan_type(m), r); loc x = b*i_q*(*p);

div(x,det_q)

The program is used as before but the result is expressed using the diagram-
matic conventions of [1]. For example,

read Levi_branch_improved.lie

setdefault(F4)

Levi_branch([1,0,0,0],3)

gives

1X[0,0,-1,1] +1X[0,0,-1,2] +1X[0,0, 0,0] +1X[0,0, 0,1] +

1X[0,1,-2,0] +1X[0,1,-2,1] +1X[0,1,-2,2] +1X[1,0,-2,2] +

1X[1,0,-1,1] +1X[1,0, 0,0] +1X[1,1,-2,0]

as in (2.10) (but devoid of the convenient ordering there. The ordering of (2.10)
is essential when the action of the full parabolic qΦ is considered rather than
just its Levi factor. Representations of qΦ are generally filtered. For example,
the tail of (2.10),

c c × c〉
0 1 −2 1

⊕ c c × c〉
1 0 −2 2

⊕ c c × c〉
0 0 −1 1

⊕ c c × c〉
0 1 −2 0

is interpreted in [1, p. 135] as inducing the cotangent bundle on the corre-
sponding generalized flag manifold.).

Münster Journal of Mathematics Vol. 4 (2011), 1–28

12 Michael G. Eastwood and Joseph A. Wolf

Levi_branch2.lie is similarly improved

(2.12)

file Levi_branch2_improved.lie

Levi_mat(int i, j) = fundam((id(Lie_rank) - i) - j)

Levi_type(int i, j) = Cartan_type(Levi_mat(i,j))

Levi_diagram(int i, j) = diagram(Levi_type(i,j))

Levi_res_mat(int i, j) = res_mat(Levi_mat(i,j))

div(pol p;int k) = loc l = 0X(null(n_vars(p)));

for i=1 to length(p) do l = l+coef(p,i)X(expon(p,i)/k) od; l

Levi_branch2(vec v; int i, j) = loc m = Levi_mat(i,j);

loc r = res_mat(m); loc p = r;

for k = 1 to Lie_rank do p[k,Lie_rank] = 0 od;

p[i,Lie_rank] = 1;

for k = 1 to Lie_rank do p[k,Lie_rank-1] = 0 od;

p[j,Lie_rank-1] = 1;

loc q = (*p)*r;

loc det_q = q[Lie_rank-1,Lie_rank-1]*q[Lie_rank,Lie_rank] \

-q[Lie_rank,Lie_rank-1]*q[Lie_rank-1,Lie_rank];

qq = q;

for j = 1 to Lie_rank do \

qq[j,Lie_rank] = -q[j,Lie_rank] od;

qq[Lie_rank-1,Lie_rank] = 0; qq[Lie_rank,Lie_rank] = 1;

for j = 1 to Lie_rank do \

qq[j,Lie_rank-1] = -q[j,Lie_rank-1] od;

qq[Lie_rank-1,Lie_rank-1] = 1; qq[Lie_rank,Lie_rank-1] = 0;

loc s = null(Lie_rank,Lie_rank);

for j = 1 to Lie_rank do s[j,j] = det_q od;

s[Lie_rank-1,Lie_rank-1] = (q*qq)[Lie_rank,Lie_rank];

s[Lie_rank,Lie_rank-1] = -(q*qq)[Lie_rank,Lie_rank-1];

s[Lie_rank-1,Lie_rank] = -(q*qq)[Lie_rank-1,Lie_rank];

s[Lie_rank,Lie_rank] = (q*qq)[Lie_rank-1,Lie_rank-1];

loc i_q = qq*s;

loc b = branch(v, Cartan_type(m), r); loc x = b*i_q*(*p);

div(x,det_q)

and to improve Levi_branch3.lie is left as an exercise (which implicitly re-
quires incorporating the formula for the inverse of a general 3× 3 matrix).

2D. Case g simple, rank k = rank g and k is semisimple. This is the
most delicate case: g is simple, θ is an inner automorphism, and k is semisimple.
Let us assume that k is θ-maximal. Then the Borel-de-Siebenthal structure
theory [2] provides a simple root system Ψ = {ψ1, . . . , ψn} and a simple root
γ = ψr ∈ Ψ such that Ψk = (Ψ \ {γ}) ∪ {−βg} is a simple root system for k,
and θ has order nr, where the maximal root βg =

∑

niψi.
Let s denote the maximal rank subalgebra of g with simple root system

Ψs = (Ψ \ {γ}). Let wg and ws denote, respectively, the longest elements of
the Weyl groups Wg and Ws. We write Σ+(g, t) for the positive root system
of g relative to t defined by Ψ.

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 13

Lemma 2.13. The transformation −ws preserves Φs and sends −βg into

Σ+(g, t).

Proof. In general, the longest element of the Weyl group sends the positive
Weyl chamber to its negative, so −ws preserves Φs. But −ws(−βg) = ws(βg)
is obtained from βg =

∑

miψi by a series of simple root reflections sψ : ξ 7→
ξ− 2〈ψ,ξ〉

〈ψ,ψ,〉ψ with ψ 6= γ. Thus the coefficient of γ in ws(βg) is the same as that

in βg, which is nr > 0, so ws(βg) ∈ Σ+(g, t). �

We now indicate how the LiE program uses ws and βg to compute the restric-
tion matrix res wt, which it uses to calculate restrictions of representations of
g to k. First, we use −ws to carry the simple root system Ψk = Ψs ∪ {−βg} of
k to another simple root system Φ := Ψs ∪{ws(βg)}. The point is that Φ then
consists of positive roots for g, all but one of them simple, by Lemma 2.13. The
LiE program assumes Bourbaki root order for both g and k. It permutes the
roots of Φ in a somewhat arbitrary way in order to do this when it computes
the restriction matrix and applies it to branching of representations from g to
k. We will try to do this in a way that involves minimal permutation.

We start by computing ws within the LiE program. It is the long word for
Ws, but there LiE orders the roots in a manner that loses track of the simple
roots of k and so is not appropriate for our applications. Instead we use the
routine

ws = reduce(long_word^r_reduce(long_word,[1,2,...,r-1,r+1,...,n-1,n]))

Here long word is the longest element wg of the Weyl groupWg, so the shortest
element of the coset wgWs is

r reduce(long word,[1,2,...,r-1,r+1,...,n-1,n]).

Then we set up the new simple root system Φ for k as the rows of a matrix RR in
which ws(βg) replaces γ and the roots are re-ordered (minimally) to Bourbaki
order. Then there are three ways to compute the restriction matrix res wt.

The first is to note that RR is the inverse of the matrix res rt, so one can
compute

res wt = i Cartan(g)*res rt*Cartan(k)/det Cartan(g),

which is (2.5). The second is just to use the LiE assignment

res wt = res mat(RR).

And the third, which is in fact the way that LiE implements res mat, is to
set g as the default by setdefault(g) (putting in the Lie type of g), initialize
res wt as the n× n identity matrix, res wt = id(n), and then fill it in by

for j = 1 to n do

for i = 1 to n do

res_wt[i,j] = Cartan(i_Cartan[i],RR[j])/det_Cartan

od

od

In the next few sections we will run through the various basic cases cases of
(g, k) and then reduce the general case to these basic cases.

Münster Journal of Mathematics Vol. 4 (2011), 1–28

14 Michael G. Eastwood and Joseph A. Wolf

3. Cases: g is simple, k is θ-maximal and rank k < rank g

Recall the automorphism θ of g with k = gθ. In this section we assume that
k is θ-maximal, in other words that it is maximal among the proper θ-invariant
subalgebras of g, and we apply the methods of Section 2B.

Note that θ is an outer automorphism of g because rank k < rank g. If
some power θm 6= 1 is an inner automorphism then its fixed point set is θ-
invariant and satisfies k $ gθ

m

$ g. As k is θ-maximal we conclude that every
power θm 6= 1 is an outer automorphism of g. All possibilities are listed in [7,
Theorem 5.10(3)]. There θ has prime order p = 2 or p = 3. If p = 2 then G/K
is one of the Riemannian symmetric spaces SU(n)/SO(n), SU(2n)/Sp(n),
SO(2p+ 2 + 2q)/{SO(2p+ 1)× SO(2q + 1)}, E6/F4, and E6/C4 .

If p = 3 then G/K is one of the nearly-Kaehler spaces Spin(8)/G2 and
Spin(8)/SU(3).

It is useful to note that either the Dynkin diagram of k is obtained by
folding the diagram of g as in [11]—all possibilities are listed in the tables of

[11, pp. 245, 247]—or θ has form θ′◦Ad(g) where gθ′ is obtained by folding and

g ∈ Gθ
′

. For example Spin(8)/G2 is obtained by folding and Spin(8)/SU(3) is
derived from it as just described; and E6/F4 is obtained by folding and E6/C4

is derived from it as just described. For details of the latter see [12, p. 291].
We now run through that list.

3A. Case G/K = SU(2m)/SO(2m). In order to find the restriction ma-
trix used by the LiE program, we consider the Cartan subalgebras

s = {diag{u1, . . . , um,−um, . . . ,−u1} | ui ∈
√
−1R} of k and

t = {diag{u1, . . . , u2m} | ui ∈
√
−1R, u1 + · · ·+ u2m = 0} of g.

The simple roots of g are the ψi = εi − εi+1 for 1 ≦ i < 2m, and the simple
roots of k are the ϕi = εi−εi+1 (for 1 ≦ i < m) and ϕm = εm−1+εm. Thus the
simple roots of g have restriction to s given by ψi|s = ϕi and ψm+i|s = ϕm−i

for 1 ≦ i < m and ψm|s = 2εm = ϕm−ϕm−1. Here is the relevant LiE routine
branch A D.lie for branching from SU(2m) to SO(2m). It takes arguments
(m,v), where m > 0 is an integer and v is a vector of length 2m− 1 consisting
of nonnegative integers, and branches v.

(3.1)

file branch_A_D.lie

usage: branch_A_D(m,v) branches v from SU(2m) to SO(2m)

branch_A_D(int m;vec v) = setdefault(Lie_group(1,2*m - 1));

res_rt = null(2*m-1,m);

for i=1 to m do res_rt[i,i] = 1 od;

res_rt[m,m-1] = -1; res_rt[m,m] = 1;

for i=1 to m-1 do res_rt[m+i,m-i] = 1 od;

res_wt = i_Cartan*res_rt*Cartan(Lie_group(4,m))/det_Cartan;

print("the branching of "+v+" from SU("+2*m+")");

print(" to SO("+2*m+") is");

branch(v,Lie_group(4,m),res_wt)

Here is an example of its use:

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 15

read branch_A_D.lie

branch_A_D(8,[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0])

the branching of [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0] from SU(16)

to SO(16) is 1X[1,0,0,0,0,0,0,0] +1X[1,1,0,0,0,0,0,0]

If one wishes to vary v while holding m constant he can define m in LiE,
e.g. as in m = 7 , and replace the line

branch_A_D(int m;vec v) = setdefault(Lie_group(1,2*m - 1));

by

branch_A_D(vec v) = setdefault(Lie_group(1,2*m - 1)); .

3B. Case G/K = SU(2m+1)/SO(2m+1). In order to find the restric-
tion matrix we consider the Cartan subalgebras

s = {diag{u1, . . . , um, 0,−um, . . . ,−u1} | ui ∈
√
−1R} of k and

t = {diag{u1, . . . , u2m+1} | ui ∈
√
−1R, u1 + · · ·+ u2m+1 = 0} of g.

The simple roots of g are the ψi = εi − εi+1 for 1 ≦ i ≦ 2m, and the simple
roots of k are the ϕi = εi − εi+1 (for 1 ≦ i < m) and ϕm = εm (short simple
root). Thus the simple roots of g have restriction to s given by ψi|s = ϕi
and ψm+i|s = ϕm+1−i for 1 ≦ i ≦ m. Here is the relevant LiE routine
branch A B.lie for branching from SU(2m + 1) to SO(2m + 1). It takes
arguments (m,v), where m > 0 is an integer and v is a vector of length 2m
consisting of nonnegative integers, and branches v.

(3.2)

file branch_A_B.lie

usage: branch_A_B(m,v) branches v from SU(2m+1) to SO(2m+1)

branch_A_B(int m;vec v) = setdefault(Lie_group(1,2*m));

res_rt = null(2*m,m);

for i=1 to m do res_rt[i,i] = 1 od;

for i=1 to m do res_rt[m+i,m+1-i] = 1 od;

res_wt = i_Cartan*res_rt*Cartan(Lie_group(2,m))/det_Cartan;

print("the branching of "+v+" from SU("+(2*m+1)+")");

print(" to SO("+(2*m+1)+") is");

branch(v,Lie_group(2,m),res_wt)

The same comment as just after (3.1) holds here when one wishes to set m
in LiE.

3C. Case G/K = SU(2m)/Sp(m). This case is quite similar to the case
of SU(2m)/SO(2m) above. We consider the Cartan subalgebras

s = {diag{u1, . . . , um,−um, . . . ,−u1} | ui ∈
√
−1R} of k and

t = {diag{u1, . . . , u2m} | ui ∈
√
−1R, u1 + · · ·+ u2m = 0} of g.

The simple roots of g are the ψi = εi − εi+1 for 1 ≦ i < 2m, and the simple
roots of k are the ϕi = εi − εi+1 (for 1 ≦ i < m) and ϕm = 2εm. Thus the
simple roots of g have restriction to s given by ψi|s = ϕi and ψm+i|s = ϕm−i

for 1 ≦ i < m and ψm|s = 2εm = ϕm. Here is the relevant LiE routine
branch A C.lie for branching from SU(2m) to Sp(m). It takes arguments

Münster Journal of Mathematics Vol. 4 (2011), 1–28

16 Michael G. Eastwood and Joseph A. Wolf

(m,v), where m > 0 is an integer and v is a vector of length 2m− 1 consisting
of nonnegative integers, and branches v.

(3.3)

file branch_A_C.lie

usage: branch_A_C(m,v) branches v from SU(2m) to Sp(m)

branch_A_C(int m;vec v) = setdefault(Lie_group(1,2*m - 1));

res_rt = null(2*m-1,m);

for i=1 to m-1 do res_rt[i,i] = 1 od;

res_rt[m,m] = 1;

for i=1 to m-1 do res_rt[m+i,m-i] = 1 od;

res_wt = i_Cartan*res_rt*Cartan(Lie_group(3,m))/det_Cartan;

print("the branching of "+v+" from SU("+2*m+")");

print(" to Sp("+m+") is");

branch(v,Lie_group(3,m),res_wt)

The same comment as just after (3.1) holds here when one wishes to set m
in LiE.

3D. Cases G/K = SO(2p+ 2+ 2q)/{SO(2p+ 1)× SO(2q + 1)} and
p, q not both 0. We use the Cartan subalgebras

t = {u := diag{u1, . . . up+q+1,−up+q+1, · · · − u1} | ui ∈
√
−1R} and

s = {u ∈ t | up+q+1 = 0}.

Now g has simple roots ψi = εi − εi+1 for 1 ≦ i ≦ p + q and ψp+q+1 =
εp+q + εp+q+1. The subalgebra k has simple roots ϕi = εi − εi+1 for 1 ≦ i < p
and for p + 1 ≦ i < p + q, ϕp = εp, and ϕp+q = εp+q. Thus the simple roots
of g have restriction to s given by ψi|s = ϕi for 1 ≦ i < p and p < i < p+ q,
ψp|s = ϕp − ∑q

1 ϕp+j , ψp+q|s = ϕp+q, and ψp+q+1|s = ϕp+q. Here is the
relevant LiE routine branch D BB.lie for branching from SO(2p + 2q + 2)
to SO(2p + 1) × SO(2q + 1). It takes arguments (p,q,v), where p, q ≧ 0
are integers not both zero and v is a vector of length p + q + 1 consisting of
nonnegative integers, and it branches v.

(3.4)

file branch_D_BB.lie

usage: branch_D_BB(p,q,v) branches v from SO(2p+2q+2)

to SO(2p+1)xSO(2q+1)

branch_D_BB(int p,q;vec v) = setdefault(Lie_group(4,p+q+1));

res_rt = null(p+q+1,p+q);

for i=1 to p-1 do res_rt[i,i] = 1 od;

res_rt[p,p] = 1; for j=p+1 to p+q do res_rt[p,j] = -1 od;

for i=p+1 to p+q-1 do res_rt[i,i] = 1 od;

res_rt[p+q,p+q] = 1; res_rt[p+q+1,p+q] = 1;

res_wt = i_Cartan*res_rt*Cartan(Lie_group(2,p)*\

Lie_group(2,q))/4;

print("the branching of "+v+" from SO("+(2*p+2*q+2)+")");

print(" to SO("+(2*p+1)+")xSO("+(2*q+1)+") is");

branch(v,Lie_group(2,p)*Lie_group(2,q),res_wt)

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 17

The same comment as just after (3.1) holds here when one wishes to set p
and q in LiE: do that and replace the line

branch_D_BB(int p,q;vec v) = setdefault(Lie_group(4,p+q+1));

by the line

branch_D_BB(vec v) = setdefault(Lie_group(4,p+q+1)); .

3E. Case G/K = Spin(8)/G2. Here g has simple root system {ψ1, ψ2, ψ3,
ψ4} numbered as in the Introduction, and k has simple root system {ϕ1, ϕ2} as
follows. The Cartan subalgebra s of k is the subspace of the Cartan subalgebra
t of g given by ψ1 = ψ3 = ψ4. See [10]. The root restrictions are ψ1|s = ψ3|s =
ψ4|s = ϕ1 (the short simple root of k) and ψ2|s = ϕ2 (the long simple root of
k). Now the Lie routine for branching from Spin(8) to G2 is

(3.5)

file branch_D4_G2.lie

branch_D4_G2(vec v) = setdefault(D4);

res_rt = [[1,0],[0,1],[1,0],[1,0]];

res_wt = (i_Cartan*res_rt*Cartan(G2))/det_Cartan;

print("the branching of "+v+" from Spin(8) to G2 is");

branch(v,G2,res_wt)

3F. Cases G/K = Spin(8)/SU(3), G/K = E6/F4 and G/K =
E6/C4. There the restriction matrices can be computed as in the case of
Spin(8)/G2, or one can use the small database of maximal subalgebras built
into LiE. That database is accessible by the commands

res mat(A2,D4), res mat(F4,E6) and res mat(C4,E6)

The corresponding LiE routines are

(3.6)

file branch_D4_A2.lie

branch_D4_A2(vec v) = setdefault(D4);

print("the branching of "+v+" from D4 to the triality A2 is");

branch(v,A2,res_mat(A2,D4))

and

(3.7)

file branch_E6_F4.lie

branch_E6_F4(vec v) = setdefault(E6);

print("the branching of "+v+" from E6 to F4 is");

branch(v,F4,res_mat(F4,E6))

and

(3.8)

file branch_E6_C4.lie

branch_E6_C4(vec v) = setdefault(E6);

print("the branching of "+v+" from E6 to C4 is");

branch(v,C4,res_mat(C4,E6))

4. Cases: g is simple and k is the centralizer of a toral
subalgebra

These cases were covered in Section 2C. If k is the centralizer of a toral
subalgebra of g it is the fixed point set of an automorphism. For if G is a
connected Lie group with Lie algebra g and K is the analytic subgroup for k

we can choose g ∈ G such that the powers {gn | n ∈ Z} form a dense subgroup

Münster Journal of Mathematics Vol. 4 (2011), 1–28

18 Michael G. Eastwood and Joseph A. Wolf

of the identity component of the center of K, and then k is the fixed point set
of Ad(g).

5. Cases: g is simple, θ2 = 1 and rank k = rankg

In this section we apply the method of Section 2D and run through the cases
where nr = 2, i.e. the cases where G/K is a Riemannian symmetric space. The
other cases of equal rank will be considered in the next section.

It turns out that, in the classical group symmetric space cases, we do not
have to renumber the roots of Ψs, while the renumbering is needed for most
of the exceptional cases.

5A. Case (G,K) = (SO(2p + 2q + 1), SO(2p) × SO(2q + 1)) where
p ≥ 2 and q ≥ 0. Here ws reverses the order of ψ1, . . . , ψr−1 but does not
move ψi for i > r, so ws(βg) attaches to the diagram of s at ψr−2. Now the sim-
ple roots of k in Bourbaki root order are given by {ψ1, . . . , ψr−1, ws(βg);ψr+1,
. . . , ψn}. Here is the LiE program branch B DB.lie that branches the rep-
resentation of SO(2p + 2q + 1), specified by a vector v of length p + q, to
SO(2p)× SO(2q + 1). Usage is branch B DB(p,q,v).

(5.1)

file branch_B_DB.lie

usage: branch_B_DB(p,q,v) branches v from SO(2p+2q+1)

to SO(2p)xSO(2q+1)

branch_B_DB(int p,q; vec v) = setdefault(Lie_group(2,p+q));

loc JJ = A1*A1; loc KK = A1; loc LL = Lie_group(4,p+q);

u = null(p+q-1); for i = 1 to p+q-1 do u[i]=i od;

if q > 0 then for i = p to p+q-1 do u[i]=i+1 od fi;

ws = reduce(long_word^r_reduce(long_word,u));

RR = id(p+q); RR[p] = W_rt_action(high_root,ws);

if p >= 3 then JJ = Lie_group(4,p) fi;

if q >= 2 then KK = Lie_group(2,q) fi;

if q > 0 then LL = JJ*KK fi;

print("the branching of "+v+" from SO("+(2*p+2*q+1)+")");

print(" to SO("+2*p+")xSO("+(2*q+1)+") is ");

branch(v,LL,res_mat(RR))

Again, the comment just after (3.1) indicates the modification when p and q
are already set in LiE.

5B. Case (G,K) = (SO(2p + 2q), SO(2p) × SO(2q)) where p, q ≥ 2.
Again ws reverses the order of ψ1, . . . , ψr−1 but does not move ψi for r < i ≦
n − 2, so ws(βg) attaches to the diagram of s at ψr−2 (or doesn’t attach, if
r = 2). The simple roots of k in Bourbaki root order are {ψ1, . . . , ψr−1, ws(βg),
ψr+1, . . . , ψn}. Here is the LiE program for restriction of representations from
SO(2p+ 2q) to SO(2p)× SO(2q).

file branch_D_DD.lie

usage: branch_D_DD(p,q,v) branches v from SO(2p+2q)

to SO(2p)xSO(2q)

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 19

(5.2)

branch_D_DD(int p,q; vec v) = setdefault(Lie_group(4,p+q));

loc JJ = A1*A1; loc KK = A1*A1;

u = null(p+q-1); for i = 1 to p+q-1 do u[i]=i od;

for i = p to p+q-1 do u[i]=i+1 od;

ws = reduce(long_word^r_reduce(long_word,u));

RR = id(p+q); RR[p] = W_rt_action(high_root,ws);

if p >= 3 then JJ = Lie_group(4,p) fi;

if q >= 3 then KK = Lie_group(4,q) fi;

print("the branching of "+v+" from SO("+(2*p+2*q)+")");

print(" to SO("+2*p+")xSO("+(2*q)+") is ");

branch(v,JJ*KK,res_mat(RR))

Again, the comment just after (3.1) indicates the modification when p and q
are already set in LiE.

5C. Case (G,K) = (Sp(p+q), Sp(p)×Sp(q)) where p, q ≥ 1. Again ws

reverses the order of ψ1, . . . , ψr−1 but does not move ψi for i > r, so ws(βg) at-
taches to the diagram of s at ψr−1 (or doesn’t attach, if r = 1). Now the simple
roots of k in Bourbaki root order are {ψ1, . . . , ψr−1, ws(βg), ψr+1, . . . , ψn}. The
LiE program for restriction of representations from Sp(p+ q) to Sp(p)×Sp(q)
is

(5.3)

file branch_C_CC.lie

usage: branch_C_CC(p,q,v) branches v from Sp(p+q)

to Sp(p)xSp(q),

branch_C_CC(int p,q; vec v) = setdefault(Lie_group(3,p+q));

loc JJ = A1; loc KK = A1;

u = null(p+q-1);

if p == 1 then for i = 1 to q do u[i]=i+1 od fi;

if p >= 2 then for i = 1 to p+q-1 do u[i]=i od fi;

if p >= 2 then for i = p to p+q-1 do u[i]=i+1 od fi;

ws = reduce(long_word^r_reduce(long_word,u));

RR = id(p+q); RR[p] = W_rt_action(high_root,ws);

if p >= 2 then JJ = Lie_group(3,p) fi;

if q >= 2 then KK = Lie_group(3,q) fi;

print("the branching of "+v+" from Sp("+(p+q)+")");

print(" to Sp("+p+")xSp("+q+") is ");

branch(v,JJ*KK,res_mat(RR))

Again, the comment just after (3.1) indicates the modification when p and q
are already set in LiE.

5D. Case G2/A1A1. Now we run through the exceptional group cases. First

suppose that G = G2. Then K = A1A1 with simple roots d d〈
ψ1 ψ2

. Here
βg = 3ψ1 + 2ψ2 and γ = ψ2, Ψs = {ψ1}, and ws(βg) = βg. Thus the LiE

Münster Journal of Mathematics Vol. 4 (2011), 1–28

20 Michael G. Eastwood and Joseph A. Wolf

program (if one wants to bother with it in this case) is

(5.4)

file branch_G2_A1A1.lie

branch_G2_A1A1(vec v) = setdefault(G2);

ws = reduce(long_word^r_reduce(long_word,[1]));

RR = id(2); RR[2] = W_rt_action(high_root,ws);

print("the branching of "+v+" from G2 to A1A1 is");

branch(v,A1A1,res_mat(RR))

5E. Cases F4/A1C3 and F4/B4. Next suppose that G = F4. The simple

root system is b b b b〉
ψ1 ψ2 ψ3 ψ4

and the negative of the maximal root βg =
2ψ1+3ψ2+4ψ3+2ψ4 attaches at ψ1. Thus there are two possibilities: γ = ψ1

and K = A1C3, or γ = ψ4 and K = B4. The corresponding LiE programs are
given by

(5.5)

file branch_F4_A1C3.lie

branch_F4_A1C3(vec v) = setdefault(F4);

ws = reduce(long_word^r_reduce(long_word,[2,3,4]));

RR = id(4); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(4)[4]; RR[4] = id(4)[2];

print("the branching of "+v+" from F4 to A1C3 is");

branch(v,A1C3,res_mat(RR))

and

(5.6)

file branch_F4_B4.lie

branch_F4_B4(vec v) = setdefault(F4);

ws = reduce(long_word^r_reduce(long_word,[1,2,3]));

RR = id(4); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(4)[1]; RR[3] = id(4)[2]; RR[4] = id(4)[3];

print("the branching of "+v+" from F4 to B4 is");

branch(v,B4,res_mat(RR))

5F. Cases E6/A1A5 and E6/A5A1. Now suppose that G = E6. Then
there are three simple roots of coefficient 2 in the maximal root. All of them
differ by automorphisms of the extended Dynkin diagram, so the corresponding
subalgebras k differ by an automorphism, but in [5] we will need to distinguish
between them, so we treat them separately. The simple root system is

b b b b b

b

ψ1 ψ3 ψ4 ψ5 ψ6

ψ2

and the negative of the maximal root βg = ψ1 + 2ψ2 + 2ψ3 + 3ψ4 + 2ψ5 + ψ6

attaches at ψ2. There are three equivalent possibilities: (i) γ = ψ3 and K =
A1A5, (ii) γ = ψ5 and K = A5A1, and (iii) γ = ψ2 and K = A5A1. For the

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 21

first, the LiE routine is

(5.7)

file branch_E6_A1A5.lie

branch_E6_A1A5(vec v) = setdefault(E6);

ws = reduce(long_word^r_reduce(long_word,[1,2,4,5,6]));

RR = id(6); RR[6] = W_rt_action(high_root,ws);

RR[3] = id(6)[4]; RR[4] = id(6)[5]; RR[5] = id(6)[6];

print("the branching of "+v+" from E6 to A1A5 is");

branch(v,A1A5,res_mat(RR))

The second is quite similar,

(5.8)

file branch_E6_A5A1.lie

branch_E6_A5A1(vec v) = setdefault(E6);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,6]));

RR = id(6); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(6)[1]; RR[5] = id(6)[2];

print("the branching of "+v+" from E6 to A5A1 is");

branch(v,A5A1,res_mat(RR))

and the third is a bit different,

(5.9)

file branch_E6_A5A1a.lie

branch_E6_A5A1a(vec v) = setdefault(E6);

ws = reduce(long_word^r_reduce(long_word,[1,3,4,5,6]));

RR = id(6); RR[6] = W_rt_action(high_root,ws);

RR[2] = id(6)[3]; RR[3] = id(6)[4]; RR[4] = id(6)[5];

RR[5] = id(6)[6];

print("the branching of "+v+" from E6 to A5A1 is");

branch(v,A5A1,res_mat(RR))

5G. Cases E7/A1D6, E7/D6A1 and E7/A7. Next, let G = E7. Then
there are three simple roots of coefficient 2 in the maximal root. Two of them
differ by an automorphism of the extended Dynkin diagram, so the correspond-
ing subalgebras k differ by an automorphism, but we will need to distinguish
between them in [5]. So, as in some of the E6 cases above, we treat them
separately. The simple root system is

b b b b b b

b

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7

ψ2

and the negative of the maximal root βg = 2ψ1+2ψ2+3ψ3+4ψ4+3ψ5+2ψ6+ψ7

attaches at ψ1. The possibilities are (i) γ = ψ1 and K = A1D6, (ii) γ = ψ6

and K = D6A1, and (iii) γ = ψ2 and K = A7. For the first of these the LiE

Münster Journal of Mathematics Vol. 4 (2011), 1–28

22 Michael G. Eastwood and Joseph A. Wolf

routine is

(5.10)

file branch_E7_A1D6.lie

branch_E7_A1D6(vec v) = setdefault(E7);

ws = reduce(long_word^r_reduce(long_word,[2,3,4,5,6,7]));

RR = id(7); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(7)[7]; RR[3] = id(7)[6]; RR[4] = id(7)[5];

RR[5] = id(7)[4]; RR[6] = id(7)[3]; RR[7] = id(7)[2];

print("the branching of "+v+" from E7 to A1D6 is");

branch(v,A1D6,res_mat(RR))

For obvious reasons the second is similar

(5.11)

file branch_E7_D6A1.lie

branch_E7_D6A1(vec v) = setdefault(E7);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,5,7]));

RR = id(7); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(7)[1]; RR[6] = id(7)[2];

print("the branching of "+v+" from E7 to D6A1 is");

branch(v,D6A1,res_mat(RR))

and the third is a bit different

(5.12)

file branch_E7_A7.lie

branch_E7_A7(vec v) = setdefault(E7);

ws = reduce(long_word^r_reduce(long_word,[1,3,4,5,6,7]));

RR = id(7); RR[7] = W_rt_action(high_root,ws);

RR[2] = id(7)[3]; RR[3] = id(7)[4]; RR[4] = id(7)[5];

RR[5] = id(7)[6]; RR[6] = id(7)[7];

print("the branching of "+v+" from E7 to A7 is");

branch(v,A7,res_mat(RR))

5H. Cases E8/D8 and E8/E7A1. Finally, suppose that G = E8. The
simple root system is

b b b b b b b

b

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

ψ2

and the negative of the maximal root βg = 2ψ1 + 3ψ2 + 4ψ3 + 6ψ4 + 5ψ5 +
4ψ6 + 3ψ7 + 2ψ8 attaches at ψ8. The possibilities are (i) γ = ψ1 and K = D8

and (ii) γ = ψ8 and K = E7A1. In the first case the LiE routine is

(5.13)

file branch_E8_D8.lie

branch_E8_D8(vec v) = setdefault(E8);

ws = reduce(long_word^r_reduce(long_word,[2,3,4,5,6,7,8]));

RR = id(8); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(8)[8]; RR[3] = id(8)[7]; RR[4] = id(8)[6];

RR[6] = id(8)[4]; RR[7] = id(8)[3]; RR[8] = id(8)[2];

print("the branching of "+v+" from E8 to D8 is");

branch(v,D8,res_mat(RR))

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 23

and in the second it is

(5.14)

file branch_E8_E7A1.lie

branch_E8_E7A1(vec v) = setdefault(E8);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,5,6,7]));

RR = id(8); RR[8] = W_rt_action(high_root,ws);

print("the branching of "+v+" from E8 to E7A1 is");

branch(v,E7A1,res_mat(RR))

Taking into account the results of Sections 3 and 4, now for every compact
connected, simply connected symmetric space G/K, G simple, we have shown
how to compute the restriction to K of any irreducible finite dimensional rep-
resentation of G. The irreducible compact connected, simply connected sym-
metric spaces G/K with g not simple are the simply connected simple Lie
group manifolds, which were covered in Section 2A.

6. Cases: g is simple, θ3 = 1 or θ5 = 1, and rank k = rank g

The maximal connected subgroups of maximal rank in a compact connected
Lie group were described by A. Borel and J. de Siebenthal [2]. Most of them
are symmetric subgroups, and their classification can be used in the classifi-
cation of symmetric spaces [12]. The ones that are symmetric were consid-
ered in Section 5. The others correspond to the simple roots γ whose co-
efficient in the maximal root βg is an odd prime, necessarily 3 or 5. The
ones for prime 3 are given by (G,K) = (G2, A2), (F4, A2A2), (E6, A2A2A2),
(E7, A2A5), (E7, A5A2), (E8, A8), and (E8, E6A2). The one for prime 5 is
given by (G,K) = (E8, A4A4). In all cases a simple root system for k is given
by Ψk = (Ψg \ {γ}) ∪ {−βg}, so we can use the methods of Section 2C as in
Section 5.

In all of these cases one can rely on a LiE database to produce a restriction
matrix res mat(Y,X). However the applications in [5] require that we keep
track of which root of Y comes from which root of X, and LiE scrambles the root
order, so we generally have to do this by hand. In each case we indicate which
elements of the simple root system Φ = {ϕ1, . . . , ϕn} of k come from which
elements of (Ψ \ {γ}) ∪ {ws(βg)}, where we try to use the least complicated
correspondence.

6A. Case G/K = G2/A2. Here γ = ψ1, k is of type A2 = su(3), and
Φ = {ϕ1, ϕ2} where ϕ1 comes from ws(βg) and ϕ2 comes from ψ2. This is
indicated in terms of the Dynkin diagrams, by

c
ψ1

γ
〈 c
ψ2

...........c
−βg

 c c
ϕ1 ϕ1

ws(βg)

Münster Journal of Mathematics Vol. 4 (2011), 1–28

24 Michael G. Eastwood and Joseph A. Wolf

The corresponding LiE routine is

(6.1)

file branch_G2_A2.lie

branch_G2_A2(vec v) = setdefault(G2);

ws = reduce(long_word^r_reduce(long_word,[2]));

RR = id(2); RR[1] = W_rt_action(high_root,ws);

print("the branching of "+v+" from G2 to A2 is ");

branch(v,A2,res_mat(RR))

6B. Case G/K = F4/A2A2. Here γ = ψ2, k is of type A2A2, and Φ =
{ϕ1, ϕ2, ϕ3, ϕ4} where ϕ1 comes from ψ1, ϕ2 comes from ws(βg), ϕ3 comes
from ψ3, and ϕ4 comes from ψ4. This is indicated in terms of Dynkin diagrams
by

c c c c c........... 〉
ψ1 ψ2 ψ3 ψ4

γ−βg

 c c c c〉
ϕ1 ϕ2 ϕ3 ϕ4

ws(βg)

Here the isolated 〉 indicates that ϕ1 and ϕ2 are long while ϕ3 and ϕ4 are short.
The corresponding LiE routine is

(6.2)

file branch_F4_A2A2.lie

branch_F4_A2A2(vec v) = setdefault(F4);

ws = reduce(long_word^r_reduce(long_word,[1,3,4]));

RR = id(4); RR[2] = W_rt_action(high_root,ws);

print("the branching of "+v+" from F4 to A2A2 is ");

branch(v,A2A2,res_mat(RR))

6C. Case G/K = E6/A2A2A2. Here γ = ψ4, k is of type A2A2A2, and
Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} where ϕ1 comes from ψ1, ϕ2 comes from ψ3, ϕ3

comes from ψ2, ϕ4 comes from ws(βg), ϕ5 comes from ψ5, and ϕ6 comes from
ψ6. This is indicated in terms of Dynkin diagrams by

c c c c c

c

c

.........

ψ1 ψ3 ψ4 ψ5 ψ6

ψ2

γ

−βg

c c c c c

c

ϕ1 ϕ2

ϕ4

ϕ5 ϕ6

ϕ3

ws(βg)

The corresponding LiE routine is

(6.3)

file branch_E6_A2A2A2.lie

branch_E6_A2A2A2(vec v) = setdefault(E6);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,5,6]));

RR = id(6); RR[4] = W_rt_action(high_root,ws);

RR[2] = id(6)[3]; RR[3] = id(6)[2];

print("the branching of "+v+" from E6 to A2A2A2 is");

branch(v,A2A2A2,res_mat(RR))

6D. Case G/K = E7/A2A5. Here γ = ψ3, k is of type A2A5, and Φ =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7} where ϕ1 comes from ψ1, ϕ2 comes from ws(βg), ϕ3

comes from ψ2, ϕ4 comes from ψ4, ϕ5 comes from ψ5, ϕ6 comes from ψ6, and
ϕ7 comes from ψ7. This is indicated in terms of Dynkin diagrams by

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 25

c c c c c c c

c

...........
−βg

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7

ψ2

γ

c c c c c c

c

ϕ1 ϕ2 ϕ4 ϕ5 ϕ6 ϕ7

ϕ3

ws(βg)

The corresponding LiE routine is

(6.4)

file branch_E7_A2A5.lie

branch_E7_A2A5(vec v) = setdefault(E7);

ws = reduce(long_word^r_reduce(long_word,[1,2,4,5,6,7]));

RR = id(7); RR[2] = W_rt_action(high_root,ws);

RR[3] = id(7)[2];

print("the branching of "+v+" from E7 to A2A5 is");

branch(v,A2A5,res_mat(RR))

6E. Case G/K = E7/A5A2. Here γ = ψ5, k is of type A5A2, and Φ =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7} where ϕ1 comes from ψ1, ϕ2 comes from ψ3, ϕ3

comes from ψ4, ϕ4 comes from ψ2, ϕ5 comes from ws(βg), ϕ6 comes from ψ6,
and ϕ7 comes from ψ7. This is indicated in terms of Dynkin diagrams by

c c c c c c c

c

...........
−βg

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7

ψ2

γ

c c c c c

c

c

ϕ1 ϕ2 ϕ3 ϕ6 ϕ7

ϕ4

ϕ5ws(βg)

The corresponding LiE routine is

(6.5)

file branch_E7_A5A2.lie

branch_E7_A5A2(vec v) = setdefault(E7);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,6,7]));

RR = id(7); RR[5] = W_rt_action(high_root,ws);

RR[2] = id(7)[3]; RR[3] = id(7)[4]; RR[4] = id(7)[2];

print("the branching of "+v+" from E7 to A5A2 is");

branch(v,A5A2,res_mat(RR))

6F. Case G/K = E8/A8. Here γ = ψ2, k is of type A8. The simple root
system of k is Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8} where ϕ1 comes from ws(βg),
ϕ2 comes from ψ1, ϕ3 comes from ψ3, ϕ4 comes from ψ4, ϕ5 comes from ψ5,
ϕ6 comes from ψ6, ϕ7 comes from ψ7, and ϕ8 comes from ψ8. This is indicated
in terms of Dynkin diagrams by

b b b b b b b b

b

...........
−βg

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

ψ2 γ

 b b b b b b b b

ws(βg)

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

Münster Journal of Mathematics Vol. 4 (2011), 1–28

26 Michael G. Eastwood and Joseph A. Wolf

The corresponding LiE routine is

(6.6)

file branch_E8_A8.lie

branch_E8_A8(vec v) = setdefault(E8);

ws = reduce(long_word^r_reduce(long_word,[1,3,4,5,6,7,8]));

RR = id(8); RR[1] = W_rt_action(high_root,ws);

RR[2] = id(8)[1];

print("the branching of "+v+" from E8 to A8 is");

branch(v,A8,res_mat(RR))

6G. Case G/K = E8/E6A2. Here γ = ψ7, k is of type E6A2, and Φ =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8} where ϕ1 comes from ψ1, ϕ2 comes from ψ2, ϕ3

comes from ψ3, ϕ4 comes from ψ4, ϕ5 comes from ψ5, ϕ6 comes from ψ6,
ϕ7 comes from ws(βg), and ϕ8 comes from ψ8. This is indicated in terms of
Dynkin diagrams by

b b b b b b b b

b

...........
−βg

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

ψ2

γ
 b b b b b b b

b

ws(βg)

ϕ1 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

ϕ2

The corresponding LiE routine is

(6.7)

file branch_E8_E6A2.lie

branch_E8_E6A2(vec v) = setdefault(E8);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,5,6,8]));

RR = id(8); RR[7] = W_rt_action(high_root,ws);

print("the branching of "+v+" from E8 to E6A2 is");

branch(v,E6A2,res_mat(RR))

6H. Case G/K = E8/A4A4. Here γ = ψ5, k is of type A4A4, and Φ =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8} where ϕ1 comes from ψ1, ϕ2 comes from ψ3, ϕ3

comes from ψ4, ϕ4 comes from ψ2, ϕ5 comes from ws(βg), ϕ6 comes from ψ6,
ϕ7 comes from ψ7, and ϕ8 comes from ψ8. This is indicated in terms of Dynkin
diagrams by

b b b b b b b b

b

...........
−βg

ψ1 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

ψ2

γ
 b b b b b b b

b

ws(βg)

ϕ1 ϕ2 ϕ3 ϕ5 ϕ6 ϕ7 ϕ8

ϕ4

The corresponding LiE routine is

(6.8)

file branch_E8_A4A4.lie

branch_E8_A4A4(vec v) = setdefault(E8);

ws = reduce(long_word^r_reduce(long_word,[1,2,3,4,6,7,8]));

RR = id(8); RR[5] = W_rt_action(high_root,ws);

RR[2] = id(8)[3]; RR[3] = id(8)[4]; RR[4] = id(8)[2];

print("the branching of "+v+" from E8 to A4A4 is");

branch(v,A4A4,res_mat(RR))

This completes our branching project as described in Section 2.

Münster Journal of Mathematics Vol. 4 (2011), 1–28

Branching of representations to symmetric subgroups 27

References

[1] R. J. Baston and M. G. Eastwood, The Penrose transform, Oxford Mathematical Mono-
graphs, Oxford Univ. Press, New York, 1989. MR1038279 (92j:32112)

[2] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes
de Lie clos, Comment. Math. Helv. 23 (1949), 200–221. MR0032659 (11,326d)

[3] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie.

Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés

par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Indus-
trielles, No. 1337 Hermann, Paris, 1968. MR0240238 (39 #1590)

[4] A. Čap and J. Slovák, Parabolic geometries. I. Background and general theory. Math-
ematical Surveys and Monographs, 154. American Mathematical Society, Providence,
RI, 2009. MR2532439 (2010j:53037)

[5] M. G. Eastwood and J. A. Wolf, The range of the double fibration transform. To appear.
[6] G. Fels, A. T. Huckleberry and J. A. Wolf, Cycle spaces of flag domains. A complex

geometric viewpoint. Progress in Mathematics, 245. Birkhäuser Boston, Inc., Boston,
MA, 2006. MR2188135 (2006h:32018)

[7] A. Gray and J. A. Wolf, Homogeneous spaces defined by Lie group automorphisms, I,
J. Differential Geometry 2 1968, 77–114. MR0236328 (38 #4625a)

[8] A. Gray and J. A. Wolf, Homogeneous spaces defined by Lie group automorphisms, II,
J. Differential Geometry 2 1968, 115–159. MR0236329 (38 #4625b)

[9] LiE program, Computer Algebra Group of CWI, software project headed by Arjeh
M. Cohen, now maintained by Marc van Leeuwen. Version 2.2 of LiE is available at
http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/

[10] J. de Siebenthal, Sur les sous-groupes fermés connexes d’un groupe de Lie clos, Com-
ment. Math. Helv. 25 (1951), 210–256. MR0043790 (13,319a)

[11] J. de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv.
31 (1956), 41–89. MR0094408 (20 #926)

[12] J. A. Wolf, Spaces of constant curvature, sixth edition, AMS Chelsea Publishing, Prov-
idence, RI, 2011. MR2742530 (2011j:53001)

Received September 11, 2009; accepted May 21, 2010

Michael G. Eastwood
Mathematical Sciences Institute
Australian National University
ACT 0200, Australia
E-mail: meastwoo@member.ams.org

Joseph A. Wolf
Department of Mathematics
University of California
Berkeley, CA 94720–3840, USA
E-mail: jawolf@math.berkeley.edu

Münster Journal of Mathematics Vol. 4 (2011), 1–28

