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Parabolic Subgroups of Real Direct Limit Lie Groups

Elizabeth Dan-Cohen, Ivan Penkov, and Joseph A. Wolf

Abstract. Let GR be a classical real direct limit Lie group, and gR its Lie
algebra. The parabolic subalgebras of the complexification gC were described
by the first two authors. In the present paper we extend these results to gR.
This also gives a description of the parabolic subgroups of GR. Furthermore,
we give a geometric criterion for a parabolic subgroup PC of GC to intersect
GR in a parabolic subgroup. This criterion involves the GR–orbit structure of
the flag ind–manifold GC/PC.

1. Introduction and Basic Definitions

We start with the three classical simple locally finite countable–dimensional Lie

algebras gC = lim−→ gn,C, and their real forms gR. The Lie algebras gC are the classical

direct limits, sl(∞,C) = lim−→ sl(n;C), so(∞,C) = lim−→ so(2n;C) = lim−→ so(2n + 1;C),

and sp(∞,C) = lim−→ sp(n;C), where the direct systems are given by the inclusions

of the form A �→ ( A 0
0 0 ). See [1] or [2]. We often consider the locally reductive

algebra gl(∞;C) = lim−→ gl(n;C) along with sl(∞;C).

The real forms of these classical simple locally finite countable–dimensional

complex Lie algebras gC have been classified by A. Baranov in [1]. A slight refor-

mulation of [1, Theorem 1.4] says that the following is a complete list of the real

forms of gC.

If gC = sl(∞;C), then gR is one of the following:

sl(∞;R) = lim−→ sl(n;R), the real special linear Lie algebra,

sl(∞;H) = lim−→ sl(n;H), the quaternionic special linear Lie algebra, given by

sl(n;H) := gl(n;H) ∩ sl(2n;C),

su(p,∞) = lim−→ su(p, n), the complex special unitary Lie algebra of real rank p,

su(∞,∞) = lim−→ su(p, q), complex special unitary algebra of infinite real rank.

If gC = so(∞;C), then gR is one of the following:

so(p,∞) = lim−→ so(p, n), the real orthogonal Lie algebra of finite real rank p,

so(∞,∞) = lim−→ so(p, q), the real orthogonal Lie algebra of infinite real rank,

so∗(2∞) = lim−→ so∗(2n), with

so∗(2n) = {ξ ∈ sl(n;H) | κn(ξx, y) + κn(x, ξy) = 0 ∀x, y ∈ Hn}
where κn(x, y) :=

∑
	 x	iȳ	 = txiȳ.

Equivalently, so∗(2n) = so(2n;C) ∩ u(n, n) with

so(2n;C) defined by (u, v) =
∑n

1 (u2j−1v2j + u2jw2j−1) and

u(n, n) defined by 〈u, v〉 =
∑n

1 (u2j−1v2j−1 − u2jv2j).
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2 ELIZABETH DAN-COHEN, IVAN PENKOV, AND JOSEPH A. WOLF

If gC = sp(∞;C), then gR is one of the following:

sp(∞;R) = lim−→ sp(n;R), the real symplectic Lie algebra,

sp(p,∞) = lim−→ sp(p, n), the quaternionic unitary Lie algebra of real rank p,

sp(∞,∞) = lim−→ sp(p, q), quaternionic unitary Lie algebra of infinite real rank.

If gC = gl(∞;C), then gR is one of the following:

gl(∞;R) = lim−→ gl(n;R), the real general linear Lie algebra,

gl(∞;H) = lim−→ gl(n;H), the quaternionic general linear Lie algebra,

u(p,∞) = lim−→ u(p, n), the complex unitary Lie algebra of finite real rank p,

u(∞,∞) = lim−→ u(p, q), the complex unitary Lie algebra of infinite real rank.

The defining representations of gC are characterized as direct limits of minimal–

dimensional nontrivial representations of simple subalgebras. It is well known that

that sl(∞;C) and gl(∞;C) have two inequivalent defining representations V and

W , whereas each of so(∞;C) and sp(∞;C) has only one (up to equivalence) V . In

particular the restrictions to so(∞;C) or sp(∞;C) of the two defining representa-

tions of sl(∞;C) are equivalent. The real forms gR listed above also have defining
representations, as detailed below, which are particular restrictions of the defining

representations of gC. We denote an element of Z�0 ∪ {∞} by ∗.
Suppose that gR is sl(∞;R) or gl(∞;R). The defining representation spaces of

gR are the finitary (i.e. with finitely many nonzero entries) column vectors VR = R∞

and the finitary row vectors WR = R∞. The algebra of gR–endomorphisms of VR or

WR is R. The restriction of the pairing of V and W is a nondegenerate gR–invariant

R–bilinear pairing of VR and WR.

The defining representation space VR of gR = so(∗,∞) consists of the finitary

real column vectors. The algebra of gR–endomorphisms of VR (the commuting

algebra) is R. The restriction of the symmetric form on V to VR is a nondegenerate

gR–invariant symmetric R–bilinear form.

The defining representation space VR of gR = sp(∞;R) consists of the finitary

real column vectors. The algebra of gR–endomorphisms of VR is R. The restriction

of the antisymmetric form on V to VR is a nondegenerate gR–invariant antisym-

metric R–bilinear form.

In both of these cases the defining representation of gR is a real form of the

defining representation of gC, i.e. V = VR ⊗ C.

Suppose that gR is su(∗,∞) or u(∗,∞). Then gR has two defining representa-

tions, one on the space VR = C∗,∞ of finitary complex column vectors and the other

on the space WR of finitary complex row vectors. Thus the two defining represen-

tations of gC remain irreducible as a representations of gR, the respective algebras

of gR–endomorphisms of VR and WR are C, and V = VR and W = WR. The pairing

of V and W defines a gR–invariant hermitian form of signature (∗,∞) on VR.

Suppose that gR is sl(∞;H) or gl(∞;H). The two defining representation

spaces of gR consist of the finitary column vectors VR = H∞ and finitary row

vectors WR = H∞. The algebra of gR–endomorphisms of VR or WR is H. The

defining representations of gC on V and W restrict to irreducible representations

of gR, and VR = H∞ = C∞ + C∞j = C2∞ = V . The pairing of V and W is a

nondegenerate gR–invariant R–bilinear pairing of VR and WR.

The defining representation space VR = H∗,∞ of sp(∗,∞) consists of the finitary

quaternionic vectors. The algebra of sp(∗,∞)–endomorphisms of VR is H. The
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PARABOLIC SUBGROUPS OF REAL DIRECT LIMIT LIE GROUPS 3

form on VR is a nondegenerate sp(∗,∞)–invariant quaternionic–hermitian form of

signature (∗,∞). In this case VR = H∗,∞ = C2∗,2∞ = V .

The defining representation space VR = H∞ of so∗(2∞) consists of the finitary

quaternionic vectors. The algebra of so∗(2∞)–endomorphisms of VR is H. The form

on VR is the nondegenerate so∗(2∞)–invariant quaternionic–skew–hermitian form

κ which is the limit of the forms κn. In this case again VR = H∞ = C2∞ = V .

The Lie ind–group (direct limit group) corresponding to gl(∞;C) is the general

linear group GL(∞;C), which consists of all invertible linear transformations of V
of the form g = g′ + Id where g′ ∈ gl(∞;C). The subgroup of GL(∞;C) corre-

sponding to sl(∞;C) is the special linear group SL(∞;C), consisting of elements

of determinant 1. The connected ind–subgroups of GL(∞;C) whose Lie algebras

are so(∞;C) and sp(∞;C) are denoted by SO0(∞;C) and Sp(∞;C).

In Section 2 we recall the structure of parabolic subalgebras of complex finitary

Lie algebras from [4]. A parabolic subalgebra of a complex Lie algebra is by definition

a subalgebra that contains a maximal locally solvable (that is, Borel) subalgebra.

Parabolic subalgebras of complex finitary Lie algebras are classified in [4]. We recall

the structural result that every parabolic subalgebra is a subalgebra (technically:

defined by infinite trace conditions) of the stabilizer of a taut couple of generalized

flags in the defining representations, and we strengthen this result by studying

the non–uniqueness of the flags in the case of the orthogonal Lie algebra. As

in the finite–dimensional case, we define a parabolic subalgebra of a real locally

reductive Lie algebra gR as a subalgebra pR whose complexification pC is parabolic

in gC = gR ⊗R C. It is a well–known fact that already in the finite–dimensional

case a parabolic subalgebra of gR does not neccesarily contain a subalgebra whose

complexification is a Borel subalgebra of gC.

In Section 3 we prove our main result. It extends the classification in [4] to

the real case. The key difference from the complex case is that one must take

into account the additional structure of a defining representation space of gR as a

module over its algebra of gR–endomorphisms.

In Section 4 we give a geometric criterion for a parabolic subalgebra of gC to

be the complexification of a parabolic subalgebra of gR. The criterion is based on

an observation of one of us from the 1960’s, concerning the structure of closed real

group orbits on finite–dimensional complex flag manifolds. We recall that result,

appropriately reformulated, and indicate its extension to flag ind–manifolds.

2. Complex Parabolic Subalgebras

2A. Generalized Flags. Let V and W be countable–dimensional right vector

spaces over a real division algebra D = R, C or H, together with a nondegenerate

bilinear pairing 〈·, ·〉 : V ×W → D. Then V and W are endowed with the Mackey

topology, and the closure of a subspace F ⊂ V is F⊥⊥, where ⊥ refers to the pairing

〈·, ·〉. A set of D–subspaces of V (or W ) is called a chain in V (or W ) if it is totally

ordered by inclusion. A D–generalized flag is a chain in V (or W ) such that each

subspace has an immediate predecessor or an immediate successor in the inclusion

ordering, and every nonzero vector of V (or W ) is caught between an immediate

predecessor–successor pair [5].

Definition 2.1. [4] A D–generalized flag F in V (or W ) is said to be semi-

closed if for every immediate predecessor–successor pair F ′ ⊂ F ′′ the closure of F ′

is either F ′ or F ′′. ♦

49

Licensed to Univ of Calif, Berkeley.  Prepared on Sat Aug 31 18:02:17 EDT 2013 for download from IP 169.229.32.136.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



4 ELIZABETH DAN-COHEN, IVAN PENKOV, AND JOSEPH A. WOLF

If C is a chain in V (or W ), then we denote by C⊥ the chain in W (or V )

consisting of the perpendicular complements of the subspaces of C.
We fix an identification of V and W with the defining representations of

gl(∞;D) as follows. To identify V and W with the defining representations of

gl(∞;D), it suffices to find bases in V and W dual with respect to the pairing 〈·, ·〉.
If D 	= H, the existence of dual bases in V and W with respect to any nondegener-

ate D–bilinear pairing is a result of Mackey [9, p. 171]. Now suppose that D = H.

Then there exist C–subspaces VC ⊂ V and WC ⊂ W such that V = VC ⊕ VCj and

W = WC ⊕WCj. The restriction of 〈·, ·〉 to VC ×WC is a nondegenerate C–bilinear

pairing. The result of Mackey therefore implies the existence of dual bases in VC

and WC, which are also dual bases of V and W over H. In all cases we identify the

right multiplication of vectors in V by elements of D with the action of the algebra

of gR–endomorphisms of VR.

Definition 2.2. [4] Let F and G be D–semiclosed generalized flags in V and
W , respectively. We say F and G form a taut couple if F⊥ is stable under the
gl(∞;D)–stabilizer of G and G⊥ is stable under the gl(∞;D)–stabilizer of F . If we
have a fixed isomorphism f : V →W then we say that F is self–taut if F and f(F)

form a taut couple. ♦

If one has a fixed isomorphism between V and W , then there is an induced

bilinear form on V . A semiclosed generalized flag F in V is self–taut if and only if

F⊥ is stable under the gl(∞;D)–stabilizer of F , where F⊥ is taken with respect to

the form on V .

Remark 2.3. Fix a nondegenerate bilinear form on V . If V is finite dimen-

sional, a self–taut generalized flag in V consists of a finite number of isotropic

subspaces together with their perpendicular complements. In this case, the stabi-

lizer of a self–taut generalized flag equals the stabilizer of its isotropic subspaces.

If V is infinite dimensional, the non–closed non–isotropic subspaces in a self–taut

generalized flag in V influence its stabilizer, but it is still true that every subspace is

either isotropic or coisotropic. Indeed, let F be a self–taut generalized flag, and let

F ∈ F . By [4, Proposition 3.2], F⊥ is a union of elements of F if it is a nontrivial

proper subspace of V . Hence F ∪ {F⊥} is a chain that contains both F and F⊥.

Thus either F ⊂ F⊥ or F⊥ ⊂ F , so F is either isotropic or coisotropic. ♦

We will need the following lemma when we pass to consideration of real para-

bolic subalgebras.

Lemma 2.4. Suppose that D = H. Fix H–generalized flags F in V and G in
W . Then F and G form a taut couple if and only if they are form taut couple as
C–generalized flags.

Proof. It is immediate from the definition that F and G are semiclosed C–

generalized flags if and only if they are semiclosed H–generalized flags. The proof

of [4, Proposition 3.2] holds in the quaternionic case as well. Thus if F and G form

a taut couple as either C–generalized flags or H–generalized flags, then as long as

F⊥ is a nontrivial proper subspace of W , it is a union of elements of G for any

F ∈ F . Thus F⊥ is stable under both the gl(∞;C)–stabilizer and the gl(∞;H)–

stabilizer of G for any F ∈ F . Similarly, if G ∈ G then G⊥ is stable under both the

gl(∞;C)–stabilizer and the gl(∞;H)–stabilizer of F . �
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PARABOLIC SUBGROUPS OF REAL DIRECT LIMIT LIE GROUPS 5

2B. Trace Conditions. Let g be a locally finite Lie algebra over a field of

characteristic zero. A subalgebra of g is locally solvable (resp. locally nilpotent)
if every finite subset of g is contained in a solvable (resp. nilpotent) subalgebra.

The sum of all locally solvable ideals is again a locally solvable ideal, the locally
solvable radical of g. If r is the locally solvable radical of g then r ∩ [g, g] is a

locally nilpotent ideal in g. Indeed, note that r ∩ [g, g] =
⋃

n(r ∩ [g, g]) ∩ gn for

any exhaustion g =
⋃

n gn by finite–dimensional subalgebras gn, and furthermore

(r ∩ [g, g]) ∩ gn is nilpotent for all n by standard finite–dimensional Lie theory.

Let g be a splittable subalgebra of gl(∞;D), that is, a subalgebra containing

the Jordan components of its elements), and let r be its locally solvable radical.

The linear nilradical m of g is defined to be the set of all nilpotent elements in r.

Lemma 2.5. Let g be a splittable subalgebra of gl(∞;D). Then its linear nil-
radical m is a locally nilpotent ideal. If D = R, then the complexification mC is the
linear nilradical of gC.

Proof. If ξ, η ∈ m they are both contained in the solvable radical of a finite–

dimensional subalgebra of g, so ξ + η and [ξ, η] are nilpotent. Thus, by Engel’s

Theorem, m is a locally nilpotent subalgebra of g. Although it is only stated

for complex Lie algebras, [4, Proposition 2.1] shows that m ∩ [g, g] = r ∩ [g, g], so

[m, g] ⊂ [r, g] ⊂ r∩ [g, g], and thus m is an ideal in g. This proves the first statement.

For the second let r be the locally solvable radical of g and note that rC is the locally

solvable radical of gC, so the assertion follows from finite–dimensional theory. �
Definition 2.6. Let g be a splittable subalgebra of gl(∞;F) where F is R or

C, and and let m be its linear nilradical. A subalgebra p of g is defined by trace

conditions on g if m ⊂ p and

[g, g]/m ⊂ p/m ⊂ g/m,

in other words if there is a family Tr of Lie algebra homomorphisms f : g→ F with
joint kernel equal to p. Further, p is defined by infinite trace conditions if every
f ∈ Tr annihilates every finite–dimensional simple ideal in [g, g]/m. ♦

We write Trp for the maximal family Tr of Definition 2.6. On the group level

we have corresponding determinant conditions and infinite determinant conditions.
Note that infinite trace conditions and infinite determinant conditions do not occur

when g and G are finite dimensional.

2C. Complex Parabolic Subalgebras. Recall that a parabolic subalgebra of

a complex Lie algebra is by definition a subalgebra that contains a Borel subalgebra,

i.e. a maximal locally solvable subalgebra.

Theorem 2.7. [4] Let gC be gl(∞,C) or sl(∞,C), and let V and W be its defin-
ing representation spaces. A subalgebra of gC (resp. subgroup of GC) is parabolic
if and only if it is defined by infinite trace conditions (resp. infinite determinant
conditions) on the gC–stabilizer (resp. GC–stabilizer) of a (necessarily unique) taut
couple of C–generalized flags F in V and G in W .

Let gC be so(∞,C) or sp(∞,C). and let V be its defining representation space.
A subalgebra of gC (resp. subgroup of GC) is parabolic if and only if it is defined by
infinite trace conditions (resp. infinite determinant conditions) on the gC–stabilizer
(resp. GC–stabilizer) of a self–taut C–generalized flag F in V . In the sp(∞,C) case
the flag F is necessarily unique.
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6 ELIZABETH DAN-COHEN, IVAN PENKOV, AND JOSEPH A. WOLF

In contrast to the finite dimensional case, the normalizer of a parabolic subal-

gebra can be larger than the parabolic algebra. For example, Theorem 2.7 implies

that sl(∞,C) is parabolic in gl(∞;C), since it is the elements of the stabilizer of the

trivial generalized flags {0, V } and {0, W} whose usual trace is 0. To understand

the origins of this example, one should consider the explicit construction in [6] of

a locally nilpotent Borel subalgebra of gl(∞;C). The normalizer of a parabolic

subalgebra equals the stabilizer of the corresponding generalized flags [4], which is

in general larger than the parabolic subalgebra because of the infinite determinant

conditions. The self–normalizing parabolics are thus those for which Trp = 0. This

is in contrast to the finite–dimensional setting, where there are no infinite trace

conditions, and all parabolic subalgebras are self–normalizing.

In [4] the uniqueness issue was discussed for gl(∞,C), sl(∞,C), and sp(∞,C),

but not for so(∞,C). In the orthogonal setting one can have three different self–taut

generalized flags with the same stabilizer (see [3] and [7], where the non–uniqueness

is discussed in special cases.)

Theorem 2.8. Let p be a parabolic subalgebra given by infinite trace conditions
on the so(∞;C)–stabilizer of a self–taut generalized flag F in V . Then there are
two possibilities:

(1) F is uniquely determined by p;
(2) there are exactly three self-taut generalized flags with the same stabilizer

as F .
The latter case occurs precisely when there exists an isotropic subspace L ∈ F with
dimC L⊥/L = 2. The three flags with the same stabilizer are then

• {F ∈ F | F ⊂ L or L⊥ ⊂ F}
• {F ∈ F | F ⊂ L or L⊥ ⊂ F} ∪M1

• {F ∈ F | F ⊂ L or L⊥ ⊂ F} ∪M2

where M1 and M2 are the two maximal isotropic subspaces containing L.

Proof. The main part of the proof is to show that p determines all the sub-

spaces in F , except a maximal isotropic subspace under the assumption that F has

a closed isotropic subspaces L with dimC L⊥/L = 2.

Let A denote the set of immediate predecessor–successor pairs of F such that

both subspaces in the pair are isotropic. Let F ′
α denote the predecessor and F ′′

α the

successor of each pair α ∈ A. Let M denote the union of all the isotropic subspaces

in F , i.e. M =
⋃

α∈A F ′′
α . If M 	= M⊥, then M has an immediate successor W in

F . Note that W is not isotropic, by the definition of M . Furthermore, one has

W⊥ = M since F is a self–taut generalized flag. If M = M⊥, let us take W = 0.

Let C denote the set of all γ ∈ A such that F ′
γ is closed. For each γ ∈ C, it is

seen in [4] that the coisotropic subspace (F ′′
γ )⊥ has an immediate successor in F .

For each γ ∈ C, let G′′
γ denote the immediate successor of (F ′′

γ )⊥ in F . It is also

shown in [4] that (G′′
γ)⊥ = F ′

γ .

Since F is a self–taut generalized flag, F is uniquely determined by the set of

subspaces

{F ′′
α | α ∈ A} ∪ {G′′

γ | γ ∈ C such that G′′
γ is not closed} ∪ {W}.

We use separate arguments for these three kinds of subspaces to show that they

are determined by p, except for a maximal isotropic subspace and W under the

assumption that F has a closed isotropic subspace L with dimC L⊥/L = 2. We
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PARABOLIC SUBGROUPS OF REAL DIRECT LIMIT LIE GROUPS 7

must also show that we can determine from p whether or not F has a closed

isotropic subspace L with dimC L⊥/L = 2.

Let p̃ denote the normalizer in so(∞;C) of p. We use the classical identifi-

cation so(∞;C) ∼= Λ2(V ) where u ∧ v corresponds to the linear transformation

x �→ 〈x, v〉u− 〈x, u〉v. With this identification, following [4] one has

p̃ =
∑

α∈A\C

F ′′
α ∧ (F ′

α)⊥ +
∑
γ∈C

F ′′
γ ∧G′′

γ + Λ2(W ).

Let α ∈ A, and let x ∈ F ′′
α \ F ′

α. Then one may compute

p̃ · x =
( ∑

α∈A\C

F ′′
α ∧ (F ′

α)⊥ +
∑
γ∈C

F ′′
γ ∧G′′

γ + Λ2(W )
)
· x

=
( ∑

α∈A\C

F ′′
α ⊗ (F ′

α)⊥ +
∑
γ∈C

F ′′
γ ⊗G′′

γ

)
· x

=
( ⋃

x/∈(F ′
α)⊥⊥

F ′′
α

)
∪
( ⋃

x/∈(G′′
γ )⊥

F ′′
γ

)
.

As a result

p̃ · x =

{
F ′

α if α ∈ A \ C

F ′′
α if α ∈ C.

So far we have shown the following. If x ∈ p̃ · x, then F ′′
α = p̃ · x. If x /∈ p̃ · x,

then F ′′
α = (p̃ ·x)⊥⊥. Furthermore, if x /∈M , then p̃ ·x is not isotropic, unless there

exists a closed isotropic subspace L ∈ F with dimC L⊥/L = 2, and x is an element

of M1 or M2. We now consider the union of the subspaces p̃ · x, where the union is

taken over x ∈ V for which p̃ · x is isotropic. If there does not exist L as described,

then these subspaces will be the nested isotropic subspaces computed above, and

indeed their union is M . If L exists, then these subspaces will exhaust L, and

furthermore M1 and M2 will both appear in the union. Hence the union of the

isotropic subspaces of the form p̃ · x for x ∈ V when L exists is L⊥. As a result, if

the union of all the isotropic subspaces of the form p̃ ·x for x ∈ V is itself isotropic,

then we conclude that no such L exists and we have constructed the subspace M .

If that union is not isotropic, then we conclude that there exists a closed isotropic

subspace L ∈ F with dimC L⊥/L = 2, and the union is L⊥. In the latter case, L is

recoverable from p, as it equals L⊥⊥. We have now shown that we can determine

whether F has a closed isotropic subspace L with dimC L⊥/L = 2, that F ′′
α is

determined by p for all α ∈ A in the latter case, and that F ′′
α is determined by p

for all α ∈ A such that F ′′
α ⊂ L in the former case.

We now turn our attention to a non–closed subspace G′′
γ for γ ∈ C. Since G′′

γ

is not closed, the codimension of F ′′
γ in G′′

γ is infinite. Thus if there exists L ∈ F
as above, then F ′′

γ ⊂ L. So we have already shown that F ′′
γ , and indeed F ′

γ as well,

are recoverable from p whether or not there exists L ∈ F . Let x ∈ (F ′
γ)⊥ \ (F ′′

γ )⊥.

Then there exists v ∈ F ′′
γ such that 〈v, x〉 	= 0, and one has

(v ∧G′′
γ) · x = {(v ∧ y) · x | y ∈ G′′

γ} = {〈x, y〉v − 〈x, v〉y | y ∈ G′′
γ}.

Since v∧G′′
γ ⊆ p̃ and v ∈ F ′′

γ , we see that G′′
γ = (v∧G′′

γ) ·x+F ′′
γ ⊂ p̃ ·x+F ′′

γ ⊂ G′′
γ .

Hence G′′
γ = p̃ · x + F ′′

γ , and we conclude that G′′
γ is recoverable from p.

Finally, we must show that p determines W under the assumption that no

subspace L ∈ F as above exists. We have already shown that M is recoverable
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from p under this assumption. If M = M⊥, then W = 0. We claim that W =

p̃ · x + M for any x ∈ M⊥ \ M when M 	= M⊥. Indeed, let X be any vector

space complement of M in W . Since x /∈ M and W⊥ = M , one has 〈x, X〉 	= 0.

Furthermore, the restriction of the symmetric bilinear form on V to X is symmetric

and nondegenerate. Then Λ2(X) · x = X because dimC X � 3. Since Λ2(X) ⊂ p̃,

we conclude that p̃ · x + M = W . Thus W can be recovered from p.

If F is a self–taut generalized flag without any isotropic subspace L ∈ F such

that dimC L⊥/L = 2, then we have now shown that F is uniquely determined by

p. Finally, suppose that there does exist an isotropic subspace L ∈ F such that

dimC L⊥/L = 2. Then we have shown that every subspace of F which does not

lie strictly between L and L⊥ is determined by p. There are exactly two maximal

isotropic subspaces M1 and M2 containing L, and both M1 and M2 are stable under

the so(∞;C)–stabilizer of L. Hence the three self-taut generalized flags listed in

the statement are precisely the self–taut generalized flags whose stabilizers equal

the stabilizer of F . �

3. Real Parabolic Subalgebras

Recall that a parabolic subalgebra of a real Lie algebra gR is a subalgebra whose

complexification is a parabolic subalgebra of the complexified algebra gC.

Let gC be one of gl(∞,C), sl(∞,C), so(∞,C), and sp(∞,C), and let gR be

a real form of gC. Let GR be the corresponding connected real subgroup of GC.

When gR has two inequivalent defining representations, we denote them by VR and

WR, and when gR has only one defining representation, we denote it by VR. Let D
denote the algebra of gR–endomorphisms of VR.

Theorem 3.1. Suppose that gR has two inequivalent defining representations.
A subalgebra of gR (resp. subgroup of GR) is parabolic if and only if it is defined by
infinite trace conditions (resp. infinite determinant conditions) on the gR–stabilizer
(resp. GR–stabilizer) of a taut couple of D–generalized flags F in VR and G in WR.

Suppose that gR has only one defining representation. A subalgebra of gR (resp.
subgroup) of GR is parabolic if and only if it is defined by infinite trace conditions
(resp. infinite determinant conditions) on the gR–stabilizer (resp. GR–stabilizer) of
a self–taut D–generalized flag F in VR.

Proof. We will prove the statements for the Lie algebras in question. The

statements on the level of Lie ind–groups follow immediately, since infinite deter-

minant conditions on a Lie ind–group are equivalent to infinite trace conditions on

its Lie algebra.

Suppose that pR is a parabolic subalgebra of gR. By definition, the com-

plexification pC is a parabolic subalgebra of gC. Theorem 2.7 implies that pC is

defined by infinite trace conditions TrpC on the gC–stabilizer of a taut couple of

generalized flags in V and W or on a self–taut generalized flag in V . As TrpC is

stable under complex conjugation it is the complexification of the real subspace

(TrpC)R := {t ∈ TrpC | τ (t) = t} where τ comes from complex conjugation of gC

over gR. We will use this to show case by case that pR is defined by trace conditions

on the gR–stabilizer of the appropriate generalized flag(s).

The first cases we treat are those where the defining representation space VR is

the fixed point set of a complex conjugation τ : V → V . The real forms fitting this

description are sl(∞;R), so(∞,∞), so(p,∞), sp(∞;R), and gl(∞;R). Consider the
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sl(∞;R) case, and note that the proof also holds in the gl(∞;R) case. Let F and

G be the taut couple of generalized flags in V and W given in Theorem 2.7, and

note that WR is the fixed points of complex conjugation τ : W → W . Evidently

τ (pC) = pC, so τ (F) = F and τ (G) = G by the uniqueness claim of Theorem 2.7.

Since the generalized flags F and G are τ–stable, every subspace in them is τ–stable.

(Explicitly, for any F ∈ F , we have τ (F ) ∈ F , so either τ (F ) ⊂ F or F ⊂ τ (F ).

Since τ 2 = Id, we have F = τ (F ) for any F ∈ F .) Hence every subspace in F and

G has a real form, obtained as the intersection with VR and WR, respectively. The

generalized flags FR := {F ∩ VR | F ∈ F} and GR := {G ∩WR | G ∈ G} form a

taut couple as R–generalized flags in VR and WR. Now pR is defined by the infinite

trace conditions (TrpC)R on the sl(∞;R)–stabilizer of the taut couple FR and GR of

generalized flags in VR and WR.

If gR is so(∗,∞) or sp(∞;R), Theorem 2.7 implies that pC is defined by infinite

trace conditions on the gC–stabilizer a self–taut generalized flag F in V . The

arguments of the sl(∞;R) case show that F is τ–stable, provided that τ (pC) = pC

forces τ (F) = F . That is ensured by the uniqueness claim in Theorem 2.7 for

the symplectic case, and by Theorem 2.8 in the orthogonal cases where uniqueness

holds. Uniqueness fails precisely when gR = so(∞,∞) and there exists an isotropic

subspace L ∈ F with dimC(L⊥/L) = 2. We may assume that F is the first of the

three generalized flags listed in the statement of Theorem 2.8. Then τ (F) is one

of the three generalized flags listed in the statement of Theorem 2.8, and since F
is contained in any of those three, the subspaces of F are all τ–stable. Finally, the

generalized flag FR := {F ∩VR | F ∈ F} in VR is self–taut, and pR is defined by the

infinite trace conditions (TrpC)R on its gR–stabilizer.

Second, suppose that gR = su(∗,∞). Note that the arguments for su(∗,∞)

apply without change to u(∗,∞). By Theorem 2.7, pC is given by infinite trace

conditions TrpC on the gl(∞;C)–stabilizer of a taut couple F and G of generalized

flags in V and W . There exists an isomorphism of gR–modules f : V → W . Both

G and f(F) are stabilized by pR, hence also by pC, so the uniqueness claim of

Theorem 2.7 tells us that G = f(F). Thus F is self–taut. We conclude that pR

is given by the infinite trace conditions (TrpC)R on the stabilizer of the self–taut

generalized flag F .

The third case we consider is that of gR = sl(∞;H). Note that the gl(∞;H)

case is proved in the same manner. Then gC = sl(2∞;C), where we have the

identifications V = C2∞ = C∞+C∞j = H∞ = VR and W = WR. The quaternionic

scalar multiplication v �→ vj is a complex conjugate–linear transformation J of

C2∞ of square −Id, and the complex conjugation τ of gC over gR is given by

ξ �→ JξJ−1 = J−1ξJ . Let F and G be the unique taut couple given by Theorem 2.7.

Since pC = τ (pC), we have F = J(F) and G = J(G). Since J2 = −Id, every

subspace of F and G is preserved by J . In other words F and G consist of H-

subspaces of VR and WR. The fact that F and G form a taut couple of C–generalized

flags in V and W implies via Lemma 2.4 that they form a taut couple of H–

generalized flags in VR and WR. Hence pR is defined by the infinite trace conditions

(TrpC)R on the stabilizer of the taut couple F , G.
The fourth case we consider is that of sp(∗,∞). Then VR has an invariant

quaternion–hermitian form of signature (∗,∞) and a complex conjugate–linear

transformation J of square −Id as described above. Let F be the unique self–

taut generalized flag in V given by Theorem 2.7. By the uniqueness of F , we have
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F = J(F), so as before F consists of H–subspaces of VR. Lemma 2.4 implies that

F is self–taut when considered as an H–generalized flag in VR. Hence pR is defined

by the infinite trace conditions (TrpC)R on the stabilizer of F .

The fifth and final case and is that of gR = so∗(2∞). Any subspace of V
which is stable under the C-conjugate linear map J which corresponds to x �→ xj
is an H–subspace of VR. Let F be a self–taut generalized flag in V as given by

Theorem 2.7. Since gC = so(∞;C), Theorem 2.8 says that either F is unique

or there are exactly three possibilities for F . When F is unique, we must have

F = J(F), so F is an H–generalized flag. When F is not unique, we may assume

that F is the first of the three generalized flags listed in the statement of Theorem

2.8, the one with an immediate predecessor–successor pair L ⊂ L⊥ where L is

closed and dimC(L⊥/L) = 2. Then J(F) has the same property so J(F) = F . In

all cases Lemma 2.4 implies that F is self–taut when considered as an H–generalized

flag. Hence pR is defined by the infinite trace conditions (TrpC)R on the so∗(2∞)–

stabilizer of the self–taut H–generalized flag F .

Conversely, suppose that pR is defined by infinite trace conditions TrpR on

the gR–stabilizer of a taut couple FR, GR or a self–taut generalized flag FR, as

appropriate. Either V = VR ⊗ C or V = VR.

Suppose first that V = VR ⊗ C. Let F := {F ⊗ C | F ∈ FR}. If gC has only

one defining representation V , then F is a self–taut generalized flag in V , and pC

is defined by the infinite trace conditions TrpR ⊗ C on the gC–stabilizer of F . Now

suppose that gC has two inequivalent defining representations. If gR also has two

inequivalent defining representations, let G := {G ⊗ C | G ∈ GR}. If gR has only

one defining representation, then let G be the image of F under the gR–module

isomorphism V → W . Then F , G are a taut couple, and pC is defined by the

infinite trace conditions TrpR ⊗ C on the gC–stabilizer of F , G.
Suppose that V = VR. Then gR and gC have the same number of defining

representations. If gR has two defining representations, then Lemma 2.4 implies

that FR and GR are a taut couple when considered as C–generalized flags. Then

pC is defined by the infinite trace conditions TrpR ⊗ C on the gC–stabilizer of FR,

GR. If gR has only one defining representation, then Lemma 2.4 implies that FR

is a self–taut generalized flag when considered as a C–generalized flag. Thus pC is

defined by the infinite trace conditions TrpR ⊗ C on the gC–stabilizer of FR.

In each case, Theorem 2.7 implies that pC is a parabolic subalgebra of gC, so

by definition pR is a parabolic subalgebra of gR. �
Theorem 3.2. Let pR be a parabolic subalgebra of gR. If gR � so(∞,∞),

then there is a unique taut couple or self–taut generalized flag associated to pR by
Theorem 3.1. The real analogue of Theorem 2.8 holds for gR

∼= so(∞,∞).

Proof. If there is a unique taut couple or self–taut generalized flag associated

to pC, then the uniqueness of the taut couple or self–taut generalized flag associated

to pR is immediate from the proof of Theorem 3.1. If gR
∼= so(∞,∞), then each

of the C–generalized flags of Theorem 2.8 has a real form, hence the real analogue

of Theorem 2.8 holds in this case. Now suppose that gR
∼= so∗(2∞) and the

self–taut generalized flag F associated to pC has a closed isotropic subspace L with

dimC(L⊥/L) = 2. The proof of Theorem 3.1 shows that L and L⊥ are H–subspaces,

and the quaternionic codimension of L in L⊥ is 1. Hence the H–generalized flag

associated to pR has no subspaces strictly between L and L⊥, which forces it to be

unique. �
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Remark 3.3. Theorem 3.1 simplifies sharply in the su(p,∞), so(p,∞), sp(p,∞),

and u(p,∞) cases when p ∈ Z�0. Because p is the maximal dimension of an isotropic

subspace of VR (and thus the maximal codimension of a closed coisotropic subspace),

a self–taut generalized flag must be finite. No infinite trace conditions arise. The

stabilizer of such a self–taut generalized flag coincides with the joint stabilizer of its

isotropic subspaces and at most one non–closed coisotropic subspace. (The perpen-

dicular complement of the single non–closed coisotropic subspace, when it occurs,

is the largest isotropic subspace.) ♦

Remark 3.4. The special case where the subalgebra of gC (or gR) is a direct

limit of parabolics of the gn,C (or the gn,R) has been studied in a number of contexts

such as [8] and [10], and in particular in connection with direct limits of principal

series representations [12]. Any direct limit of parabolic subalgebras is a parabolic

subalgebra in the general sense of this paper. ♦

4. A Geometric Interpretation

Our geometric interpretation is modeled on a criterion from the finite–dimensional

case. Let GC be a finite–dimensional classical Lie ind–group, and GR a real form of

GC. Let P ⊂ GC be a parabolic subgroup, and let Z := GC/P be the corresponding

flag manifold. Then GR acts on Z as a subgroup of GC. One knows [11, Theorem

3.6] that there is a unique closed GR–orbit F on Z, and that dimR F � dimC Z,

with equality precisely when F is a real form of Z. Thus real and complex di-

mensions satisfy dimR F = dimC Z if and only if F is a totally real submanifold of

Z. This is the motivation for our geometric interpretation, for F is a totally real

submanifold of Z if and only if GR has a parabolic subgroup whose complexification

is GC–conjugate to P . Then that real parabolic subgroup is the GR–stabilizer of a

point of the closed orbit F . Here note that if any GR–orbit in Z is totally real then

it has real dimension � dimC Z, so it must be the closed orbit.

Let now GC be one of the Lie ind–groups GL(∞;C), SL(∞;C), SO0(∞;C)

and Sp(∞;C). Fix an exhaustion of GC by classical connected finite–dimensional

subgroups Gn,C, and let Gn,R be nested real forms of Gn,C. Then GR := lim−→Gn,R is

a real form of GC. Let PC be a parabolic subgroup of GC. As described in Section

2C, PC is defined by infinite determinant conditions on the stabilizer P̃C of a taut

couple or a self–taut generalized flag. Here P̃C is the normalizer of PC in GC . We

use the usual notation for the Lie algebras of all these Lie ind–groups.

Lemma 4.1. Consider the homogeneous space Z = GC/P̃C. Write z0 for the
identity coset 1 · P̃C in Z and define Zn = Gn,C(z0). Then each Zn is a (finite–
dimensional) complex homogeneous space and Z is the complex ind–manifold lim−→Zn

(direct limit in the category of complex manifolds and holomorphic maps.)

Proof. P̃C is a complex subgroup of GC, and P̃C = lim−→(Gn,C ∩ P̃C). Each

finite–dimensional orbit Zn is a complex manifold because Gn,C ∩ P̃C is a complex

subgroup of Gn,C, and the inclusions Zn ↪→ Zn+1 are holomorphic embeddings. As

in [10] now Z = lim−→Zn is a strict direct limit in the category of complex manifolds

and holomorphic maps. In other words a function f on an open subset U ⊂ Z
is holomorphic if and only if each of the f |U∩Zn

: U ∩ Zn → C is holomorphic.

Note that separately holomorphic functions on open subsets U ⊂ Z are jointly
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holomorphic because each f |U∩Zn
is jointly holomorphic (and thus continuous) by

Hartogs’ Theorem. �
Lemma 4.2. Let Y = GR(z0) and Yn = Gn,R(z0). Then Y is a totally real

submanifold of Z if and only if each Yn is a totally real submanifold of Zn.

Proof. Let J denote the complex structure operator for Z, linear transfor-

mation of square −Id on the complexified tangent space T := Tz0,C(Z) of Z at z0.

Then J preserves each of the Tn := Tz0,C(Zn). Now Y is totally real if and only if

the real tangent space TR := Tz0(Z) satisfies J(TR)∩ TR = 0, and Yn is totally real

if and only if the real tangent space Tn,R := Tz0(Zn) satisfies J(Tn,R) ∩ Tn,R = 0.

Since TR = lim−→Tn,R the assertion follows. �

Lemma 4.3. Gn,R ∩ P̃C is a real form of Gn,C ∩ P̃C if and only if Yn is totally
real in Zn.

Proof. Denote Hn,C = Gn,C ∩ P̃C and Hn,R = Gn,R ∩ P̃C. Suppose first

that Yn is totally real in Zn. Then dimR Gn,R−dimR Hn,R = dimR Yn � dimC Zn =

dimC Gn,C−dimC Hn,C, so dimR Hn,R � dimC Hn,C, forcing dimR Hn,R = dimC Hn,C.

Now Hn,R is a real form of Hn,C.

Conversely suppose that Hn,R is a real form of Hn,C. Then the real tangent

space to Yn at z0 is represented by any vector space complement mn,R to hn,R in

gn,R, while the real tangent space to Zn at z0 is represented by the vector space

complement mn,R ⊗ C to hn,C in gn,C, so Yn is totally real in Zn. �
Putting all this together, we have our geometric characterization of parabolic

subgroups of the classical real Lie ind–groups.

Theorem 4.4. Fix a parabolic subgroup PC ⊂ GC and consider the flag ind–
manifold Z = GC/P̃C. Then PC ∩ GR is a parabolic subgroup of GR if and only if
the following two conditions hold:

(i) the orbit GR(z0) of the base point z0 = P̃C is a totally real submanifold of
Z;

(ii) the set of all infinite trace conditions on p̃C satisfied by pC is stable under
the complex conjugation τ of gC over gR.

Proof. Lemmas 4.2 and 4.3 show that the orbit GR(z0) is a totally real sub-

manifold of Z if and only if GR ∩ P̃C is parabolic in GR.

If GR ∩ PC is parabolic in GR then GR ∩ P̃C is parabolic because it contains

GR ∩ PC, and the corresponding real set of infinite trace conditions complexifies to

the set of infinite trace conditions by which pC is defined from p̃C. Thus (i) and (ii)

follow.

Conversely assume (i) and (ii). From (i), GR∩P̃C is a parabolic subgroup of GR,

and from (ii), {x ∈ gR∩p̃C | x satisfies TrpC}⊗C = {x ∈ p̃C | x satisfies TrpC}, where

TrpC denotes the set of infinite trace conditions described in Definition 2.6. �
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