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Summary. We study direct limits (G, K) = lim−→ (Gn, Kn) of compact Gelfand pairs.
First, we develop a criterion for a direct limit representation to be a multiplicity-
free discrete direct sum of irreducible representations. Then we look at direct limits
G/K = lim−→ Gn/Kn of compact riemannian symmetric spaces, where we combine
our criterion with the Cartan–Helgason theorem to show in general that the reg-
ular representation of G = lim−→Gn on a certain function space lim−→L2(Gn/Kn) is
multiplicity-free. That method is not applicable for direct limits of nonsymmetric
Gelfand pairs, so we introduce two other methods. The first, based on “parabolic di-
rect limits” and “defining representations”, extends the method used in the symmet-
ric space case. The second uses some (new) branching rules from finite-dimensional
representation theory. In both cases we define function spaces A(G/K), C(G/K),
and L2(G/K) to which our multiplicity-free criterion applies.

Key words: Lie group, Gelfand pair, commutative space, direct limit representa-
tion, multiplicity-free representation.

2000 Mathematics Subject Classifications: 20G05, 22E45, 22E65, 43A85, 43A90.

1 Introduction

Gelfand pairs (G, K), and the corresponding “commutative” homogeneous
spaces G/K, form a natural extension of the class of riemannian symmetric
spaces. We recall some of their basic properties. Let G be a locally compact
topological group, K a compact subgroup, and M = G/K. Then the following
conditions are equivalent; see [W2007, Theorem 9.8.1].

1. (G, K) is a Gelfand pair, i.e., L1(K\G/K) is commutative under con-
volution.

2. If g, g′ ∈ G then µKgK ∗ µ
Kg′K

= µ
Kg′K

∗ µKgK (convolution of Dirac
measures on K\G/K).

3. Cc(K\G/K) is commutative under convolution.
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4. The measure algebraM(K\G/K) is commutative.
5. The representation of G on L2(M) is multiplicity-free.

If G is a connected Lie group one can also add
6. The algebra of G-invariant differential operators on M is commutative.

When we drop the requirement that K be compact, conditions 1, 2, 3,
and 4 lose their meaning because integration on M or K\G/K no longer
corresponds to integration on G. Condition 5 still makes sense as long as K is
unimodular in G. Condition 6 remains meaningful (and useful) whenever G
is a connected Lie group; there one speaks of “generalized Gelfand pairs”.

In this paper we look at some cases where G and K are not locally compact,
in fact are infinite dimensional, and show in those cases that the multiplicity-
free condition 5 is satisfied. We first discuss a multiplicity-free criterion that
can be viewed as a variation on some of the combinatoric considerations of
[DPW2002]; it emerged from some discussions with Ivan Penkov in another
context. We then apply the criterion in the setting of symmetric spaces, prov-
ing that direct limits of compact symmetric spaces are multiplicity-free. This
applies in particular to infinite-dimensional real, complex, and quaternionic
Grassmann manifolds, and it uses some basic symmetric space structure the-
ory. In particular, our argument for direct limits of compact riemannian sym-
metric spaces makes essential use of the Cartan–Helgason theorem, and thus
does not extend to direct limits of nonsymmetric Gelfand pairs.

In order to extend the multiplicity-free result to at least some direct limits
of nonsymmetric Gelfand pairs, we define the notion of “defining representa-
tion” for a direct system {(Gn, Kn)}, where the Gn are compact Lie groups
and the Kn are closed subgroups. We show how a defining representation
for {(Gn, Kn)} leads to a direct system {A(Gn/Kn)} of C-valued polyno-
mial function algebras, a continuous function completion {C(Gn/Kn)}, and a
Lebesgue space completion {L2(Gn/Kn)}. The direct limit spaces A(G/K),
C(G/K), and L2(G/K) are the function spaces on G/K = lim−→ Gn/Kn which
we study as G-modules.

Next, we prove the multiplicity-free property, for the action of G on
A(G/K), C(G/K), and L2(G/K), when {(Gn, Kn)} is one of several fami-
lies of Gelfand pairs related to spheres and Grassmann manifolds. We prove
the multiplicity-free property for three other types of direct limits of Gelfand
pairs.

Finally we summarize the results, extending them slightly by including the
possibility of enlarging the Kn within their Gn-normalizers without losing the
property that {Kn} is a direct system.

Our proofs of the multiplicity-free condition, for some direct limits of non-
symmetric Gelfand pairs, use a number of branching rules, new and old, for
finite-dimensional representations. This lends a certain ad hoc flavor which I
hope can be avoided in the future.

Direct limits (G, K) = lim−→(Gn, Kn) of riemannian symmetric spaces were
studied by Ol’shanskii from a very different viewpoint [Ol1990]. He viewed the



Infinite-Dimensional Multiplicity-Free Spaces, I 461

Gn inside dual reductive pairs and examined their action on Hilbert spaces of
Hermite polynomials. Ol’shanskii made extensive use of factor representation
theory and Gaussian measure, obtaining analytic results on limit-spherical
functions. See Faraut [Fa2006] for a discussion of spherical functions in the set-
ting of direct limit pairs. In contrast to the work of Ol’shanskii and Faraut, we
use the rather simple algebraic method of renormalizing formal degrees of rep-
resentations to obtain isometric embeddings L2(Gn/Kn) ↪→ L2(Gn+1/Kn+1).
That leads directly to our multiplicity-free results.

Acknowledgements: I am indebted to Ivan Penkov for discussions of multiplic-
ities in direct limit representations, which are formalized in Theorem 2 below.
I also wish to acknowledge hospitality from the Mathematisches Forschungsin-
stitut Oberwolfach and support from NSF Grant DMS 04 00420.

2 Direct limit groups and representations

We consider direct limit groups G = lim−→Gn and, their direct limit represen-
tations π = lim−→πn. This means that πn is a representation of Gn on a vector
space Vn, that the Vn form a direct system, and that π is the representation of
G on V = lim−→Vn given by π(g)v = πn(gn)vn whenever n is sufficiently large
that Vn ↪→ V and Gn ↪→ G send vn to v and gn to g. The formal definition
amounts to saying that π is well defined.

It is clear that a direct limit of irreducible representations is irreducible,
but there are irreducible representations of direct limit groups that cannot be
formulated as direct limits of irreducible finite-dimensional representations.
This is a combinatoric matter and is discussed extensively in [DPW2002].
The following definition is closely related to those combinatorics but applies
to a somewhat simpler situation.

Definition 1 We say that a representation π of G is limit aligned if it has form
lim−→πn in such a way that (i) each πn is a direct sum of primary representations,
and (ii) the corresponding representation spaces V = lim−→Vn have the property
that every primary subspace of Vn is contained in a primary subspace of Vn+1.

Theorem 2 A limit-aligned representation π = lim−→πn of G = lim−→Gn is a
direct sum of primary representations. If the πn are multiplicity free, then π
is a multiplicity-free direct sum of irreducible representations.

Proof. Let V = lim−→Vn be the representation spaces. Decompose Vn =∑
α∈In

Vn,α, where the Vn,α are the subspaces for the primary summands
of πn. Write πn,α for the representation of Gn on Vn,α, so πn =

∑
α∈In

πn,α.
Since π is limit aligned, i.e., since each Vn,α ⊂ Vn+1,β for some β ∈ In+1,

we may assume In ⊂ In+1 in such a way that each Vn,α ⊂ Vn+1,α for every
α ∈ In. Now V =

∑
α∈I Vα, discrete sum, where I =

⋃
In and Vα =

⋃
Vn,α.

The sum is direct, for if u1 + u2 + · · · + ur = 0 where ui ∈ Vαi for distinct
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indices α1, . . . , αr, then we take n sufficiently large so that each ui ∈ Vn,αi

and conclude that u1 = u2 = · · · = ur = 0. Thus π is the discrete direct sum
of the representations πα = lim−→πn,α of G on Vα.

Let Cα = {X : Vα → Vα linear | Xπα(g) = πα(g)X for all g ∈ G}, the
commuting algebra of πα. If πα fails to be primary, then Cα contains nontrivial
commuting ideals C′α and C′′α. Then for n large, the stabilizer NCα(Vn,α) of
Vn,α in Cα contains nontrivial commuting ideals NC′

α
(Vn,α) and NC′′

α
(Vn,α).

That is impossible because πn,α is primary. We have proved that π is the
discrete direct sum of primary representations πα.

If the πn are multiplicity free, then the πn,α are irreducible and it is im-
mediate that the πα = lim−→πn,α are irreducible. This completes the proof of
Theorem 2. ��

A direct limit of irreducible representations is irreducible, but it is not
immediate that every irreducible direct limit representation can be rewritten
as a direct limit of irreducible representations. With this and Theorem 2 in
mind, we extend Definition 1 as follows.

Definition 3 A representation π of G = lim−→Gn is lim irreducible if it has form
π = lim−→πn where each πn is an irreducible representation of Gn. Similarly, π is
lim primary if it has form π = lim−→πn where each πn is a primary representation
of Gn.

Theorem 4 Consider a representation π = lim−→πn of G = lim−→Gn with
representation space V = lim−→Vn. Suppose that each πn is a multiplicity-free
direct sum of irreducible highest weight representations. Suppose for n >> 0
that the direct system map Vn−1 ↪→ Vn sends Gn−1-highest weight vectors
to Gn-highest weight vectors. Then π is a multiplicity-free direct sum of
lim-irreducible representations of G.

Proof. By hypothesis each πn is a direct sum of primary representations which,
in fact, are irreducible highest weight representations. We recursively choose
highest weight vectors so that πn−1 =

∑
πλ,n−1, where πλ,n−1 has highest

weight vector vλ,n−1 ∈ Vn−1 that maps to a highest weight vector vλ,n ∈ Vn
of an irreducible constituent πλ,n of πn. This exhibits π as a limit-aligned
direct sum because it embeds the summand Vλ,n−1 of Vn−1 into the irre-
ducible summand of Vn that contains vλ,n. Now Theorem 2 shows that π is a
multiplicity-free direct sum of lim-irreducible representations of G. ��

3 Limit theorem for symmetric spaces

We now apply Theorems 2 and 4 to direct limits of compact riemannian
symmetric spaces. Fix a direct system of compact connected Lie groups Gn

and subgroups Kn such that each (Gn, Kn) is an irreducible riemannian
symmetric pair. Suppose that the corresponding compact symmetric spaces
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Mn = Gn/Kn are connected and simply connected. Up to renumbering and
passage to a common cofinal subsequence, the only possibilities are as given
in the following table.

compact irreducible riemannian symmetric Mn = Gn/Kn

Gn Kn RankMn DimMn

1 SU(n) × SU(n) diagonal SU(n) n − 1 n2 − 1

2 Spin(2n + 1) × Spin(2n + 1) diagonal Spin(2n + 1) n 2n2 + n

3 Spin(2n) × Spin(2n) diagonal Spin(2n) n 2n2 − n

4 Sp(n) × Sp(n) diagonal Sp(n) n 2n2 + n

5 SU(p + q), p = pn, q = qn S(U(p) × U(q)) min(p, q) 2pq

6 SU(n) SO(n) n − 1 (n−1)(n+2)
2

7 SU(2n) Sp(n) n − 1 2n2 − n − 1

8 SO(p + q), p = pn, q = qn SO(p) × SO(q) min(p, q) pq

9 SO(2n) U(n) [n
2
] n(n − 1)

10 Sp(p + q), p = pn, q = qn Sp(p) × Sp(q) min(p, q) 4pq

11 Sp(n) U(n) n n(n + 1)

(5)

Fix one of the direct systems {(Gn, Kn)} of Table 5. Then we have invo-
lutive automorphisms θn of Gn such that the Lie algebras decompose into ±1
eigenspaces of the θn,

gn = kn + sn in such a way that kn = gn ∩ kn+1 and sn = gn ∩ sn+1.

Then we recursively construct a system of maximal abelian subspaces

an : maximal abelian subspace of sn such that an = gn ∩ an+1.

The restricted root systems

Σn = Σn(gn, an) : the system of an-roots on gn

form an inverse system of linear functionals: Σ = Σ(g, a) is the system lim←−Σn

of linear functionals on a = lim−→ an. In this inverse system, the multiplicities of
the restricted roots will increase without bound, but we can make consistent
choices of positive subsystems

Σ+
n = Σ+

n (gn, an) : system of positive an-roots on gn

so that Σ+
n ⊂ Σ+

m|an for m � n � n0. Consider the reduced root system

Σ0,n = {α ∈ Σn | 2α 	∈ Σn}

and its positive subsystem Σ+
0,n := Σ0,n ∩Σ+

n . Examining the tables of Araki
([Ar1962], or referring to [He1978, pp. 532–534] or [W1980, pp. 90–93]), we
see the following.
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Lemma 6 Suppose that Gn is simple. Then there are only two possibilities.
(a) Σ0,n = Σn; in other words, if α ∈ Σn then 2α /∈ Σn.

(b) Σ0,n 	= Σn; there is exactly one simple root ψ1,n for Σ+
n such that

2ψ1,n ∈ Σn, and ψ1,n is at the end of the Dynkin diagram of Σ+
n opposite to

the end where roots are added to obtain the diagram of Σ+
n+1.

Then the corresponding simple root systems for Σ+
0,n, which we denote

Ψn = Ψn(gn, an) = {ψ1,n, . . . , ψrn,n} : simple reduced an-roots on gn

satisfy Ψn ⊂ Ψm|an for m � n � n0 as well. Here rn = dim an, rank of Mn.
In case (a) of Lemma 6, Ψn is a simple root system for Σ+

n , but in case
(b) the corresponding simple root system for Σ+

n is { 1
2ψ1,n, ψ2,n, . . . , ψrn,n}.

In both cases Ψn ⊂ Ψm|an for m � n � n0. More precisely, if ψj,n ∈ Ψn and
m � n, then there is just one element ψ ∈ Ψm with ψ|an = ψj,n. In other
words, we may (and do) recursively enumerate the simple root systems Ψn so
that

if m � n and ψj,n ∈ Ψn, then ψj,m ∈ Ψm satisfies ψj,m|an = ψj,n,

retaining the convention that in case (b) of Lemma 6 the 1
2ψ1,n are roots.

Later we will use the fact that

in case (b) of Lemma 6, if m � n and 1
2ψ1,n ∈ Σ+

n , then 1
2ψ1,m ∈ Σ+

m. (7)

Recursively define θn-stable Cartan subalgebras of hn = tn+an of gn with
hn = gn ∩ hn+1. Here tn is a Cartan subalgebra of the centralizer mn of an
in kn. Now recursively construct positive root systems Σ+(mn, tn) such that
if α ∈ Σ+(mn+1, tn+1), then either α|tn = 0 or α|tn ∈ Σ+(mn, tn). Then we
have positive root systems

Σ+(gn, hn) = {α ∈ ih∗n | α|an = 0 or α|an ∈ Σ+
n (gn, an)},

the corresponding simple root systems, and the resulting systems of funda-
mental highest weights.

The Cartan–Helgason theorem says that the irreducible representation πλ
of gn of highest weight λ gives a summand of the representation of Gn on
L2(Mn) if and only if (i) λ|tn = 0, so we may view λ as an element of ia∗n, and
(ii) if α ∈ Σ+

n (gn, an) then 〈λ,α〉〈α,α〉 is an integer � 0. Condition (i) persists under
restriction λ 
→ λ|hn−1 because tn−1 ⊂ tn. Given (i), condition (ii) says that
1
2λ belongs to the weight lattice of gn, so its restriction to hn−1 exponentiates
to a well-defined function on the corresponding maximal torus of Gn−1 and
thus belongs to the weight lattice of gn−1. Given condition (i) now (7) says
that condition (ii) persists under restriction λ 
→ λ|hn−1 . With this in mind,
we define linear functionals ξn,j ∈ ia∗n by

〈ξn,i,ψn,j〉
〈ψn,j,ψn,j〉 = δi,j for 1 � j � rn, except that 〈ξn,1,ψn,1〉

〈ψn,1,ψn,1〉 = 2 if 2ψn,1 ∈ Σn.
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The weights ξn,j are the class 1 fundamental highest weights for (gn, kn).
We denote

Ξn = Ξn(gn, tn, an) = {ξn,1, . . . , ξn,rn} .

Define

Λn = Λ(gn, kn, an) =
{∑

nkξk | ξk ∈ Ξn and nk ∈ Z, nk � 0
}

.

This is the set of highest weights for representations of Gn on L2(Mn), and
we have just verified that Λn|an−1 ⊂ Λn−1.

Lemma 8 For n sufficiently large, and passing to a cofinal subsequence, if
ξ ∈ Ξn−1 there is a unique ξ′ ∈ Ξn such that ξ′|an−1 = ξ.

Proof. In the group manifold cases, lines 1, 2, 3, and 4 of Table 5, express
Gn = Ln ×Ln, and note that the complexification (Ln−1)C is the semisimple
component of a parabolic subgroup of (Ln)C. The restricted root and weight
systems of (Gn, Kn) are the same as the unrestricted root and weight systems
of Ln, and the assertion follows.

In the Grassmann manifold cases, lines 5, 8, and 10 of Table 5, we first
consider the case where {pn} is bounded. Then we may assume pn = p con-
stant and qn increasing for n >> 0. Thus an−1 = an, Ψn−1 = Ψn (though
the multiplicities of the restricted roots will increase), and Ξn−1 = Ξn. The
assertion now is immediate.

In the Grassmann manifold cases we may now assume that both pn and qn
are unbounded. If pn = qn on a cofinal sequence of indices n we may assume
pn = qn for all n, so Ψn is always of type Crn . Then we interpolate pairs
and renumber so that pn = qn = pn−1 + 1 = qn−1 + 1 for all n and notice
that the Dynkin diagram inclusions Cr−1 ⊂ Cr are uniquely determined by the
integer r. If pn = qn for only finitely many n and pn < qn on a cofinal sequence
of indices n we may assume that rn = pn < qn for all n, so Ψn is always of type
Brn . Then we interpolate (pn−1, qn− 1), (pn−1, qn), (pn−1+1, qn), . . . , (pn, qn)
and renumber so that we always have rn = rn−1 or rn = rn−1 + 1 and notice
that the Dynkin diagram inclusions Br−1 ⊂ Br are uniquely determined by
the integer r. If pn = qn for only finitely many n and also pn = qn for only
finitely many n, then pn > qn on a cofinal sequence of indices n, and we may
assume pn > qn = rn for all n. We interpolate as before, exchanging the rôles
of p� and q�, and we note again that the Dynkin diagram inclusions Br−1 ⊂ Br

are uniquely determined by the integer r. Thus in all cases the fundamental
highest weights restrict as asserted.

In the lower rank cases, lines 6 and 7 of Table 5, Ψn is of type An−1, so again
restriction to an−1 has the required property. In the hermitian symmetric case,
line 11 of Table 5, an is a Cartan subalgebra of gn and gn−1 complexifies to the
semisimple part of a parabolic subalgebra of (gn)C, so the assertion follows as
in the group manifold cases. In the remaining case, line 9 of Table 5, Ψn is of
type Cn/2 for n even, type B(n−1)/2 for n odd. Passing to a cofinal subsequence
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we may assume n always even or always odd, and we may interpolate as
necessary by pairs so that n increases in steps of 2. Then, again, there is no
choice about the restriction, and the assertion follows. ��

In view of Lemma 8, after passage to a cofinal subsequence and re-
numbering, we may assume the sets Ξn ordered so that

Ξn = Ξ(gn, kn, an) ={ξ1,n, . . . , ξrn,n} with
ξ�,n−1 = ξ�,n|an−1 for 1 � � � rn−1.

(9)

Now define

In : all rn-tuples I = (i1, . . . , irn) of non-negative integers,
I = lim−→In where In ↪→ Im by (i1, . . . , irn) 
→ (i1, . . . , irn , 0, . . . , 0),

πI,n : rep of Gn with highest weight ξI = i1ξ1 + · · ·+ ipξrn ,

πI = lim−→πI,n for I ∈ I.

(10)

According to the Cartan–Helgason theorem, the πI,n exhaust the representa-
tions of Gn on L2(Mn). Denote

VI,n : representation space for the abstract representation πI,n. (11)

Then VI,n occurs with multiplicity 1 in the representation of Gn on L2(Mn). In
effect, the representation of Gn on L2(Mn) is multiplicity-free, and L2(Mn) ∼=⊕

I∈IVI,n as a Gn-module. However, in the following we must distinguish
between

⊕
I∈IVI,n as a Gn-module and L2(Mn) as a space of functions.

Let U(gn) denote the (complex) universal enveloping algebra of gn. Let
vn+1 be a highest weight unit vector in VI,n+1 for the action of Gn+1. Then
we have the Gn-submodule U(gn)(vn+1) ⊂ VI,n+1 ⊂ L2(Mn+1).

If u, v ∈ VI,n we write fu,v;I,n for g 
→ 〈u, πI,n(g)v〉, the matrix coefficient
function on Gn. These matrix coefficient functions span a space EI,n that is
invariant under left and right translations by elements of Gn. As a (Gn×Gn)-
module EI,n ∼= VI,n � V ∗I,n. If u∗n is the (unique up to scalar multiplication)
Kn-fixed unit vector in V ∗I,n, then the right Kn-fixed functions in EI,n form
the left Gn-module EKn

I,n
∼= VI,n ⊗ u∗nC ∼= VI,n.

In the following, it is crucial to distinguish between the abstract represen-
tation space VI,n and the space EKn

I,n of functions on Gn/Kn.
We normalize the Haar measure on Gn (and the resulting measure in Mn)

to total mass 1. If u, v, u′, v′ ∈ VI,n, then we have the Schur orthogonality
relation 〈fu,v;I,n, fu′,v′;I,n〉|L2(Gn) = (deg πI,n)−1〈u, u′〉〈v, v′〉.

Theorem 12 The space EKn

I,n of functions on Gn/Kn is Gn-module equiva-

lent to U(gn)(vn+1 ⊗ u∗n+1) ⊂ E
Kn+1
I,n+1. We map EKn

I,n into E
Kn+1
I,n+1 as follows.

Let {wj} be a basis of VI,n and define
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ψ′n+1,n

(∑
cj fwj,u∗

n;I,n

)

= (deg πI,n+1/ degπI,n)1/2
∑

cj fwj,u∗
n+1;I,n+1 ∈ E

Kn+1
I,n+1.

(13)

Then ψ′n+1,n : EKn

I,n → E
Kn+1
I,n+1 is Gn-equivariant and is isometric for L2

norms on Gn/Kn and Gn+1/Kn+1. In particular, as I varies with n fixed,
ψ′n+1,n : L2(Gn/Kn)→ L2(Gn+1/Kn+1) is a Gn-equivariant isometry.

Proof. We have a(vn+1) = ξI(a)vn+1 for all a ∈ a. The inclusion Gn ↪→ Gn+1

is Gn-equivariant, so restriction of functions is Gn-equivariant and thus is A-
equivariant, and (vn+1 ⊗ u∗n+1)|Mn is a ξI -weight vector in L2(Mn). If α is
a positive restricted root for Gn+1 and eα ∈ gn+1 is an α root vector, then
eα(vn+1) = 0. If α is already a root for Gn and if eα ∈ gn, then we have
eα((vn+1 ⊗ u∗n+1)|Mn) = 0. Thus either the restriction (vn+1 ⊗ u∗n+1)|Mn = 0
or (vn+1 ⊗ u∗n+1)|Mn is a highest weight vector in EKn

I,n .
Suppose that (vn+1 ⊗ u∗n+1)|Mn = 0 as a function on Mn = Gn/Kn.

Denote V ′n = U(gn)(vn+1). It is a cyclic highest weight module for Gn with
highest weight ξI , and (V ′n ⊗ u∗n+1C)|Mn = 0, and it contains a unique (up to
scalar multiple) Kn-invariant unit vector u′n. The coefficient function ϕ(g) :=
〈u′n, πI,n+1(g)u′n〉V ′

n
=

∫
Gn

(u′n ⊗ u∗n)(x)(u′n ⊗ u∗n)(x−1g)dx is identically zero
because the u′n(x) factor in the integrand vanishes for x ∈ Gn. But ϕ|Gn is
the positive definite (Gn, Kn)-spherical function on Gn for the representation
πI,n, and in particular ϕ(1) = 1. That is a contradiction. We conclude that
(vn+1⊗u∗n+1)|Mn 	= 0, so (vn+1⊗u∗n+1)|Mn is a highest weight vector in EKn

I,n .

In particular, EKn

I,n
∼= (V ′n ⊗ u∗n+1C)|Mn ⊂ E

Kn+1
I,n+1|Mn . That is the equivariant

map assertion. The unitary map assertion follows by Schur orthogonality. ��
Theorem 12 gives isometric embeddings ψ′m,n : L2(Mn) → L2(Mm) for

n � m. By construction, ψ′m,n is Gn-equivariant. Define

L2(G/K) = lim−→{L
2(Gn/Kn), ψ′m,n} : direct limit in the

category of Hilbert spaces and unitary injections.
(14)

We emphasize the renormalizations of Theorem 12. Without those renormal-
izations we lose the Hilbert space structure of L2(G/K).

Theorem 15 The left regular representation of G on L2(G/K) is a
multiplicity-free discrete direct sum of lim-irreducible representations. Specif-
ically, that left regular representation is

∑
I∈I πI , where πI = lim−→πI,n is

the irreducible representation of G with highest weight ξI :=
∑

irξr. This
applies to all the direct systems of Table 5. In particular, we have the thirteen
infinite-dimensional multiplicity-free spaces
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1. SU(∞)× SU(∞)/diag SU(∞), group manifold SU(∞),
2. Spin(∞)× Spin(∞)/diag Spin(∞), group manifold Spin(∞),
3. Sp(∞)× Sp(∞)/diag Sp(∞), group manifold Sp(∞),
4. SU(p +∞)/S(U(p)× U(∞)), C

p subspaces of C
∞,

5. SU(2∞)/[S(U(∞)× U(∞))], C
∞ subspaces of infinite codim in C

∞,

6. SU(∞)/SO(∞),
7. SU(2∞)/Sp(∞),
8. SO(p +∞)/[SO(p)× SO(∞)], oriented R

p subspaces of R
∞,

9. SO(2∞)/[SO(∞)× SO(∞)], R
∞ subspaces of infinite codim in R

∞,

10. SO(2∞)/U(∞),
11. Sp(p +∞)/[Sp(p)× Sp(∞)], H

p subspaces of H
∞,

12. Sp(2∞)/[Sp(∞)× Sp(∞)], H
∞ subspaces of infinite codim in H

∞,

13. Sp(∞)/U(∞).

Proof. λ is limit aligned by Theorem 12. Denote VI =
⋃

VI,n = lim−→VI,n.
Then G acts irreducibly on it by πI = lim−→πI,n, and the various πI are mutu-
ally inequivalent because they have different highest weights ξI :=

∑
irξr ,

and are lim irreducible by construction. Now let V =
∑
I∈I VI . Then

V = lim−→L2(Gn/Kn) = L2(G/K). ��

4 Gelfand pairs and defining representations

In this section we set the stage for the extension of Theorem 15 to a number of
direct systems {(Gn, Kn)} of compact nonsymmetric Gelfand pairs. A glance
at [Ya2004] or [W2007] reveals many such pairs, but here we will only consider
those for which the compact groups Gn are simple. The following table shows
the Krämer classification of Gelfand pairs corresponding to compact simple
Lie groups (see [Kr1979] or [Ya2004] or [W2007, Table 12.7.1]).

Mn = Gn/Hn weakly symmetric Gn/Kn symmetric

Gn Hn Conditions Kn with Hn ⊂ Kn ⊂ Gn

1 SU(m + n) SU(m) × SU(n)] n > m � 1 S[U(m) × U(n)]
2 SO(2n) SU(n) n odd, n � 3 U(n)
3 E6 Spin(10) Spin(10) · Spin(2)

4 SU(2n + 1) Sp(n) n � 1 U(2n) = S[U(2n) × U(1)]
5 SU(2n + 1) Sp(n) × U(1) n � 1 U(2n) = S[U(2n) × U(1)]

6 Spin(7) G2 (there is none)
7 G2 SU(3) (there is none)

8 SO(10) Spin(7) × SO(2) SO(8) × SO(2)
9 SO(9) Spin(7) SO(8)

10 Spin(8) G2 Spin(7)

11 SO(2n + 1) U(n) n � 2 SO(2n)
12 Sp(n) Sp(n − 1) × U(1) n � 1 Sp(n − 1) × Sp(1)

(16)
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This gives us the nonsymmetric direct systems {(Gn, Kn)}, where

(a) Gn = SU(pn + qn) and Kn = SU(pn)× SU(qn), pn < qn

(b) Gn = SO(2n) and Kn = SU(n), n odd, n � 3
(c) Gn = SU(2n + 1) and Kn = Sp(n), n � 1
(d) Gn = SU(2n + 1) and Kn = U(1)× Sp(n), n � 1
(e) Gn = SO(2n + 1) and Kn = U(n), n � 2
(f) Gn = Sp(n) and Kn = U(1)× Sp(n− 1), n � 2.

(17)

Definition 18 Let {(Gn, Kn)} be a direct system of Lie groups and closed
subgroups. Suppose that π = lim−→πn is a lim-irreducible representation of
G = lim−→Gn, with representation space V = lim−→Vn, such that (i) πn(Kn) is
the πn(Gn)-stabilizer of a vector vn ∈ Vn and (ii) each vn+1 = vn+wn+1 where
πn(Gn) leaves wn+1 fixed. (Thus the vn give a coherent system of embeddings
of the Gn/Kn.) Suppose further that for n >> 0 the πn have the same highest
weight vector. Then we say that π = lim−→πn is a defining representation for
{(Gn, Kn)}.

Now let’s consider some important examples of defining representations.
We will use these examples later.

Example 19 Gn = SU(pn + qn) and Kn = SU(pn) × SU(qn), pn < qn, in
(17). Let {e1, . . . , epn+qn} denote the standard orthonormal basis of C

pn+qn .
Then Kn is the Gn-stabilizer of e1∧· · ·∧epn in the representation πn = Λpn(τ),
where τ is the standard (vector) representation of SU(pn + qn) on C

pn+qn .
In the usual notation, e1 ∧ · · · ∧ epn also is the highest weight vector, and
the highest weight is ε1 + · · · + εpn . If the pn are bounded, so that we may
assume each pn = p < ∞, then π = lim−→πn is well defined and is a defining
representation for {(Gn, Kn)}. ♦
Example 20 Gn = SU(2n + 1) and Kn = U(1) × Sp(n), n � 1, in (17).
Again, {e1, . . . , e2n+1} is the standard orthonormal basis of C

2n+1. Now Kn

is the Gn-stabilizer of
∑n
�=1 e2� ∧ e2�+1 in the representation πn = Λ2(τ),

where τ is the standard (vector) representation of SU(2n+1) on C
2n+1. Here

e1 ∧ e2 is the highest weight vector and the highest weight is ε1 + ε2. Thus
π = lim−→πn is well defined and is a defining representation for {(Gn, Kn)}. ♦
Example 21 Gn = SO(2n + 1) and Kn = U(n), n � 2, in (17). Let
{e1, . . . , e2n+1} denote the standard orthonormal basis of R

2n+1. Let J =(
0 1−1 0

)
. Then Kn is the Gn-stabilizer of diag{0, J, . . . , J} ∈ gn in the adjoint

representation of Gn; in other words (in this case), it is the Gn-stabilizer of∑n
�=1 e2� ∧ e2�+1 in the representation πn = Λ2(τ), where τ is the standard

(vector) representation of SO(2n + 1) on R
2n+1. As in the previous example,

e1 ∧ e2 is the highest weight vector and the highest weight is ε1 + ε2. Thus
π = lim−→πn is well defined and is a defining representation for {(Gn, Kn)}. ♦
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Example 22 Gn = Sp(n) and Kn = U(1) × Sp(n − 1), n � 2, in (17).
In quaternion matrices, Kn is the Gn-commutator of diag{i, 0, 0, . . . , 0}. In
2n × 2n complex matrices, it is the Gn-commutator of diag{J, 0, 0, . . . , 0},
where J =

(
0 1−1 0

)
. There, Gn consists of all elements g ∈ U(2n) such that

gJ̃gt = J̃ , where J̃ = diag{J, J, . . . , J}. Thus gn is given by xJ̃ + J̃xt = 0,
and in particular diag{J, 0, 0, . . . , 0} ∈ gn. Now Kn is the Gn-stabilizer of
diag{J, 0, 0, . . . , 0} in the adjoint representation πn of Gn. That adjoint rep-
resentation is the symmetric square of the standard (vector) representation of
Gn on C

2n, so it has highest weight 2ε1 and highest weight vector e2
1. Thus

π = lim−→πn is well defined and is a defining representation for {(Gn, Kn)}. ♦

5 Function algebras

Fix a defining representation π = lim−→πn for {(Gn, Kn)}. We are going to
define algebras

A(Gn) and A(G) =
⋃
A(Gn);

A(Gn/Kn) and A(G/K) =
⋃
A(Gn/Kn)

of complex-valued polynomial functions and look at their relations to square
integrable functions. Let dn = dimR Vn. Then we can consider Gn to be a
group of real dn × dn matrices. Since the Gn are reductive linear algebraic
groups, this lets us define

A(Gn) : the algebra of all C-valued functions

f |Gn where f : R
dn×qn → C is a polynomial,

rn : A(Gn)→ A(Gn−1) : restriction of functions,
Sn : kernel of the algebra homomorphism rn,

Tn : Gn−1-invariant complement to Sn in A(Gn).

(23)

The following is immediate.

Lemma 24 The restriction rn|Tn : Tn → A(Gn−1) is a Gn−1-equivariant vec-
tor space isomorphism. In other words we have a Gn−1-equivariant injection
(rn|Tn)−1 : A(Gn−1) ↪→ A(Gn) of vector spaces with image complementary to
the kernel of the restriction rn : A(Gn)→ A(Gn−1) of functions.

Lemma 24 gives us

A(G) = lim−→A(Gn) =
⋃
A(Gn).

Taking the right-invariant functions we arrive at
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A(Gn/Kn) := {h ∈ A(Gn) | h(xk) = h(x) for x ∈ Gn, k ∈ Kn},
A(G/K) =

⋃
A(Gn/Kn)

= {h ∈ A(G) | h(xk) = h(x) for x ∈ G, k ∈ K}.
(25)

These are our basic function algebras.
The algebra A(Gn) contains the constants, separates points on Gn, and

is stable under complex conjugation. The Stone–Weierstrass theorem is the
main component of the following lemma.

Lemma 26 The algebra A(Gn) is dense in C(Gn), the algebra of continuous
functions Gn → C with the topology of uniform convergence. Let S′n and
T ′n denote the uniform closures of Sn and Tn in C(Gn). Then rn extends
by continuity to the restriction map r′n : C(Gn) → C(Gn−1), that extension
r′n restricts to a Gn−1-equivalence T ′n ∼= C(Gn−1), C(Gn) is the vector space
direct sum of closed Gn−1-invariant subspaces S′n and T ′n, and this identifies
C(Gn−1) as a Gn−1-submodule of C(Gn).

Proof. The density is exactly the Stone–Weierstrass theorem in this setting.
Since Sn and Tn involve different sets of variables, so do S′n and T ′n. Now rn
extends to r′n as asserted and S′n is the kernel of r′n. Similarly, S′n ∩ T ′n = 0,
and the induced algebra homomorphism r′n : C(Gn)→ C(Gn−1) restricts to a
Gn−1-equivariant map r′n : T ′n ∼= C(Gn−1). Finally, S′n+T ′n is closed in C(Gn)
and contains A(Gn). Thus C(Gn) = S′n ⊕ T ′n and we can identify C(Gn−1)
with the closed Gn−1-invariant subspace T ′n of C(Gn). ��

We use the identifications C(Gn−1) ⊂ C(Gn) of Lemma 26 to form the
union

⋃ C(Gn). Note that
⋃ C(Gn) is the algebra of continuous functions on

G that depend on only finitely many variables. Now use the sup norm, and
thus the topology of uniform convergence, and define a Banach algebra

C(G) : functions f : G→ C in the uniform limit closure of
⋃
C(Gn)

with sup norm and topology of uniform convergence.

Passing to the right Kn-invariant functions we have Banach function algebras

C(Gn/Kn) := {h ∈ C(Gn) | h(xk) = h(x) for x ∈ Gn, k ∈ Kn and

C(G/K) =
⋃
C(Gn/Kn)

= {h ∈ C(G) | h(xk) = h(x) for x ∈ G, k ∈ K}.
(27)

Here A(Gn/Kn) is the subalgebra consisting of all Gn-finite functions in
C(Gn/Kn), and consequently A(G/K) is the subalgebra consisting of all G-
finite functions in C(G/K).

We pass to L2 limits more or less in the same way as in (25) and (27),
except that we must rescale to preserve L2 norms as in Theorem 12. For this
we need some machinery from [W2009]. Let {Gn} be a strict direct system
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of compact connected Lie groups, and {(Gn)C
} the direct system of their

complexifications. Suppose that, for each n,

the semisimple part [(gn)C
, (gn)C

] of the reductive algebra (gn)C

is the semisimple component of a parabolic subalgebra of (gn+1)C
.

(28)

Then we say that the direct systems {Gn} and {(Gn)
C
} are parabolic and that

lim−→Gn and lim−→(Gn)
C

are parabolic direct limits. This is a special case of the
definition of parabolic direct limit in [W2005].

Now let {Gn} be a strict direct system of compact connected Lie groups
that is parabolic. We recursively construct Cartan subalgebras tn ⊂ gn with
t1 ⊂ t2 ⊂ · · · ⊂ tn ⊂ tn+1 ⊂ . . . and simple root systems Ψn = Ψ((gn)C

, (tn)C
)

such that each simple root for (gn)C
is the restriction of exactly one sim-

ple root for (gn+1)C
. Then we may assume that Ψn = {ψn,1, . . . , ψn,p(n)} in

such a way that each ψn,j is the (tn)C
-restriction of ψn+1,j and of no other

element of Ψn+1. The corresponding sets Ξn = {ξn,1, . . . , ξn,p(n)} of funda-
mental highest weights can be ordered so that they satisfy: ξn+1,j is the
unique element of Ξn+1 whose (tn)C

-restriction is ξn,j , for 1 � j � p(n).
Exactly as in Theorem 12 this gives us isometric Gn-equivariant injections
ψm,n : L2(Gn) → L2(Gm) for n � m. The associated direct limit maps
ψn : L2(Gn) → lim−→{L

2(Gn), ψm,n} define the direct limit in the category of
Hilbert spaces and unitary maps as the Hilbert space completion

L2(G) = lim−→
unitary

{L2(Gn), ψm,n} =
(⋃

ψn(L2(Gn))
)completion

.

Lemma 29 Let {(Gn, Kn)} be one of the systems of Examples 19, 20, 21, or
22. Then {Gn} is parabolic and the Gn-equivariant maps

ψm,n : L2(Gn) ↪→ L2(Gm)

send right-Kn-invariants to right-Kn+1-invariants, resulting in Gn-equiva-
riant unitary injections ψ′m,n : L2(Gn/Kn)→ L2(Gm/Km).

Proof. We use the defining relations given in Examples 19, 20, 21, and 22. In
each case we look at the subspaces of L2 given by polynomials of degree � d;
those are finite-dimensional invariant subspaces of the A(Gn/Kn). We ob-
served above that A(Gn) ↪→ A(Gn+1) maps right-Kn-invariants to right-
Kn+1-invariants. On each irreducible summand, the L2(Gn) ↪→ L2(Gn+1)
differ only by scale from the corresponding summands ofA(Gn) andA(Gn+1),
so they also map right-Kn-invariants to right-Kn+1-invariants. ��
Now we have some L2 analogues of (25) and (27).

L2(Gn/Kn) := {h ∈ L2(Gn) | h(xk) = h(x) for x ∈ Gn, k ∈ Kn},
L2(G/K) =

(⋃
ψ′n(L

2(Gn/Kn))
)completion

= {h ∈ L2(G) | h(xk) = h(x) for x ∈ G, k ∈ K}.
(30)
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We have A(G/K) ⊂ C(G/K) ⊂ L2(G/K) for these spaces, and A(G/K) is
the set of polynomial elements in L2(G/K).

Theorem 31 Let {(Gn, Kn)} be one of the direct systems of nonsymmetric
Gelfand pairs given by Examples 19, 20, 21, and 22. Then the left regular
representations of G on A(G/K), C(G/K), and L2(G/K) are multiplicity-
free discrete direct sums of lim-irreducible representations. In the notation of
(9), (10), and (11), those left regular representations are

∑
I∈I πI , where πI =

lim−→πI,n is the irreducible representation of G with highest weight ξI :=
∑

irξr.
Thus we have the infinite-dimensional multiplicity-free spaces

(1) SU(p +∞)/(SU(p)× SU(∞)) for 1 � p �∞,

(2) SU(1 + 2∞)/(U(1)× Sp(∞)),
(3) SO(1 + 2∞)/U(∞), and
(4) Sp(1 +∞)/(U(1)× Sp(∞))

Proof. Examples 19, 20, 21, and 22 have defining representations and well-
defined function spaces A(G/K) and C(G/K). The same holds for L2(G/K)
by Lemma 29. In these examples {Gn} is parabolic, so the left regular rep-
resentations are limit aligned by Theorem 12. Now the proof of Theorem 15
holds for these four examples, resulting in the multiplicity-free property for
their left regular representations. ��

6 Pairs related to spheres and Grassmann manifolds

In dealing with nonsymmetric Gelfand pairs we have to be very specific about
the embeddings Gn−1 ↪→ Gn, so we review a few of those embeddings.

Orthogonal groups. Let Gn = SO(n0 + 2n), the special orthogonal group
for the bilinear form h(u, v) =

∑n0+2n
1 uivi. The embeddings are given by

Gn ↪→ Gn+1 given by x 
→
(
x 0 0
0 1 0
0 0 1

)
. Then G = lim−→Gn is the classical direct

limit group SO(∞). It doesn’t matter what n0 is here, but sometimes we have
to distinguish between the cases of even or odd n0, and in any case we want
{Gn} to be parabolic, so we jump by two 1’s instead of just one. Specifically,
this direct system consists either of groups of type B (when the n0 + 2n
are odd) or of type D (when the n0 + 2n are even). In this section Kn =
{ ( 1 0

0 x )|x ∈ SO(n0 + 2n− 1)} ⊂ Gn. Then Gn/Kn is the sphere Sn0+2n−1,
G = lim−→Gn = SO(∞), and we express K = lim−→Kn as SO(1)×SO(∞− 1) to
indicate the embedding K ↪→ G.

A defining representation for {(Gn, Kn)} is given by the family of standard
(vector) representations πn of SO(n0 + 2n) on R

n0+2n. Here {SO(n0 + 2n)}
is a parabolic direct system. In the standard orthonormal basis the πn all
have the same highest weight vector e1 and highest weight ε1. Following
the considerations of Section 5, this defining representation π = lim−→πn
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defines the function spaces A(Gn/Kn), C(Gn/Kn), and L2(Gn/Kn). The
πn share a highest weight vector so we have natural equivariant inclu-
sions A(Gn−1/Kn−1) ↪→ A(Gn/Kn), C(Gn−1/Kn−1) ↪→ C(Gn/Kn), and
L2(Gn−1/Kn−1) ↪→ L2(Gn/Kn), and thus the limits A(G/K), C(G/K), and
L2(G/K). Thus we have the regular representation of G = SO(∞) on those
limit spaces.

Unitary groups. Fix p > 0 and define Gn = SU(p + n), the special
unitary group for the complex hermitian form h(u, v) =

∑p+n
1 uiv̄i. The

embedding Gn ↪→ Gn+1 is given by x 
→ ( x 0
0 1 ). Then G = lim−→Gn is

the classical parabolic direct limit group SU(∞). In this section Kn =
{ ( 1 0

0 x )|x ∈ SU(p), y ∈ SU(n)}. Then Gn/Kn is a circle bundle over the
Grassmann manifold of p-dimensional linear subspaces of C

p+n, G = lim−→Gn =
SU(∞), and we sometimes express K = lim−→Kn as SU(p) × SU(∞− p) to
indicate the embedding K ↪→ G. If p = 1 then Gn/Kn is the sphere S2n+1,
the complex Grassmann manifold is a complex projective space, and the circle
bundle projection is the Hopf fibration.

Here the defining representation is essentially that of Example 19. Let πξ1
denote the usual vector representation of Gn on C

p+n. Write πξp for its pth

alternating power, the representation of Gn on Λp(Cp+n); it is the first rep-
resentation of Gn with a vector fixed under Kn. That vector is e1 ∧ · · · ∧ ep
relative to the standard basis {e1, . . . , en} of C

n, and Kn is its Gn-stabilizer.
Thus the πn = πξp give a defining representation for {(Gn, Kn)}. Note that
the πn all have the same highest weight vector e1∧· · ·∧ep and highest weight
ε1 + · · · + εp. Following the considerations of Section 5, this defining repre-
sentation π = lim−→πn defines the function spaces A(Gn/Kn), C(Gn/Kn), and
L2(Gn/Kn). The πn share a highest weight vector, so we have natural equivari-
ant inclusions A(Gn−1/Kn−1) ↪→ A(Gn/Kn), C(Gn−1/Kn−1) ↪→ C(Gn/Kn),
and L2(Gn−1/Kn−1) ↪→ L2(Gn/Kn), and thus the limits A(G/K), C(G/K),
and L2(G/K). That gives us the regular representation of G = SU(∞) on
those limit spaces.

Symplectic groups. Here Sp(n) is the unitary group of the quaternion-
hermitian form h(u, v) =

∑n
1 uiv̄i on the quaternionic vector space H

n. We
then have Gn = Sp(n)×Sp(1), where the Sp(1) acts by quaternion scalars on
H
n. We will also look at its subgroup Sp(n)× U(1), where U(1) is any (they

are all conjugate) circle subgroup of Sp(1), say {eiθ | θ ∈ R}. In both cases the
embeddings Gn ↪→ Gn+1 are specified by the maps Sp(n) ↪→ Sp(n + 1) given
by x 
→ ( x 0

0 1 ). (We are using quaternionic matrices.) Then G = lim−→Gn is the
classical direct limit group Sp(∞)×Sp(1) and G′ = lim−→G′n is Sp(∞)×U(1).
(We need the Sp(1) or the U(1) factor because otherwise, as we will see below,
the multiplicity-free property will fail.)

Symplectic 1. First consider the parabolic direct system given by Gn =
Sp(n) × Sp(1). Given n we have two Sp(1) groups to deal with at the same
time, so we avoid confusion by denoting the Sp(1) factor of Gn as Sp(1)ext,n
(ext for external) and the identity component of the centralizer of Sp(n− 1)
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in Sp(n) by Sp(1)int,n (int for internal). In our matrix descriptions of Gn,
the group Sp(1)diag,n is the diagonal subgroup in Sp(1)int,n × Sp(1)ext,n.
Then Gn = Sp(n) × Sp(1)ext,n and G = lim−→Gn = Sp(∞) × Sp(1). Now let
Kn = { ( 1 0

0 x )|x ∈ Sp(n− 1)} × Sp(1)diag,n and K = lim−→Kn. Then Gn/Kn

is the sphere S4n−1, in other words, the Hopf fibration 3-sphere bundle over
quaternion projective space Pn−1(H). In order to indicate the embedding
K ↪→ G we express K as {1} × Sp(∞− 1)× Sp(1).

A defining representation for {(Gn, Kn)} is given by the family of stan-
dard (vector) representations πn of Sp(n) on C

2n tensored with the standard
2-dimensional representation of Sp(1) on C

2. That representation has an in-
variant real form R

4n. Consider the standard orthonormal basis {ei ⊗ fj} of
C

2n ⊗ C
2. The representations πn of Gn there have the same highest weight

vector e1 ⊗ f1 and highest weight (ε1)Sp(n) + (ε1)Sp(1). They give a defining
representation for {(Gn, Kn)}. Following the considerations of Section 5, this
defining representation π = lim−→πn defines the function spaces A(Gn/Kn),
C(Gn/Kn), and L2(Gn/Kn). The πn have the same highest weight vector
so we have natural equivariant inclusions A(Gn−1/Kn−1) ↪→ A(Gn/Kn),
C(Gn−1/Kn−1) ↪→ C(Gn/Kn), and L2(Gn−1/Kn−1) ↪→ L2(Gn/Kn), and thus
the limits A(G/K), C(G/K), and L2(G/K). So we have the regular represen-
tation of G = Sp(∞)× Sp(1) on those limit spaces.

Symplectic 2. Next consider the parabolic direct system given by Gn =
Sp(n) × U(1), where the Sp(1) factor of Sp(n) × Sp(1) is replaced by the
circle subgroup {eiθ | θ ∈ R}. Given n we have two U(1) groups, the U(1)ext,n
that is the U(1) factor of Gn and the corresponding circle subgroup U(1)int,n
of Sp(1)int,n. Then of course we have the diagonal U(1)diag,n. As above we
define Kn to be the product group { ( 1 0

0 x )|x ∈ Sp(n− 1)} × U(1)diag,n and
we set K = lim−→Kn. Then Gn/Kn again is the sphere S4n−1. We express K
as {1} × Sp(∞− 1)× U(1).

A defining representation for {(Gn, Kn)} is given by the family of stan-
dard (vector) representations πn of Sp(n) on C

2n tensored with the standard
1-dimensional representation of U(1) on C. The representations πn of Gn there
have the same highest weight vector e1⊗f1. The corresponding highest weight
is (ε1)Sp(n)+(ε1)U(1), and the πn give a defining representation for {(Gn, Kn)}.
Following the considerations of Section 5, this defining representation π =
lim−→πn defines the function spaces A(Gn/Kn), C(Gn/Kn), and L2(Gn/Kn).
The πn have the same highest weight vector, so we have natural equivariant
inclusions A(Gn−1/Kn−1) ↪→ A(Gn/Kn), C(Gn−1/Kn−1) ↪→ C(Gn/Kn), and
L2(Gn−1/Kn−1) ↪→ L2(Gn/Kn), and thus the limits A(G/K), C(G/K), and
L2(G/K). So we have the regular representation of G = Sp(∞) × U(1) on
those limit spaces.

Symplectic 3. A variation on the case just considered is where Kn =
{ ( z 0

0 x )| z ∈ U(1), x ∈ Sp(n− 1)} × U(1), and K = lim−→Kn. Then the U(1)
factor of Gn is contained in Kn so it acts trivially on Gn/Kn. Thus Gn/Kn

is a 2-sphere bundle over Pn−1(H) exactly as in the “Symplectic 2” case.
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We express K as U(1)×Sp(∞−1)×U(1). The groups Kn are larger than the
case “Symplectic 2” just considered, so the present function spacesA(Gn/Kn),
C(Gn/Kn), and L2(Gn/Kn) are subspaces of those of “Symplectic 2”, and the
same holds for their limits A(G/K), C(G/K), and L2(G/K). Now we have
the regular representation of G = Sp(∞)× Sp(1) on those limit spaces.

Symplectic 4. A variation on the “Symplectic 1” case is where Gn =
Sp(n) × Sp(1) and Kn = { ( z 0

0 x )| z ∈ U(1), x ∈ Sp(n− 1)} × Sp(1) and K =
lim−→Kn. Then the Sp(1) factor of Gn is contained in Kn, so it acts trivially
on Gn/Kn. Thus Gn/Kn = Sp(n)/[U(1) × Sp(n − 1)] is a 2-sphere bundle
over Pn−1(H), exactly as in the “Symplectic 3” case above. We express K as
U(1)× Sp(∞− 1)× Sp(1) and we note that the function spaces A(Gn/Kn),
C(Gn/Kn), and L2(Gn/Kn) are exactly the same as those of “Symplectic 3”,
so the same holds for their limits A(G/K), C(G/K), and L2(G/K). Thus we
have the regular representation of G = Sp(∞)× Sp(1) on those limit spaces.

The classifications of Krämer [Kr1979] and Yakimova [Ya2004] (see [W2007])
show that the six direct systems just described, one orthogonal, one unitary,
and four symplectic, all consist of Gelfand pairs.

7 Limits related to spheres and Grassmann manifolds

In this section we prove the multiplicity-free property for the direct limits of
Gelfand pairs described in Section 6.

Theorem 32 Let (G, K) = lim−→{(Gn, Kn)}, where {(Gn, Kn)} is one of the
six systems described in Section 6. Let A(G/K), C(G/K), and L2(G/K) be as
described there. Then the regular representations of G on A(G/K), C(G/K),
and L2(G/K) are multiplicity-free discrete direct sums of lim-irreducible rep-
resentations.

Proof. We run through the proof of Theorem 32 for the three types of limit
groups G. In each case we do this by examining the representation of Gn on
A(Gn/Kn), verifying the limit-aligned condition, and applying Theorem 4 to
the regular representation of G on A(G/K). We already know the result for
the orthogonal group case, where the (Gn, Kn) are symmetric pairs, but we
need the representation-theoretic information from that case in order to deal
with the other cases.

Orthogonal group case. Here we shift the index so that Gn = SO(n)
and Kn = SO(n − 1). Then Gn/Kn is the unit sphere in R

n. The Gn-finite
functions on Gn/Kn are just the restrictions of polynomial functions on R

n.
Let ψ1;n denote the usual representation of Gn on R

n and let ξ denote its
highest weight. Choose orthonormal linear coordinates {x1, . . . , xn} of that R

n

such that the monomial x1 is a highest weight vector. Then the representation
of Gn on the space of polynomials of pure degree � is of the form ψ�;n ⊕ γ�;n,
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where ψ�;n is the irreducible representation of highest weight �ξ and highest
weight vector x�1. Then γ�;n is the sum of the ψ�−2j;n for 1 � j � [�/2], and the
representation space of that ψ�−2j;n consists of the polynomial functions on
R
n divisible by ||x||2j but not by ||x||2j+2. Write E�;n for the space of functions

on Gn/Kn obtained by restricting those polynomials of degree � contained in
the representation space for ψ�;n. Then A(Gn/Kn) =

∑
��0 E�;n.

We now verify that the inclusions A(Gn/Kn) ↪→ A(Gn+1/Kn+1) send E�;n
into E�;n+1, so that the representation of G on A(G/K) is limit aligned and
Theorem 4 shows that lim−→A(Gn/Kn) is the multiplicity-free direct sum of
lim-irreducible G-modules E� = lim−→E�;n. For that, note that the restriction
A(Gn+1/Kn+1)→ A(Gn/Kn) is obtained by setting xn+1 equal to zero. Thus
the inclusions E�,n ↪→ A(Gn+1/Kn+1) are given by identifying the function
x�1 : R

n → R with the function x�1 : R
n+1 → R and applying Gn-equivariance.

Now A(G/K) = lim−→A(Gn/Kn) is the direct sum of the E� = lim−→E�;n, and the
representations of G on the E� are the mutually inequivalent lim-irreducible
lim−→ψ�;n. That gives an elementary proof for the case G = SO(∞) and K =
SO(∞− 1).

Unitary group cases. Here we shift the index so that Gn = SU(n) and
Kn = SU(p)×SU(n−p), n > p. So G = SU(∞) and K = SU(p)×SU(∞−p).
Without loss of generality assume n > 2p so that the (Gn, Kn) are Gelfand
pairs. Recall the defining representation π = lim−→πn where πn = πξp , the pth

exterior power of the vector representation of Gn on C
n. So Kn is the Gn-

stabilizer of eI0 := e1 ∧ · · · ∧ ep, resulting in the map Gn/Kn ↪→ Λp(Cn) by
gKn 
→ g(eI0).

We have C-linear functions zI on Λp(Cn) dual to the basis of Λp(Cn)
consisting of the eI with I = (i1, . . . , ip), where 1 � i1 < · · · < ip � n.
(Here I0 = (1, 2, . . . , p).) Their real and imaginary parts generate the alge-
bra A(Gn/Kn). Relative to the diagonal Cartan subalgebra of gn the eI are
weight vectors, and eI0 is the highest weight vector, for πξp . Now the action of
Gn on the polynomials of degree � in the zI and the zI is

∑
r+s=� πrξp+sξn−p ,

where πrξp+sξn−p has highest weight rξp + sξn−p and highest weight vector
zrI0z

s
I0

. Those representations are mutually inequivalent, using n > 2p, and
A(Gn/Kn) =

∑
��0

∑
r+s=� Er,s;n, where Gn acts on Er,s;n by πrξp+sξn−p .

The A(Gn/Kn) ↪→ A(Gn+1/Kn+1) are given on the level of Er,s;n ↪→ Er,s;n+1

by identifying zrI0z
s
I0

: Λp(Cn) → C with zrI0z
s
I0

: Λp(Cn+1) → C. In view of
Theorem 4, it follows that the representation of G on A(G/K) is a limit-
aligned discrete direct sum of mutually inequivalent lim-irreducible represen-
tations.

We will need the case p = 1 when we look at the symplectic group cases.
There Gn = SU(n) and Kn = {1} × SU(n − 1), and the Gn-finite functions
on Gn/Kn are just the restrictions of finite linear combinations of the func-
tions zrz̄s. We saw how to decompose A(S2n−1) into irreducible modules for
SO(2n): it is the sum of the spaces E�;2n described above with highest weight
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�ξ and highest weight vector x�1, where, of course, xj = 1
2 (zj + z̄j). In terms

of the Dynkin diagram that representation is

ψ� : � � � � � �

��� �

��� �

�

and ψ�;2n|U(n) =
∑
r+s=� ψr,s;n, where ψr,s;n has diagram

�

r
� � � � �

s ×s− r
.

Both ψr,s;n and ψr,s;n|SU(n) have highest weight vector zr1 z̄
s
1. Let Er,s;n denote

the representation space for ψr,s;n. Now A(Gn/Kn) =
∑

��0

∑
r+s=� Er,s;n.

Symplectic group cases. First suppose Gn = Sp(n) × U(1). There are
two cases: (i) Kn = {1} × Sp(n − 1) × U(1)diag,n and (ii) Kn = U(1) ×
Sp(n − 1) × U(1). The assertions for case (i) will imply them for case
(ii), so we may assume that Kn = {1} × Sp(n − 1) × U(1)diag,n. Then
(G, K) = lim−→{(Gn, Kn)} has defining representation π = lim−→πn where πn

is the representation �
1

� � � � � �< ×1 of Gn on C
2n.

Note that πn factors through the vector representation of U(2n) on C
2n.

We saw how U(2n) acts irreducibly on the space Er,s;2n by the representation
ψr,s;2n, which has diagram

�

r
� � � � �

s ×s− r
.

We now need two facts. First, Gn ↪→ U(2n) sends the U(1) factor of Gn

to the center of U(n). Second, ψr,s;2n|Sp(n) =
∑

0�m�min(r,s)
′ϕr,s,m;n, where

′ϕr,s,m;n has diagram �

r + s − 2m
�

m
� � � � �< . That gives us

ψr,s;2n|Sp(n)U(1) =
∑

0�m�min(r,s) ϕr,s,m;n, where ϕr,s,m;n is the representation

of Sp(n)U(1) with diagram �

r + s − 2m
�

m
� � � � �< ×s− r

,
and ′ϕr,s,m;n has the same representation space (call it Er,s,m;n) as ϕr,s,m;n.
The Er,s,m;n are irreducible and inequivalent under Sp(n)U(1); in other words,
the irreducible representations ϕr,s,m;n all are mutually inequivalent. Note,
however, that ′ϕr,s,m;n � ′ϕr+t,s−t,m;n for all t such that r + t, s− t � 0; this
reflects the fact that (Sp(n), Sp(n− 1)) is not a Gelfand pair.

To trace the inclusions let {z1, . . . , z2n} be the coordinates of C
2n, all

weight vectors, where z1 is the highest weight vector, z2 = e−α1z1 is the next
highest, and so on, and the antisymmetric bilinear invariant of Sp(n) on C

2n

is vn(z, w) =
∑n

1 (z2i−1w2i − z2iw2i−1). Then z�1 is the highest weight vector

of �
�

� � � � � �< and Λ2
C

2n is the sum Λ2
0C

2n ⊕ vnC of its
irreducible component and its trivial component under the action of Sp(n).
Here vn has matrix diag

{[
0 1−1 0

]
. . .

[
0 1−1 0

]}
and we work with the maximal

toral subalgebra that consists of all matrices diag {a1,−a1; . . . ; an,−an}; thus
the highest weight vector on Λ2

0C
2n is sn(z, w) = z1w3− z3w1. Now smn is the

highest weight vector of � �
m

� � � � �< . The corresponding
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highest weight vector of ϕr,s,m;n is zr−m1 z̄s−m1 smn . Now the restriction
A(Gn+1/Kn+1)→ A(Gn/Kn) maps the highest weight vector zr−m1 z̄s−m1 smn+1

of ϕr,s,m;n+1 to the highest weight vector zr−m1 z̄s−m1 smn . This proves that
the representation of G on A(G/K) is limit aligned. Theorem 4 shows that
lim−→A(Gn/Kn) is the multiplicity-free direct sum of lim-irreducible G-modules
Er,s,m := lim−→Er,s,m;n.

Finally, we suppose Gn = Sp(n) × Sp(1). Again there are two cases: (i)
that Kn = {1}×Sp(n−1)×Sp(1)diag,n and (ii) Kn = U(1)×Sp(n−1)×Sp(1).
The function algebras and group actions in case (ii) are exactly the same as
those of the setting (Gn, Kn) = (Sp(n) × U(1), U(1) × Sp(n − 1) × U(1))
above, where the assertions are proved. Thus we need only consider case
(i), Kn = {1} × Sp(n − 1) × Sp(1)diag,n. Then (G, K) = lim−→{(Gn, Kn)}
has defining representation π = lim−→πn described in “Symplectic 1” above.
Those πn satisfy the condition of Theorem 4 because Sp(n) × Sp(1) sim-
ply puts together representation spaces Er−m,s−m,m;n of Sp(n) × U(1) on
A(Sp(n)U(1)/Sp(n − 1)U(1)). This assembly maintains total degree � =
(r −m) + (s−m) + 2m, views the U(1) factor of Sp(n)×U(1) as a maximal

torus of the Sp(1) factor of Sp(n)×Sp(1), and sums the spaces for the ×s − r
to

form the space for the irreducible representation (call it β�) of Sp(1) of degree

� + 1. It has diagram �
� . Now the irreducible spaces for Sp(n) × Sp(1) are

the F�,m;n :=
∑

r+s=� Er−m,s−m,m;n and the corresponding representations
are the ϕ�,m,n :=

∑
r+s=�

′ϕr−m,s−m,m;n. This proves that the representation
of G on A(G/K) is limit aligned. Theorem 4 shows that lim−→A(Gn/Kn) is the
multiplicity-free direct sum of lim-irreducible G-modules F�,m := lim−→F�,m;n.

We have proved Theorem 32. ��
Remark 33 Alternatively, the systems (d), (e), and (f) from the list (17), and
also (a) when the {pn} are bounded, can be treated by the method of Sections
6 and 7. That gives an alternative proof of the multiplicity-free property for
the pairs

(1) SU(p +∞)/(SU(p)× SU(∞)) for 1 � p �∞,

(2) SU(1 + 2∞)/(U(1)× Sp(∞)),
(3) SO(1 + 2∞)/U(∞), and
(4) Sp(1 +∞)/(U(1)× Sp(∞))

of Theorem 31. ♦

8 Conclusions

We have proved that the regular representations of G on A(G/K), C(G/K),
and L2(G/K), are multiplicity-free discrete direct sums of lim-irreducible rep-
resentations in the following cases. In addition, in these cases it is always per-
missible to enlarge the groups Kn, say to F ·Kn where F is a closed subgroup
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of the normalizer NGn(Kn), because A(Gn/[F · Kn]) is a Gn-submodule of
A(Gn/Kn).

Limits of riemannian symmetric spaces. We have the multiplicity-free
property for the thirteen cases described in Theorem 15, as well as some
obvious variations. The latter include

SO(∞)× SO(∞)/diag SO(∞) = lim−→SO(n) × SO(n)/diagSO(n) and

SO(p +∞)/[S(O(p)×O(∞))] = lim−→SO(n)/[S(O(p) ×O(n− p))] .

Limits of a few systems of Gelfand pairs. We have the multiplicity-free
property for the four cases described in Theorem 31,

(1) SU(p +∞)/(SU(p)× SU(∞)) for 1 � p �∞,

(2) SU(1 + 2∞)/(U(1)× Sp(∞)),
(3) SO(1 + 2∞)/U(∞), and
(4) Sp(1 +∞)/(U(1)× Sp(∞)).

We also have the multiplicity-free property for spaces that interpolate
between (SU(p + ∞), SU(p) × SU(∞)) and the limit Grassmannian
(U(p +∞), lim−→U(p)× U(n).

Fix a closed subgroup F of U(1). Then we have the multiplicity-free prop-
erty for the pairs (G, K) = lim−→{(Gn, Kn)}, where Gn = SU(p + n) and

Kn =
{(

k′n 0

0 k′′n

)∣
∣
∣ k′n ∈ U(p), k′′n ∈ SU(n), det k′n ∈ F

}
.

Limits of Gelfand pairs related to spheres and Grassmann manifolds. We
have the multiplicity-free property for the six cases described in Theorem 32,
four of which are nonsymmetric, as well as some obvious variations. Fix a
closed subgroup F of U(1); it can be any finite cyclic group or the entire
circle group U(1). As a result we have the multiplicity-free property for the
nonsymmetric pairs

SU(∞)/[SU(p)× SU(∞− p)]
= lim−→SU(n)/[SU(p)× SU(n− p)] ,

[Sp(∞)× U(1)]/[F × Sp(∞− 1)× U(1)diag]
= lim−→[Sp(n)× U(1)]/[F × Sp(n− 1)× U(1)diag] ,

[Sp(∞)× Sp(1)]/[{1} × Sp(∞− 1)× Sp(1)diag]
= lim−→[Sp(n)× Sp(1)]/[{1} × Sp(n− 1)× Sp(1)diag] , and

[Sp(∞)× Sp(1)]/[{±1} × Sp(∞− 1)× Sp(1)diag]
= lim−→[Sp(n)× Sp(1)]/[{±1} × Sp(n− 1)× Sp(1)diag] .

What we don’t have. There is a huge number of direct systems {(Gn, Kn)}
of Gelfand pairs where the Gn are compact connected Lie groups. We have
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only verified the multiplicity-free condition for a few of them. We have not,
for example, checked it for the interesting cases

Gn = SU(2n + 1) and Kn = F × Sp(n), F ⊂ U(1) finite cyclic,

and
Gn = SO(2n) and Kn = F × SU(n), n odd, n � 3.

Also, we have not checked it for the very interesting case

Gn = Sp(an)× Sp(bn) and Kn = Sp(an − 1)× Sp(1)× Sp(bn − 1),

which is a prototype for nonsymmetric irreducible direct systems {(Gn, Kn)}
with the Gn semisimple but not simple. In that case Kn ↪→ Gn is given by
(k1, a, k2) 
→

((
k1 0
0 a

)
,
(
a 0
0 k2

))
, so Gn/Kn fibers over P an−1(H) × P bn−1(H)

with fiber (Sp(1)× Sp(1))/(diagonal) = S3.
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