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Summary. We give a complete classification of the complex forms of quaternionic symmetric
spaces.

1 Introduction

Some years ago, H. A. Jaffee found the real forms of Hermitian symmetric spaces
([J1], [J2]; or see [HÓ]). That classification turns out to be related to the classification
of causal symmetric spaces. This was first observed by I. Satake ([S, Remark 2 on page
30] and [S, Remark on page 87]). Somewhat later, it was independently observed by
J. Hilgert, G. Ólafsson and B. Ørsted; see [HÓ], especially Chapter 3 and the Notes at
the end of that Chapter. I learned about that from Bent Ørsted. He and Gestur Ólafsson
had informally discussed complex forms of quaternionic symmetric spaces and found
examples for the classical groups, forG2 , and perhaps for F4. Ørsted told me about the
classical ones, and we rediscovered examples for G2 and F4. I thank Bent Ørsted for
agreeing to my incorporating those examples into this note. Later I used the computer
program LiE [L] to find examples for E6, E7 and E8.

In this note, I write down a complete classification for complex forms L/V of
quaternionic symmetric spacesG/K . The definitions and some preliminary results are
in Sections 2 and 3, the main results are stated in Section 4, and the proofs are in
Sections 5, 6, 7 and 8. The case where G is a classical group and rank(L) = rank(G)
is handled, essentially by matrix considerations, in Section 5. That, of course, does not
work comfortably for the exceptional groups, which must be approached by means of
their root structure. The tool for this is a script for the use of the computer program LiE;
it is described in Section 6 along with some examples of its application. Those examples
have the interesting property that the complexifications LC and KC are conjugate in
GC. They cover the delicate cases for G exceptional and rank(L) = rank(G), and the
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remaining exceptional equal rank cases are settled in Section 7. Finally, the few cases
of rank(L) < rank(G) are worked out in Section 8.

A possible extension of the theory is mentioned in Section 9.
After this paper was written, I learned that quite a lot was published on totally

complex submanifolds of quaternionic symmetric spaces from the viewpoint of dif-
ferential geometry. See, for example, [ADM], [AM1], [AM2], [F], [JKS], [L1], [L2],
[Ma], [Mo], [Ts] and [X], but especially the first three. I also learned that M. Takeuchi
[Ta] had studied the maximal totally complex submanifolds of quaternionic symmetric
spaces, reducing their classification to that of certain Satake diagrams and writing out
the classification in the classical group cases. A priori that is not quite the same as the
classification of complex forms of quaternionic symmetric spaces, but it is very close.
On the other hand, it seems to me that the method given here is more efficient and more
direct, and more explicit in the exceptional group cases. I thank Dmitry Alekseevsky
for calling the above-cited papers to my attention.

2 Quaternionic symmetric spaces

We recall the structure of quaternionic symmetric spaces [W]. A quaternionic structure
on a connected Riemannian manifoldM is a parallel fieldA of quaternion algebrasAx
on the real tangent spaces Tx(M), such that every unimodular element of every Ax is
an orthogonal linear transformation. Thus,A gives every tangent space the structure of
quaternionic vector space, such that the Riemannian metric at x is Hermitian relative
to the elements of Ax of square −I . If n = dimM , then a quaternionic structure is
the same as a reduction of the structure group of the tangent bundle from O(n) to
Sp(n/4) · Sp(1). Let Kx denote the holonomy group of M at x (we will see in a
minute that this is appropriate notation for symmetric spaces with no Euclidean factor).
Suppose thatM is simply connected, so that the Kx are connected. Let A = {Ax} be a
quaternionic structure onM . Then Ax is stable under the action ofKx , soKx ∩Ax is a
closed normal subgroup ofKx . Now,Kx = Klinx ·Kscax , whereKlinx is the quaternion-
linear part, centralizer ofAx inKx , andKscax = Kx ∩Ax is the scalar part. We say that
Kx has real scalar part ifKscax consists of real scalars, i.e.,Kscax is {1} or {±1}. We say
that Kx has complex scalar part if Kscax is contained in a complex subfield of Ax but
not in the real subfield, and we say that Kx has quaternion scalar part if Kscax is not
contained in a complex subfield of Ax . A Riemannian 4-manifold M with holonomy
U(2) has a dual role: it has a quaternionic structure A1 generated by the SU(2)-factor
in the holonomy; that has quaternionic scalar part, the same SU(2),M; it has a second
quaternionic structureA2 whereA2,x is the centralizer ofA1,x in the algebra of R-linear
transformations of Tx(M); it has complex scalar part, generated by the circle center of
the holonomy U(2). Thus, we have an interesting dual picture. The holonomy of M
has quaternionic scalar part for A1 and has complex scalar part for A2.

Proposition 2.1. The connected simply connected Riemannian symmetric spaces with
quaternionic structure are the following.

(i) The Euclidean spaces of dimension divisible by 4. Here, the holonomy has real
scalar part.
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(ii) Products M = M1 × · · · ×M�, where each Mi is (a) the complex projective or
hyperbolic plane with the quaternionic structure of complex scalar part, or (b) a
product M ′

i ×M ′′
i where each factor is a complex projective line and a complex

hyperbolic line. Here M = G/K , K is the holonomy, and the holonomy has
complex scalar part.

(iii) Irreducible connected simply connected Riemannian symmetric spacesM = G/K ,
where K has an Sp(1) factor that generates quaternion algebras on the tangent
spaces of M . Here K is the holonomy, and the holonomy has quaternion scalar
part.

There is a structure theory for the spaces of Proposition 2.1(iii). There are two, a
compact one and its non-compact dual, for each complex simple Lie algebra, and they
are constructed from the highest root [W]. These spaces are listed in the Table 1 below.
Here, we use the notation that G2, F4, E6, E7 and E8 denote the compact connected
simply connected groups of those Cartan classification types, and their non-compact
forms listed in the Table are connected real forms contained as analytic subgroups in
the corresponding complex simply connected groups. All known examples of compact
connected simply connected quaternionic manifolds with holonomy of quaternionic
scalar type are Riemannian symmetric spaces.

Table 1.

Irreducible Quaternionic Symmetric Spaces, Scalar Part of Holonomy Quaternionic

compactM = G/K non-compactM ′ = G′/K Rank Dimension/H

SU(r + 2)/S(U(r)× U(2)) SU(r, 2)/S(U(r)× U(2)) min(r, 2) r

SO(r + 4)/[SO(r)× SO(4)] SO(r, 4)/[SO(r)× SO(4)] min(r, 4) r

Sp(n+ 1)/[Sp(n)× Sp(1)] Sp(n, 1)/[Sp(n)× Sp(1)] 1 n

G2/SO(4) G2,A1A1/SO(4) 2 2
F4/[Sp(3) · Sp(1)] F4,C3C1/[Sp(3) · Sp(1)] 4 7
E6/[SU(6) · Sp(1)] E6,A5C1/[SU(6) · Sp(1)] 4 10
E7/[Spin(12) · Sp(1)] E7,D6C1/[Spin(12) · Sp(1)] 4 16
E8/[E7 · Sp(1)] E8,E7C1/[E7 · Sp(1)] 4 28

Thus, irreducible quaternionic symmetric spaces have rank 1, 2, 3 or 4. Curiously,
quaternionic symmetric spaces for F4, E6, E7, and E8 all have restricted root systems
of type F4.

3 Complex forms of quaternionic manifolds

Let S be a smooth submanifold of a Riemannian manifoldM . Let A = {Ax | x ∈ M}
denote a quaternionic structure on M . If x ∈ S, let ASx denote the subalgebra of all
elements in Ax that preserve the real tangent space Tx(S). We say that S is totally
complex, if ASx ∼= C and Tx(S) ∩ q(Tx(S)) = 0 for all q ∈ Ax \ Asx , for all x ∈ S.
If S is totally complex in M , then AS = {ASx | x ∈ S} restricts to a well-defined
almost complex structure on S, parallel along S because A is parallel on M , so (see
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[KN, Cor. 3.5, p. 145]) (S,AS |S) is Kähler. If in addition, dimC S = dimHM , then we
say that S is a maximal totally complex submanifold ofM .

Let S be a maximal totally complex submanifold of M . Suppose that S is a topo-
logical component of the fixed point set of an involutive isometry σ of M . Then, we
say that S is a complex form ofM and that σ is the quaternion conjugation ofM over
S. The following is immediate.

Lemma 3.1. Let (M,A) be a quaternionic symmetric space. If S is a complex form of
M , then S is a totally geodesic submanifold. If S is a totally geodesic, totally complex
submanifold ofM , then S is an Hermitian symmetric space.

Let M = G/K , irreducible quaternionic symmetric space, with base point x0 =
1K , where K = K ′ · Sp(1) as in Proposition 2.1(iii) and Table 1. Let θ denote the
involutive automorphism ofG that is conjugation by the symmetry (say t) at x0. Let S ⊂
M be a totally geodesic submanifold through x0. Then, S is a Riemannian symmetric
space with symmetry t |

S
at x0. Express S = L(x0) ∼= L/V , where L is the identity

component of {g ∈ G | g(S) = S} and V = L ∩K . Then θ(L) = L.
The following three results are our basic tools for finding the complex forms S =

L/V ofM = G/K , where rank(L) = rank(G). Proposition 3.2 gives criteria for L/V
to be an appropriate submanifold of G/K . Proposition 3.3 tells us that when L/V is
identified abstractly, it in fact exists well positioned in G/K , and Proposition 3.4 is a
uniqueness theorem showing when two complex forms are G-equivalent.

Proposition 3.2. Let M = G/K be an irreducible quaternionic symmetric space,
with base point x0 = 1K , as above. Let σ be an involutive inner automorphism of G
that commutes with θ . Let L be the identity component of the fixed point set Gσ . Set
V = L ∩K . Denote S = L(x0) ∼= L/V .

1. If V ∩ Sp(1) is a circle group, then S is a totally complex submanifold ofM .
2. S is a complex form of M if and only if (i) V ∩ Sp(1) is a circle group, and (ii)

dimC S = dimHM .
3. If S is a complex form ofM , then σ = Ad(s) where s ∈ V .

Proposition 3.3. LetM = G/K be an irreducible quaternionic symmetric space, with
base point x0 = 1K , as above. Let L be a symmetric subgroup of equal rank inG that
has an Hermitian symmetric quotient L/V , such that V is isomorphic to a symmetric
subgroup V ′ ⊂ K . Then, L is conjugate to a θ–stable subgroup L′ ⊂ G such that
L′ ∩K = V ′.

Proposition 3.4. LetM = G/K be an irreducible quaternionic symmetric space, with
base point x0 = 1K , as above. Let Si = Li(x0) ∼= Ki/Vi be two complex forms ofM .
If S1 and S2 are isometric, then some element of K carries S1 onto S2.

Proof of Proposition 3.2. We can pass to the compact dual if necessary, so we may (and
do) assumeM compact. Decompose the Lie algebra g ofG under dθ , g = k+m, where
k is the Lie algebra ofK and m represents the real tangent space ofM . Then Sp(1) gives
m a quaternionic vector space structure, so any circle subgroup gives m a complex vector
space structure. If that circle is V ∩ Sp(1), it defines an L-invariant almost complex
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structure on S, and that is integrable because S is a Riemannian symmetric space. We
have proved Statement 1.

For Statement 2, first suppose that S is a complex form of M . Since σ is inner by
hypothesis, rank(L) = rank(G). Since S is an Hermitian symmetric space, rank(V ) =
rank(L). Now, V contains a Cartan subgroup T ofG. Thus, V ∩Sp(1) contains a circle
group T1 := T ∩ Sp(1). Now the only possibilities for V ∩ Sp(1) are (a) T1, (b) the
normalizer of T1 in Sp(1), and (c) all of Sp(1). Here, (b) is excluded because it would
prevent S from having an L-invariant almost complex structure, and (c) is excluded
because it would prevent S from being totally complex, so V ∩ Sp(1) is a circle group.
Finally, dimC S = dimHM because S is a maximal totally complex submanifold ofM .

Conversely, suppose that V ∩ Sp(1) is a circle group and dimC S = dimHM . By
Statement 1, S is a totally complex submanifold of M . By dimC S = dimHM , it is a
maximal totally complex submanifold. And we started with the symmetry σ , so S is a
complex form ofM .

For Statement 3 note, as above, that s ∈ L because rank(L) = rank(G), and now
s ∈ V because rank(V ) = rank(L). �

Proof of Proposition 3.3. All our groups have equal rank, so V ′ is the K-centralizer
of some v′ ∈ V ′ with v

′2 central in K . Here, K contains the center of G, and those
centers satisfy ZK/ZG = {1, z}ZG cyclic order 2. Let σ ′ = Ad(v′). If v

′2 ∈ zZG,
then σ

′2 = θ , so dσ has eigenvalues ±√−1 on m, and L′ = Gσ
′

has the property
that S′ = L′(x0) ∼= L′/V ′ is Hermitian symmetric. Since V ∈ L and V ′ ∈ L′ are
symmetric subgroups ofG, and their Hermitian symmetric subgroups are isomorphic,
it follows from Table 1 and the classification of Riemannian symmetric spaces that
L ∼= L′. Now, L and L′ are conjugate in G, so we may assume L = L′. Then, V and
V ′ are isomorphic symmetric subgroups in L, so they are L-conjugate. This completes
the proof. �

Proof of Proposition 3.4. Suppose that S1 and S2 are isometric, say g : S1 ∼= S2 for
some isometric map g. We can assume g(x0) = x0, so dg gives a Lie triple system
isomorphism of l1 ∩m onto l2 ∩m. Write li = l′i⊕zi , where l′i is generated by li∩m and
zi ⊂ vi is a complementary ideal. Then dg gives a Lie algebra isomorphism of l′1 onto
l′2. Let ji ∈ sp(1) be orthogonal to the Lie algebra of the circle group Vi ∩Sp(1). Then,
ji centralizes zi and m is the real vector space direct sum of li ∩ m with ad(ji )(li ∩ m).
Now, ad(zi )|m = 0, so each zi = 0, and dg : l1 ∼= l2. Since l1 and l2 are isomorphic
symmetric subalgebras of g, they are Ad(G)–conjugate. Thus we may assume g ∈ G.
As g(x0) = x0 now g ∈ K . Thus some g ∈ K carries S1 onto S2. �

Propositions 3.2 and 3.4 will let us do the classification of complex forms S = L/V
of quaternionic symmetric spaces M = G/K in case rank(L) = rank(G). There are
only a few cases where rank(L) < rank(G), and we will handle them individually. That
is not very elegant, but it is very efficient.

4 The classification of complex forms

In this section, we state the classification of complex forms S = L/V of quaternionic
symmetric spacesM = G/K andM ′ = G′/K whose holonomy has quaternion scalar
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part. The proofs are given in Sections 5, 7 and 8. We state the results separately for the
compact and the non-compact cases.

Theorem 4.1. LetM = G/K be a compact simply connected irreducible quaternionic
Riemannian symmetric space. Then the complex forms S = L/V ofM are exactly the
following, and each is unique up to the action of G.

1. M = SU(r + 2)/S(U(r)× U(2)). Then (1a) S = SO(r+2)
SO(r)×SO(2) , or

(1b) S = Pu(C)× P r−u(C) = SU(u+1)
S(U(u)×U(1)) × SU(r−u+1)

S(U(r−u)×U(1)) , 0 � u � r .

2. M = SO(r + 4)/[SO(r) × SO(4)]. Then (2a) S = SU(r ′+2)
S(U(r ′)×U(2)) , r = 2r ′ even,

or (2b) S = SO(u+2)
[SO(u)×SO(2) × SO(r−u+2)

SO(r−u)×SO(2) , 0 � u � r .

3. M = Sp(n+ 1)/[Sp(n)× Sp(1)] = Pn(H). Then S = Pn(C) = U(n+1)
[U(n)×U(1) .

4. M = G2/SO(4). Then S = P 1(C)× P 1(C) = SO(4)
SO(2)×SO(2) .

5. M = F4/[Sp(3) · Sp(1)]. Then S = Sp(3)
U(3) × P 1(C).

6. M = E6/[SU(6)·Sp(1)]. Then (6a) S = SU(6)
S(U(3)×U(3))×P 1(C), or (6b) S = Sp(4)

U(4) ,

or (6c) S = SO(10)
U(5) .

7. M = E7/[Spin(12) · Sp(1)]. Then (7a) S = E6
Spin(10)·U(1) , or (7b) S =

SU(8)
S(U(4)×U(4)) , or (7c) S = SO(12)

U(6) × P 1(C).

8. M = E8/[E7 · Sp(1)]. Then (8a) S = E7
E6T1

× P 1(C) or (8b) S = SO(16)
U(8) .

Theorem 4.2. LetM = G/K be a non-compact irreducible quaternionic Riemannian
symmetric space. Then, the complex forms S = L/V of M are exactly the following,
and each is unique up to the action of G.

1. M = SU(r, 2)/S(U(r)× U(2)). Then (1a) S = SO(r,2)
SO(r)×SO(2) , or

(1b) S = Hu(C)×Hr−u(C) = SU(u,1)
S(U(u)×U(1)) × SU(r−u,1)

S(U(r−u)×U(1)) , 0 � u � r .

2. M = SO(r, 4)/[SO(r)× SO(4)]. Then (2a) S = SU(r ′,2)
S(U(r ′)×U(2)) , r = 2r ′ even, or

(2b) S = SO(u,2)
[SO(u)×SO(2) × SO(r−u,2)

SO(r−u)×SO(2) , 0 � u � r .

3. M = Sp(n, 1)/[Sp(n)× Sp(1)] = Hn(H). Then S = Hn(C) = U(n,1)
[U(n)×U(1) .

4. M = G2,A1A1/SO(4). Then S = H 1(C)×H 1(C) = SO(2,2)
SO(2)×SO(2) .

5. M = F4,C3C1/[Sp(3) · Sp(1)]. Then S = Sp(3:R)
U(3) ×H 1(C).
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6. M = E6,A5C1/[SU(6) · Sp(1)]. Then (6a) S = SU(3,3)
S(U(3)×U(3)) × H 1(C), or (6b)

S = Sp(4;R)
U(4) , or (6c) S = SO∗(10)

U(5) .

7. M = E7,D6C1/[Spin(12) · Sp(1)]. Then (7a) S = E6,D5T1
Spin(10)·U(1) , or (7b) S =

SU(4,4)
S(U(4)×U(4)) , or (7c) S = SO∗(12)

U(6) × P 1(C).

8. M = E8,E7C1/[E7 · Sp(1)]. Then (8a) S = E7,E6T1
E6T1

× P 1(C) or (8b) S = SO∗(16)
U(8) .

Of course, Theorem 4.2 is immediate from Theorem 4.1 by passage to the non-
compact dual symmetric spaces. So, we need only prove Theorem 4.1. The proof of
Theorem 4.1 consists of consolidating the results of Sections 5, 7 and 8.

5 The equal rank classification — classical cases

We run through the list of compact irreducible quaternionic symmetric spaces M =
G/K from Table 1, for the cases where G is a classical group. For each of them, we
look at the possible symmetric subgroupsL, that correspond to an Hermitian symmetric
space S = L/V , such that rank(L) = rank(G), dimC S = dimHM , rank(S) � rank(M),
andV is isomorphic to a symmetric subgroup ofK properly placed as in Proposition 3.2.
The equal rank classification will follow using Proposition 3.4. We retain the notation
used in Propositions 3.2 and 3.4. Fix s ∈ K , such that L is the identity component of
σ = Ad(s).

Case M = SU(r + 2)/S(U(r) × U(2)). First, suppose r � 2. We may take s to be
diagonal. It has only two distinct eigenvalues, and its component in the U(2)-factor of
K must have both eigenvalues. Now L ∼= S(U(u+ 1)× U(v + 1)), V ∼= S([U(u)×
U(1)] × [U(v)×U(1)]), and S is the product Pu(C)× Pv(C) of complex projective
spaces. Here, dimHM = r = u + v = dimC S. If u, v � 1, then rank(M) = 2 =
rank(S). If u = 0, then the factor Pu(C) is reduced to a point, S ∼= Pv(C), and
rank(S) = 1. The analog holds, of course, if v = 0.

Now, consider the degenerate case r = 1. Then M = P 2(C) and fits the dual
pattern described in the paragraph just before the statement of Proposition 2.1. Relative
to the quaternionic structure denotedA1 there, the one with with quaternion scalar part,
the matrix considerations above show thatM has a complex form S = P 1(C).

CaseM = SO(r + 4)/[SO(r)× SO(4)]. As before, the matrix s has just two distinct
eigenvalues, and each one must appear with multiplicity 2 in the SO(4)-factor of K .
If s2 = I , then L = SO(u+ 2)× SO(v + 2) with u+ v = r , where V = L ∩K =
[SO(u)×SO(2)]×[SO(v)×SO(2)]. Here the SO(2)-factors inV are the intersection
with the SO(4)-factor of K . That gives us the forms S = (SO(u + 2)/[SO(u) ×
SO(2)])× (SO(v + 2)/[SO(v)× SO(2)]) ofM .

Now, suppose s2 = −I . Then, r = 2r ′ even, L ∼= U(r ′ + 2), V ∼= U(r ′)× U(2),
and we have the complex form S ∼= SU(r ′ + 2)/S(U(r ′)× U(2)) ofM .

Case M = Sp(n + 1)/[Sp(n) × Sp(1)] = Pn(H). The symmetric subgroups of
Sp(n+ 1) are the Sp(u) × Sp(v), u + v = n + 1, and U(n + 1). The first case,



272 J. A. Wolf

L = Sp(u)×Sp(v), would giveV = Sp(u)×Sp(v−1)×Sp(1), soS = Sp(v)/[Sp(v−
1) × Sp(1)], which is not Hermitian symmetric. That leaves the case L = U(n + 1)
and V = U(n) × U(1), where S = Pn(C). It satisfies the conditions of Proposition
3.2 and thus is a complex form ofM .

6 The LiE program

While the matrix computation methods of Section 5 work well for the classical group
cases, it is more convenient to make use of the root structure in the exceptional group
cases. In this section, we indicate just how we used the LiE program [L] to do that. We
illustrate it for E8, but it is the same for any simple group structure. Here, node refers
to the simple root at which the negative of the maximal root is attached in the extended
Dynkin diagram.

Step 0: Initialize.

> setdefault(E8) > rank = 8
> diagram ; prints out the Dynkin diagram and numbers the simple roots.
> node = 8 ; the number of the simple root that defines K .

Step 1: Positive Roots of g.

> pos = pos roots
> max root = pos[n rows(pos)]

Step 2: Positive Roots of k.

> kkk = pos > for i = 1 to n rows(kkk) do
if kkk[i,node] == 1 then kkk[i] = null(rank) fi od ; zeroes rows m-roots

> kk = unique(kkk) ; eliminates duplicate rows
> k = null(n rows(kk)-1,rank) > for i = 1 to n rows(k) do k[i] = kk[i+1] od

; eliminates last zero row
> Cartan type(k) ; verifies correct Cartan type for k, in this case E7A1

Step 3: Positive Roots of m.

> mmm = pos > for i = 1 to n rows(mmm) do
if mmm[i,node] != 1 then mmm[i] = null(rank) fi od ; zeroes rows for k–roots

> mm = unique(mmm) ; eliminates duplicate rows
> m = null(n rows(mm)-1,rank)
> for i = 1 to n rows(m) do m[i] = mm[i+1] od ; eliminates last zero row

Step 4: Choice of sym where σ = Ad(sym); definition of l = gσ .

> sym = null(rank + 1) ; initializes sym as row vector
> sym[node] = 1 ; one possibility for nonzero element of sym
> sym[rank+1] = 2 ; normalizes 1–parameter group containing symm
> l = cent roots(sym) ; defines l as centralizer of sym
> Cartan type(l) ; Cartan type of l, in this case E7A1

Step 5: Positive Roots of s := l ∩ m and of v := l ∩ k.
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> sss = l > for i = 1 to n rows(sss) do
if sss[i,node] != 1 then sss[i] = null(rank) fi od

> ss = unique(sss)
> s = null(n rows(ss)-1,rank)
> for i = 1 to n rows(s) do s[i] = ss[i+1] od
> vvv = l
> for i = 1 to n rows(vvv) do if vvv[i,2] == 1 then vvv[i] = null(rank) fi od
> vv = unique(vvv)
> v = null(n rows(vv)-1,rank)
> for i = 1 to n rows(v) do v[i] = vv[i+1] od
> Cartan type(v) ; Cartan type of v, in this case E6T1T1

; At this point we know that S = L/V ∼= (E7/[E6 ×T1])× (T1/T1),
; so it is an hermitian symmetric subspace of G/K .

Step 6: Verify that S is a maximal totally complex inM .

> t = null(n rows(s)-1,rank)
> for i=1 to n rows(t) do t[i] = max root - s[i] od
> u = null(n rows(s) + n rows(t) + n rows(m), rank)
> for i = 1 to n rows(s) do u[i] = s[i] od
> for i = 1 to n rows(t) do u[n rows(s) + i] = t[i] od
> for i = 1 to n rows(m) do u[n rows(s) + n rows(t) + i] = m[i] od

; now the rows of u are: positive roots of s,
; maximal root minus positive roots of s,
; positive roots of m

> w = unique(u) ; the rows of w are the positive roots of m and non–root
; linear functionals ( max root minus positive root of s )

> n rows(w) - n rows(m) ; number of non–root linear functionals in w,
; measures failure of S to be maximal totally complex;
; OK here because it returns 0

We carry out the routine in some key cases. These are cases where K and L are
conjugate in G.

CaseG = B7. Here, node = 2, and sym = [0, 1, 0, 0, 0, 0, 0, 2] leads to L = B5A1A1
and V = B4T1T1T1, thus to the complex form S = SO(11)/[SO(9) × SO(2)] ×
P 1(C)× P 1(C) of G/K = SO(15)/[SO(11)× SO(4). More generally, for Bn with
n � 3, node = 2, and sym = [0, 1, 0, . . . , 0, 2] gives the complex form S = SO(2n −
3)/[SO(2n− 5)×SO(4)] ×P 1(C)×P 1(C) ofG/K = SO(2n+ 1)/[SO(2n− 3)×
SO(4)]. This is the case v = 2, u = r − 2 considered for G = SO(r + 4), r odd, in
Section 5.

CaseG = D7. Here, node = 2, and sym = [0, 1, 0, 0, 0, 0, 0, 2] leads toL = D5A1A1
and V = D4T1T1T1, thus to the complex form S = SO(10)/[SO(8) × SO(2)] ×
P 1(C)×P 1(C) ofG/K = SO(14)/[SO(10)× SO(4)]. More generally, forDn with
n � 3, node = 2, and sym = [0, 1, 0, . . . , 0, 2] gives the complex form S = SO(2n −
4)/[SO(2n−6)×SO(2)]×P 1(C)×P 1(C)ofG/K = SO(2n)/[SO(2n−4)×SO(4)].
This is the case v = 2, u = r − 2 considered forG = SO(r + 4), r even, in Section 5.
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CaseG = G2. Here, node = 2, and sym = [0, 1, 2] leads to L = A1A1 and V = T1T1,
thus to the complex form S = P 1(C)× P 1(C) of G/K = G2/SO(4).

Case G = F4. Here, node = 1, and sym = [1, 0, 0, 0, 2] leads to L = C3C1 and
V = A2T1T1, thus to the complex form S = [Sp(3)/U(3)] × P 1(C) of G/K =
F4/C3C1.

Case G = E6. Here, node = 2, and sym = [0, 1, 0, 0, 0, 0, 2] leads to L = A5A1 and
V = A2T1A2T1, thus to the complex form S = [SU(6)/S(U(3)×U(3))] ×P 1(C) of
G/K = E6/A5A1.

Case G = E7. Here, node = 2, and sym = [0, 1, 0, 0, 0, 0, 0, 2] leads to L = D6A1
and V = A5T1T1, and thus to the complex form S = [SO(12)/U(6)] × P 1(C) of
G/K = E7/D6A1.

Case G = E8. As we saw, sym = [0, 0, 0, 0, 0, 0, 0, 1, 2] leads to L = E7A1 and
V = E6T1T1, and thus to the complex form S = (E7/[E6 × T1])× P 1(C) ofG/K =
E8/E7A1.

Cases A7 and C7. Here, the computation using LiE has not yet produced complex
forms S of M . In other words, I have not yet guessed the appropriate vectors sym to
define toral elements of G whose centralizers are appropriate subgroups L ⊂ G.

7 The equal rank classification – exceptional cases

In this section, we complete the classification for the equal rank exceptional group
cases.

CaseG = G2. The only symmetric subgroup ofG2 is SO(4), so here the only complex
form ofM = G2/SO(4) is S = P 1(C)× P 1(C) as described in Section 6.

Case G = F4. The only symmetric subgroups of F4 are Sp(3) · Sp(1) and Spin(9).
If L = Spin(9), then the Hermitian symmetric space L/V = Spin(9)/[Spin(7) ×
Spin(2)]. That would place the Spin(7)-factor of V in the Sp(3)-factor of K; but
Sp(3) ⊂ SU(6) while Spin(7) has no non-trivial representation of degree < 7. Thus,
L �= Spin(9), so, here the only complex form ofM = F4/C3C1 isS = [Sp(3)/U(3)]×
P 1(C) as described in Section 6.

Case G = E6. The only symmetric subgroups of maximal rank in E6 are A5A1 and
D5T1.

If L = D5T1, then the Hermitian symmetric space S = L/V must be either
SO(10)/[SO(8)× SO(2)] with V = [SO(8)× SO(2)] · SO(2), or [SO(10)/U(5)]
with V = U(5) · SO(2). The first is excluded because dimC SO(10)/[SO(8) ×
SO(2)] = 8 < 10 = dimHM . The second of these is a complex form of M =
E6/A5A1 by Propositions 3.2 and 3.3.
L = A5A1 gives another complex form S = [SU(6)/S(U(3) × U(3))] × P 1(C)

ofM = E6/A5A1 as described in Section 6.

Case G = E7. The only symmetric subgroups of E7 are D6A1, A7 and E6T1.
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If L ∼= E6T1, then the Hermitian symmetric space S = L/V must be E6/D5T1
with V = D5T1T1. It is a complex form ofM = E7/D6A1 by Propositions 3.2 and 3.3.

IfL = A7, then the Hermitian symmetric spaceS = L/V must beSU(8)/S(U(u)×
U(v)) with u + v = 8. Here dimC L/V = UV while dimHM = 16, so u = v = 4.
That would place the [SU(4)×SU(4)]-factor ofV in the Spin(12)-factor ofK . It could
only sit there as Spin(6)× Spin(6), which is the identity component of its Spin(12)-
normalizer because it is a symmetric subgroup of Spin(12), so the circle center of V
is contained in the Sp(1)-factor of K . Thus, S is a complex form of M = E7/D6A1
by Propositions 3.2 and 3.3.
L = D6A1 gives another complex form S = [SO(12)/U(6)] × P 1(C) of M =

E7/D6A1 as as described in Section 6.

Case G = E8. The only symmetric subgroups of E8 are E7A1 and D8.
If L = D8, then the Hermitian symmetric space S = L/V either must be

SO(16)/[SO(14) × SO(2)] with V = [SO(14) × SO(2)], or SO(16)/U(8) with
V = U(8). The first of these is excluded because dimC SO(16)/[SO(14)×SO(2)] =
14 < 28 = dimHM . The second of these is a complex form of M = E8/E7A1 by
Propositions 3.2 and 3.3.
L ∼= E7A1 gives another complex form S = (E7/[E6 × T1]) × P 1(C) of M =

E8/E7A1 as described in Section 6.

8 The unequal rank classification

In this section, we deal with the cases rank(L) < rank(G). Here, G is of type An, Dn
or E6.

CaseM = SU(r + 2)/S(U(r)×U(2)). The only symmetric subgroups of lower rank
in SU(r + 2) are SO(r + 2) and, for r = 2r ′ even, Sp(r ′ + 1).

IfL = Sp(r ′+1), r = 2r ′ even, thenS = Sp(r ′+1)/U(r ′+1)withV = U(r ′+1).
Here, dimHM = 2r ′ and dimC S = 1

2 (r
′ + 2)(r ′ + 1), so those dimensions are equal

just when r
′2−r ′+2 = 0. That equation has no integral solution. Thus,L �= Sp(r ′+1).

If L = SO(r + 2), then S = SO(r + 2)/[SO(r) × SO(2)] with V = [SO(r) ×
SO(2)]. The SO(2)–factor of V is contained in the derived group SU(2) of the U(2)-
factor ofK , and dimC S = r = dimHM , so Proposition 3.2 shows that S is a complex
form ofM .

CaseM = SO(2n+ 4)/[SO(2n)× SO(4)]. The only symmetric subgroups of lower
rank in SO(2n + 4) are SO(2u + 1) × SO(2v + 1), where u + v = n + 1. If L =
SO(2u+1)×SO(2v+1) then V = SO(2u−1)×SO(2)×SO(2v−1)×SO(2) and
S = {SO(2u+ 1)/[SO(2u− 1)× SO(2)]} × {SO(2v+ 1)/[SO(2v− 1)× SO(2)]},
where the product of the two SO(2)-factors is contained in the SO(4)-factor of K .
Since dimC S = (2u− 1)+ (2v− 1) = n = dimHM , the argument of Proposition 3.2
shows that S is a complex form ofM .

CaseM = E6/A5A1. The only symmetric subgroups of lower rank in E6 are F4 and
C4, andL �= F4 because F4 has no Hermitian symmetric quotient space. IfL = Sp(4),
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then S = Sp(4)/U(4) with V = U(4). Here, V sits in K as follows. The semi-
simple part [V, V ] = U(4)/{±I } = SO(6) ⊂ SU(6) = A5. [V, V ] is a connected
symmetric subgroup of the connected simple group A5, so it is equal to the identity
component of its normalizer in A5. Thus, the projectionK = A5A1 → A5 annihilates
the circle center of V . In other words, V ∩ Sp(1) is a circle group central in V . It
follows as in Proposition 3.2(1) that S is a totally complex submanifold of M . Since
dimC S = 10 = dimHM , it is a maximal totally complex submanifold, and being a
symmetric submanifold it is a complex form.

This completes the proof of Theorems 4.1 and 4.2, the main results of this note.

9 Quaternionic forms

In this section, we look at the idea of quaternionic forms of symmetric spaces as
suggested by the examples of projective planes P 2(H) ⊂ P 2(O) and hyperbolic planes
H 2(H) ⊂ H 2(O). The meaning of Cayley structure is not entirely clear because of
non-associativity, so we do not have a good definition for Cayley symmetric space.
Here, we offer a tentative definition of quaternionic form and a number of examples,
some interesting and some too artificial to be interesting.

LetM be a Riemannian symmetric, let σ be an involutive isometry ofM , let S be a
totally geodesic submanifold ofM , and suppose that (i) S is a topological component
of the fixed point set of σ , (ii) dimR S = 1

2 dimRM , and (iii) S has quaternionic
structure for which its holonomy has quaternion scalar part. Then we will say that S is
a quaternionic form ofM .

Suppose thatM = G/K with base point x0 = 1K and S = L(x0) = L/V , where
L is the identity component of the group generated by transvections of S. Following
Proposition 2.1, S = L/V is one of the spaces listed in Table 1. That gives us interesting
examples

SU(r+2)
S(U(r)×U(2)) = U(r+2)

U(r)×U(2) in Sp(r + 2)/[Sp(r)× Sp(2)];
SO(r+4)

SO(r)×SO(4) in U(r + 4)/[U(r)× U(4)] = SU(r + 4)/S(U(r)× SU(4));
Sp(r+1)

Sp(r)×Sp(1) in U(2r + 2)/[U(2r)× U(2)] = SU(2r + 2)/S(U(2r)× U(2));
SU(r+2)

S(U(r)×U(2)) = U(r+2)
U(r)×U(2) in SO(2r + 4)/[SO(2r) × SO(4)]; Sp(3)

Sp(2)×Sp(1) = P 2(H)

in P 2(O) = F4/Spin(9) (computing with LiE);

E7
Spin(12)·Sp(1) in E8/SO(16) (using Proposition 3.3 with L = E7A1, as in §7).

It also gives us some other examples S in S × S as a factor or as the diagonal;

SU(r+2)
S(U(r)×U(2)) in SU(r + 4)/S(U(r)× U(4)) or SU(2r + 2)/S(U(2r)× U(2));
SO(r+4)

SO(r)×SO(4) in SO(r + 8)/[SO(r)× SO(8)] or SO(2r + 4)/[SO(2r)× SO(4)];
Sp(r+1)

Sp(r)×Sp(1) in Sp(r + 2)/[Sp(r)× Sp(2)] or Sp(2r + 1)/[Sp(2r)× Sp(1)].
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Those other examples somehow seem too formal to be interesting. Of course with
any of these compact examples S ⊂ M , we also have the non-compact duals S′ ⊂ M ′.

These examples indicate that a reasonable theory for quaternionic forms S of sym-
metric spacesM will require some additional structure on the normal bundle of S inM .
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