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1 Background

Let us introduce the notation and goals of this paper in the context of an
example. For this let the complex Lie group G¢ = SL3(C) act on the complex
projective space Z = IP,(C) in the usual way and consider the induced action
of the real form Gr = SL3(R). The latter has only two orbits on Z, the set
M = P,(R) of real points, and its complement D.

This situation leads one to consider representations of Gg on linear spaces
that are defined by the complex geometry at hand. We focus our attention
on the open orbit D. Here M is totally real and has a basis of Stein neigh-
borhoods. It follows that D is pseudoconcave. Consequently O(D) & C and
we must look further for appropriate linear spaces.

* Research partially supported by the DFG Schwerpunkt “Global Methods in Com-
plex Geometry”. ‘
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If E —+ D is a holomorphic Gr-homogeneous vector bundle then, tak-
ing the pseudoconcavity into consideration, the theorem of Andreotti and
Grauert [1] suggests that we consider the linear space H'(D; O(E)). For sim-
plicity consider the case where E — D is the holomorphic cotangent bundle,
dual to the holomorphic tangent bundle, and identify H!(D; O(E)) with the
space HV}(D) of -closed (1,1)-forms modulo those that are exact.

The Andreotti-Norguet transform [2] allows one to represent such a Dol-
beault cohomology space as a space of holomorphic functions on a space of
cycles of appropriate dimension. For this, recall that a (compact) g-cycle C in
a complex space X is a linear combination C' = n;C; + - - - + nCx where the
n; are positive integers and each Cj is an irreducible g-dimensional compact
subvariety of X. Equipped with the topology of Hausdorff convergence, the
space C9(X) of all such cycles has a natural structure of complex space [3].

If X is a complex manifold, then the theorem of Andreotti and Norguet [2]
states that the map defined by integration has values in O(C4(X)):

AN : H¥9(X) - O(CY(X)) where AN(a)(C)= / a.
C

In general it is not a simple matter to explicitly describe either side of this
correspondence. However, in the special case where D is an open Gg-orbit
such as the one in our example, there is at least a very natural space of cycles.

In the case of D = P;(C) \ P2(R) as above, choose Kg = SO3(R) as a
maximal compact subgroup of Gg . Observe that Kg has a unique orbit in D
that is a complex submanifold, namely the quadric curve Cp = {2 € P,(C) |
22 +22+422 = 0}. We may regard C; as a point in C!(Z) and consider its orbit
12 := G¢ - Cy . The isotropy subgroup of G¢ at Cy is K¢Z3 , where K¢ is the
complexification SO3(C) of Kg, and Z3 = {wI | w® = 1} is the center of G¢.
So {2 may be regarded as the homogeneous space G¢/KcZs . That in turn
can be identified with the complex symmetric 3 x 3 matrices of determinant
1, modulo Zz . So {2 is a very concrete, very familiar object.

It is another matter to give a concrete description of the space 2(D) :=
{C € 2| C c D}, which is naturally associated to D. However we at least
see that it is a Gr-invariant open set in {2 and that, by restriction, we have
the Andreotti-Norguet transform AN : H1(D) — O(2(D)).

Before looking more closely at the example, we introduce an appropriate
general setting. For proofs and other basic facts we refer the reader to [14].

Let Z = G¢/Q be a projective algebraic variety, necessarily compact,
viewed as a homogeneous manifold of a complex semisimple group G¢ . (Other
terminology: () is a parabolic subgroup of G¢, or, equivalently, Z is a complex
flag manifold.) Let Ggr be a noncompact real form of G¢. It can be shown
that Gg has only finitely many orbits in Z; in particular at least one of them
is open.

If D is such an open Ggr-orbit on Z, and K is a maximal compact sub-
group of Gg, then Ky has exactly one orbit in D that is a complex submani-
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fold. We refer to it as the “base cycle” Cp and regard it as a point Cq € C(Z)
where g = dim¢ Cy .

Since the action of G¢ on C¥(Z) is algebraic, the orbit 2 := G¢ - Cp is
Zariski open in its closure. Define 2(D) to be the connected component of
{C € 2| C C D} that contains Cy .

In certain hermitian symmetric cases {2 is compact [15], but in those cases
£2(D) is just the associated bounded symmetric domain. There are also a few
strange cases where G is transitive on Z [18]; in those cases £2(D) = £2 and
it is reduced to a single point. In general, however, the isotropy subgroup
of G¢ at Cp is a finite extension of the complexification of K. By abuse
of notation we write that finite extension as K¢, so {2 = G¢/Kc, and 2 is
affine [15].

Just as in the example we have AN : H#9(D) — O(£2(D)), and it is
of interest to understand the complex geometry of 2(D), in particular with
respect to functions in the image AN{H%9(D)). Recently Barlet and Magnus-
son developed some general methods involving “incidence varieties”[5], and
Barlet and Koziarz developed a general “trace method” or “trace transform”
for constructing holomorphic functions on cycle spaces [4]. These general re-
sults can be applied to our concrete situation; see [9, Appendix]. Here we
discuss this only from the perspective of the trace transform, which produces
functions in the image Im(AN) in a simple and elegant way.

In the example Z = P,(C) above, let S = {z € Z | z = 0}. Note that
S N D can be regarded as the union of the upper and lower hemispheres
in § = P,(C), which are separated by SN M = P;(R). The intersection
Co N S consists of exactly one point in each component, say py and go. In
fact, whenever C € 2(D) the intersection C N S consists of two points p(C)
and ¢(C), one in each component of D N S. Here the trace transform

T : O(S N D) - O(2(D))

is given by T(f)(C) = f(»(C)) + f(g(C)) whenever f € O(SN D) and C €
2(D). In this case it is easy to see that 7 does have image in O(£2(D)). It is
also easy to see that, given Cy, in the boundary bd2(D) with z € CoN bdD,
there exists f € O(S N D) with a pole at z and such that

lim |T(F)(Cr)] = 00 whenever {C,} is a sequence in
£2(D) that converges to Co -

This shows that 2(D) is Stein. More precisely, given z € Cu as above,
there are functions in the image of the trace transform 7 which display
the holomorphic convexity of £2(D) by having poles in the incidence variety
{Cen|zeC}

In general this trace transform method, applied to a subvariety S C Z
of codimension g, transforms a function f € O(S N D) to a certain function
T(f) € O(2(D)). Here CNS is finite for every C € 2(D), and T (f) is defined
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by T(f)(C) = ¥ pecns (), counting intersection multiplicities. The trace
transform method is an essential tool for the proof of the following result.

Theorem 1.1. Let Gg be a real form of G¢ = SL,(C). Let D be an open
Gr-orbit in a complez flag manifold Z = G¢/Q . Then either Gr/KR is a
bounded symmetric domain and 2(D) = Gg/Kg, or 2(D) is a Stein domain
in 2 =G¢c/Kc.

This is proved for Gr = SL,(R) in [9] using ad hoc generalizations of the
transversal Schubert variety S = {z € P;(C) | 22 = 0} above. The method of
transversal Schubert varieties has since been systematized [8] and may very
well lead to a general proof, without conditions on Z or Gg, that 2(D) is
Stein. This approach is reviewed in Sect. 2. There we also show that it suffices
to understand Schubert variety intersections ¥ = S N D in the measurable
case, where it is known that £2(D) is Stein [15].

In Sect. 3 we go to the case case G¢ = SL,(C), obtaining an immense
simplification of the combinatorial aspects of [9] and a relatively elementary
proof of the theorem stated above.

In [17] transversal varieties T' are constructed in open Gg-orbits D in
a hermitian symmetric flag manifold Z = G¢/Q. Thus D = Gr/Kg is a
bounded symmetric domain and Z, as a homogeneous space of the compact
real form of G¢, is the compact dual hermitian symmetric space. This is
done with the partial Cayley transforms intrinsic to the Gr-orbit structure
of Z, and for each open orbit D it produces a precisely described bounded
symmetric domain Y = T N D of Z-codimension equal to the dimension of
the base cycle Cy in D, and such that T intersects Cp transversally. Just as
in the case of the Schubert slices above, the closure c/(D) meets every Gg-
orbit in ¢f(D). The trace transform method can therefore be used to transfer
the Stein property from X to 2(D), thus proving the above theorem in the
hermitian symmetric space case.

The transversal varieties T of [17] have the advantage that they are con-
structed at an explicit base point in Cy . This leads to a concrete description
of the slice X' mentioned above. The Schubert slices X's have the advantage
that they exist in general, but the disadvantage that no distinguished base
point is given in the construction. (So far, this has meant that the Stein prop-
erty must be proved by ad hoc considerations.) At the end of Sect. 3 we give
an example which shows that Xy and Xs can be very different: Z = P, (C),
D is the complement of the closure of the unit ball B,, C C* C Z, X7 is adisk
whose closure cf(Z7) is transversal to the boundary bd(B,,), and s & C in
such a way that its closure cf(Xg) = P, (C) is the projective tangent line to
a point on bd(By,).

2 Schubert Slices

As in Sect. 1, G¢ denotes a complex connected semisimple linear algebraic
group with a given noncompact real form Gy . Let Q be a (complex) parabolic
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subgroup of G¢, so the homogeneous space G¢/Q is a projective algebraic
variety. Let D denote an open Ggr-orbit on Z, and fix a maximal compact
subgroup Kg of Ggr. Let Cp = Kr(2p) denote the unique Kg-orbit in D that
is a complex submanifold, so of course D = Gr(zp), and define ¢ := dim¢ Cp .

We write gc, gr, q and ¥g for the respective Lie algebras of G¢, Gr, @
and Kpg, and we write ¥ for the complexification of £y .

The action of G¢ on the cycle space C?(Z) is algebraic, so the orbit 2 :=
G- Cy is Zariski open in its closure. If Gy is of hermitian type, then for certain
special orbits D (called “holomorphic type” in [19]) it is in fact closed. There
are also a few strange cases where D = Z, so Cy = Z and C%(Z) is reduced to
a point; see [18]. But in general the G¢-stabilizer of Cy is a finite extension
of the analytic subgroup of G¢ with Lie algebra & ; see [15]. By abuse of
notation, we write K¢ for that stabilizer, so 2 = G¢/Kc¢ and (2 is an affine,
spherical homogeneous space.

Let £2(D) denote the connected component of {C € 2 | C C D} that
contains Cp . It contains the Riemannian symmetric space Gg - Cop = Gr/Kg
as a closed totally real submanifold of real dimension equal to dim¢ 2(D). In
the special hermitian cases mentioned above, where {2 is compact, our 2(D)
is the bounded symmetric domain Gr/Kg [15].

2.1 The Slice Theorem

A Borel subgroup of G is, by definition, a maximal connected solvable sub-
group. Borel subgroups are complex algebraic subgroups, and any two are
conjugate in G¢ . Let B be a Borel subgroup of G¢ . If Z = G¢/Q as above,
then B has only finitely many orbits on Z, and each orbit O is algebraic—
geometrically equivalent to a complex affine space AY™ ©, The covering of Z
by the closures S = c£(O) of B-orbits realizes Z as a CW complex. In fact
the “Schubert varieties” form a free set of generators of the integral homology
H.(Z;Z). See [6] for these and other basic facts.

If Gr = KrArNg is an Iwasawa decomposition (see, for example, (7],
[13] or [12]), then we refer to the connected solvable group AgNg as an
Iwasawa component. The important Borel subgroups, for our considerations
of Schubert slices transversal to the base cycle Cy, will be those that contain
an Iwasawa component.

In most cases there is no Borel subgroup defined over R. See [14] for an
analysis of this. So instead one considers “minimal parabolic subgroups.”
They are the P = Mg AgrNg where Gg = KrArNg is an Iwasawa decom-
position and My is the centralizer of Ag in Kg. Any two minimal parabolic
subgroups of Gr are conjugate. If Pr = MgrArNR is a minimal parabolic
subgroup of Gr, then its complexification Pc = M¢AcNg¢ specifies the class
of Borel subgroups that contain the Iwasawa component Ag Ng. Those are
the B = BpsAcN¢ where By is a Borel subgroup of Mc¢ .

Choose a Borel subgroup that contains an Iwasawa component, as above.
Let S = c£(O) be a B-Schubert variety with codimz(S) = ¢, and let X
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be a connected component of S N D. We refer to such a component X as
a “Schubert slice.” The main properties of Schubert slices, formulated and
proved in [8], can be summarized as follows.

Theorem. The intersection X' N Cy is non—empty and is transversal at each
of its points. Suppose 2o € X' N Cy. Then By fixes zy, X = ArNr(20), and
Kg - cf(X) = cl(D).

Remarks. (1) cf(X) meets every Gr-orbit in cf(D) because Ky - cf(X) =
cl(D).

(2) It would be extremely interesting to explicitly compute homology class
[Co] € Hay(Z;Z).

2.2 The Trace Transform Method

Let ¥ = SN D as above and f € O(X). If C € 2(D), then X' N C is finite
because it is a compact subvariety of the Stein manifold X. Define 7(f)(C) :=
Y vexnc f(p), counting multiplicities. This defines a holomorphic function on
2(D), and as a result we have the trace transform

T=Ts:0(2) > 0(2(D)). (2.1)
See [4] and [9, Appendix].

Corollary 2.2. The cycle space 2(D) is holomorphically separable. More
precisely, if Cy # Ca in 2(D) then there exist a Schubert slice £ and a
function f € O(X) with Te(f}(C1) # T=(f)(C2).

Proof. Suppose that we have C1,Cy € £2(D) such that Tx(f)(C1) =
Ts(f)(C2) for every Schubert slice X' and every f € O(X). As the orbit O
is affine, holomorphic functions separate points on X. Now, as we vary X,
its generic intersections with C; and C5 coincide. It follows that C; N Cy
contains interior points of C; or Cs, and each is the algebraic hull of that set
of interior points. Thus C; = Cs. O

Theorem 2.3. If X is a Stein manifold, then so is 2(D).

Proof. Let {Cn} be a sequence in 2(D), {Cn} — Co € bd(X(D)). Each
Y N C, is finite. Choose p € Co, N bd(D). Since cf(D) = Kg - cf(X) for any
choice of Ky, we may choose the Schubert slice X, in other words choose the
Iwasawa component Agr Ny , so that p € c£(X). Choose p, € XNC,, such that
{pn} — p and choose f € O(X) such that (i) limsup|f(pn)| = oo and (ii)
f(gn) = 0 for all other intersection points g, € X NC, . For (ii) use finiteness
of the ¥ N C,,. Thus the trace transform satisfies limsup |7(f)(C,)| = oo.
Consequently §2(D) is holomorphically convex. As it is holomorphically sep-
arable, it is Stein. O
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Remarks. (1) See [4] for trace transform proofs of more general results on
holomorphic convexity of cycle spaces.

(2) We emphasize that, if some Schubert slice X is Stein, then we display
the Stein property for £2(D) using only functions on £2(D) that are in the
image of the trace transform. In many cases those functions can be chosen
so that their polar sets are contained in incidence divisors Hy , where Y is
a B-invariant divisor on S. Such functions are in fact rational functions on
the closure X = cf(£2) in the cycle space. See [9].

2.3 Measurable Orbits

An open Gg-orbit on Z is called measurable if it carries a Gg-invariant
pseudo—Kahler structure. There are a number of equivalent conditions, e.g.
that the isotropy subgroups of Gg in D are reductive. This is always the case
for Z = G¢ /B where B is a Borel subgroup of G¢. Also, if one open Ggr-orbit
on Z is measurable, then every open Gg-orbit on Z is measurable. In other
words, measurability of open orbits is a property of the pair (Gg, Z). See [14]
for details.

It is known that if D is measurable then 2(D) is Stein [15]. The proof is
not constructive in the sense that it goes via the solution to the Levi Problem.
In particular it is not at all clear whether the functions on 2(D) that display
the Stein property have anything to do with the cohomology of D. Thus,
even in the measurable case, constructive methods such as those used in our
Corollaries 2.2 and 2.3 are of interest.

Let us discuss the real form Gg = SL,,(R) of G¢ = SL,,(C) with respect
to the concept of measurability. The manifolds Z = G¢/@Q are the classical
flag manifolds Zs. Here 6§ = (dy,...,d) is a “dimension symbol” of integers
with 0 < d; < ... < dg < n, and Z; consists of the flags

z=({0}CcAg, C---C 44, CC"),

where Ay is a d-dimensional linear subspace of C*.

Let 7 be the standard antiholomorphic involution of C", complex conju-
gation of C™ over R*. A flag z € Z; is called r-generic if, for each {i,7},
dim(Ag4; N7(Aq4,)) is minimal, i.e. is equal to max{d; + d; — n,0}. See [9] for
a proof that z is 7-generic if and only if Gr(z) is open in Z; .

Note that if n = 2m and A = Span{v;,vs,...,vy) in such a way that
A& 7(A) = C", then the ordered basis {Re(v1),Im(v4),...,Re(vy), Im(v,,)}
defines an orientation on R™ that depends only on A. Comparing this to the
standard orientation we may speak of A as being positively or negatively
oriented.

If § = (di,...,dg) is a dimension symbol with some d; = m, then we say
that a 7-generic flag z = ({0} C A4, C --- C Ag, C C*) € Z; is positively
(resp. negatively) oriented if A,, is positively (resp. negatively) oriented. Since
GRr preserves this notion of orientation it has at least two open orbits in Zj .
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In fact Gg has exactly two open orbits on Z; in this case, and otherwise has
only one open orbit; see [9, §2.2].

We say that § = (di,...,dx) is symmetric if § = §' where §' = (n —
dk,...,n—dl).

Proposition 2.4. An open SL,(R)-orbit on Z; is measurable if and only if
§ is symmetric.

Proof. Consider the open orbit D = Ggr(2). We may assume that Q is the
Gc-stabilizer of zp. The involution 7 extends from C* to G¢ by 7(g)(v) =
7(g9(7(v))). Now L = Q N 7(Q) is the complexification of the Gg-stabilizer
of zg , and [14] D is measurable if and only if L is a Levi factor of Q, which, by
a dimension count, is equivalent to L being reductive. To check that this con-
dition is equivalent to § being symmetric it is convenient to use a particular
basis. Also, for notational simplicity, we only describe the even—dimensional
case.

Let {e1, ..., e2m } be the standard basis of C*™, define h; = e;+v/—1 em;
for 1 £ j £ m, and use the basis h = {hy,...,Am;7(h1),...,7(hm)} to define
a base point zg € Z; as follows. If d; £ m then Ay, = Span(hy,...,hy,); if
d; > m then A4, = Span(hi, ..., m,T(hm), .-, T(Amt(m—di+1)))-

The action of 7 on G¢ is given, in matrices relative to the basis h, in

or

7 0) in m X m blocks and the bar

m x m blocks, by 7(g) = gJ where J = (

is complex conjugation of matrix entries.

In the basis h, @ consists of the block form upper triangular matrices
with block sizes given by 4, and 7(Q) consists of the lower triangular matrices
with block sizes given by §’. Now § = ¢’ if and only if L consists of all block
diagonal matrices with block size given by §, and the latter is equivalent to
reductivity of L. a

Remarks. (1) The correspondence § — §’ implements an instance of the flag
duality of [10].

(2) The condition § = &' of Proposition 2.4 is analogous to the tube
domain criterion of [11].

The following result, along with Proposition 2.4, will lead to a description
of the measurable flag manifolds Z; for any real form of G¢ = SL,(C).

Proposition 2.5. Let G and G% be two real forms of a connected complex
semisimple Lie group G¢ . Let 1y and 7o be the antiholomorphic involutions
of G¢c with respective fired point sets Gy and G%, and suppose that B :=
LTy 1 is an inner automorphism of G¢ . Fiz a complezx flag manifold Z =
Gc/Q. Then the open Gy-orbits on Z are measurable if and only if the open
G%-orbits on Z are measurable.

Proof. Let h C gq be a Cartan subalgebra of g¢. Here lower case Gothic
letters denote Lie algebras of groups denoted by the corresponding upper
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case Roman letters. Then the nilradical g™ of q is a sum acr 8¢ of h-root
spaces, and h determines a choice q"*¢ = h + Y acr 8¢ of Levi component
of q. The opposite (of the Gc-conjugacy class) of g is the (G¢-conjugacy class
of the) parabolic subalgebra q~ = q"4 + Yacr9c” - This “opposition” is a
well defined relation between conjugacy classes of parabolic subalgebras. The
point here, for us, is the fact [14, Theorem 6.7] that the Gg-orbits on Z are
measurable if and only if 7;(q) is opposite to g, i.e. is G¢c-conjugate to q~.
Let Int(Gc) denote the group of inner automorphisms of G¢ . Now the Gy~
orbits on Z are measurable, if and only if g~ = a1 q for some a € Int(Gc),
if and only if 4~ = y79q for some v € Int(G¢) where ¥ = af, if and only if
the G&-orbits on Z are measurable. g

The real forms of SL,(C) are the real special linear group SL,(R), the
quaternion special linear group SL,(H) defined for n = 2m, and the special
unitary groups SU(p, q) with p + ¢ = n. The quaternion special linear group
is defined as follows. We have R-linear transformations of C>™ given by

i:ve V=1, j:vn—)(_(}ml(')")'ﬁ, k=ij:vt—)\/—1(_(;m16")ﬁ (2.6)

where v — ¥ is complex conjugation of C?™ over R>". Then i = j? = k? =
—I5,, , and any different ones of i,j and k anticommute. So they generate a
quaternion algebra H of linear transformations of C>™, and we have

H™ : quaternionic vector space structure on C2™ defined by (2.6). (2.7)

An R-linear transformation of C®™ is quaternion-linear if it commutes with
every element of H. The group SL,(H) is defined to be the group of all
quaternion-linear transformations of C*™ of determinant 1, in other words
all volume preserving linear transformations of H"*. Thus SL,,(H) is the cen-
tralizer of j in SLgp, (C), and we have -

Lemma 2.8. SL,(H) is the real form of SL2,, (C) such that 7(g) = jgj ! is
complez conjugation of SLap,(C) over SL,(H).

Combining Lemma 2.8 with Propositions 2.4 and 2.5 we have

Corollary 2.9. Consider a flag manifold Zs of SLor(C). Then the following
are equivalent.

(i) The open SLam(R)-orbits on Zs are measurable.

(i) The open SLy,(H)-orbits on Zs are measurable.

(iii) The dimension symbol § is symmetric.

Since SU(p, ¢) has a compact Cartan subgroup 7', complex conjugation of
SLp+4(C) over SU(p, g) sends every tc-root to its negative, so the discussion
of opposition in the proof of Proposition 2.5 shows that complex conjugation
of SLp44(C) over SU(p, g) sends q to its opposite. Thus every open SU(p, q)-
orbit on every Z; is measurable. Now Corollary 2.9 gives us
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Corollary 2.10. Let Z; be a flag manifold of G¢ = SL,(C). Let Gr be a
real form of Gc. Then the open Gg-orbits on Zs are measurable except when
(1) d is not symmetric and (ii) Gr = SLn(R), or Gr = SL,(H) with n = 2m
even.

2.4 The Transfer Lemma

As we already indicated, one of our main goals here is to show that, whenever
D is an open orbit of a real form of G¢ = SL,,(C) in an arbitrary flag manifold
Zs, the cycle space £2(D) is a Stein domain. Since this is known for measurable
orbits, by Corollary 2.10 it is enough to consider Zs for § non-symmetric and
either Gg = SL,(R) or Ggr = SL,(H) with 2m = n. We carry this out by
our Schubert slice method. For any given Z this is related to an analysis of
a certain associated measurable flag manifold Z.

Given a complex flag manifold Z = G¢/Q and a real form Gg C G¢ of there
exists a root—theoretically canomcallx associated parabolic group Q cq
such that (i) the open Gr-orbits in Z = G¢/ Q are measurable and (i) Q
is maximal for this. Let = : Z - Z be the holomorphic bundle defined by

gQ — gQ, using Q C Q. Its (k-dimensional) typical fiber is F = Q/Q If
2zp is the neutral point in Z associated to @ and D = Ggr(zp) is open, then
there is a unique open orbit D = Gg(Z) in 7~!(D). The fiber of the Gg-
homogeneous fibration 7|z : D — D is Zariski open in F and isomorphic to
an affine space A*. See [16] or [10] for the details and for related information.

Now K has unique orbits in D and D which are complex submanifolds,
i.e. the base cycles Co and Cg in the respective spaces. Since A¥ is affine,
| 5 - Co — Co has finite fibers and, since the base is simply connected,
it is in fact biholomorphic. Thus in a very natural way we have an induced
Gr-equivariant open immersion =, : 2(D) — 2(D).

It can happen that the isotropy subgroup of G¢ at Cp € {2 is a finite
extension of the isotropy subgroup of G¢ and Cy € 2, but in general this
is not the case. Nevertheless, we may think of £2(D) as an open subset of
(D). In certain cases it has been shown that 2(D) = (D), for example
when Gg = SL,(R) (see [9]). In general this a very interesting open problem.

We now compare the Schubert slices in D and D. For this we fix an
Iwasawa decomposition Ggr = KrArVr, let B be a Borel subgroup of G¢
which contains the Iwasawa component Ag Ng and let S be a g-codimensional
Schubert variety in Z. We may assume that the base point z € SNCy. Recall
that (SN Cy) C (ONCp), where O = B(zp) is the open B-orbit in S.

The cycle 50 _is likewise g-dimensional. Thus we restrict our attention to
the sets S and S of g-codimensional B-Schubert varieties in the respective

spaces, and we note that the projection induces a natural injective map 7* :
S—S.
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Proposition 2.11. Let S € S and § = n*(S). Choose the neutral point
7 € 5N 6’0, let zg := (%), let 5 denote the Schubert slice ArNg(%) in D
and let ¥ = n(X). Then £ = ArNgr(zo) is a Schubert slice in D, and the
map 7|5 Y - X has the same fibers as 5.

Proof. Equivariance and the basic properties of Schubert slices immediately
imply all but the last statement. A dimension count shows that the fibers of
7|5 are open in those of 7|7 . Since % is closed in D, they must therefore
agree. Thus we have the last assertion. O

We refer to the following as the “Transfer Lemma”. The interesting aspect
of the transfer is given, of course, by combining it with Corollary 2.3.

Lemma 2.12. The Schubert slice X' is a Stein manifold if and only if Y is
a Stein manifold.

Proof. The fiber of 7|7 is a Zariski open orbit of a solvable group in the
n-fiber F', so it is isomorphic to AF_ Tt is therefore an open_Schubert cell in
F; see [9]. If £ = AgrNg(%) as above, which is open in O = B(%), now
Proposition 2.11 shows that 7|5 and 7|5 have the same fibers. Since O is
equivalent to an affine space, the holomorphic bundle 7|5 : O — O is trivial.
Therefore £ = X x A* and the assertion follows. ]

3 Cycle Spaces of Open Orbits of SL,(R) and SL,, (H)

In this section we consider cycle spaces £2(D) of open orbits D of SL,(R), and
of SL,,, (H) where n = 2m, on flag manifolds Z; of G¢ = SL,(C). In particular,
using Schubert slices and the trace transform method, we prove that 2(D)
is a Stein domain in the affine homogeneous space 2 = G¢/K¢. This was
shown for SL,,(R) in [9], but the proof here, which relies on Theorem 2.3, is
essentially simpler.

3.1 The Case of the Real Form Gr = SL,(R)

For notational simplicity we restrict our attention to the even dimensional
case, n = 2m, and, if the choice arises, to the open orbit D of positively
oriented flags in Z;. Recall that the dimension symbol § = (di,...,dx) is
called symmetric if § = ¢’ where ¢’ = (n — dg,...,n — d). Proposition 2.4
says that D is measurable if and only if § is symmetric. In that measurable
case it is known that (2(D) is Stein [15]. The proof in [15] is not constructive:
functions displaying the Stein properties are not given. Thus the independent
constructive proof given here can be of use even in the measurable case.

Let V = C", let {ej,...,e2m} denote its standard basis, define f; =
e2j—1+v—1 ey; for 1 £ j < m, and consider the basis b = {fi, . .., fm; T(fm),

,7(f1)} of V where 7 is the complex conjugation v — T of V' that leaves the
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e; fixed. We refer to b as the standard ordered basis of isotropic vectors with
respect to the complex bilinear form b(v, w) = *v-w. As usual K¢ = SO, (C)
and Kg = SO,(R) relative to b. Let B denote the Borel subgroup of G¢ =
SLn(C) that fixes the full flag defined by the standard basis {e1,...,e2m}.
Then B = AcNg where Ggr = KrArNR is a fixed Iwasawa decomposition
such that AgNg = (BN GR)°.

If z= ({0} C A4, C -+ C A4, C C*) € Z;, then we define the lower
part L(z) to be the flag ({0} C A4, C --- C Ag, C C*) € Zy ), defined by
the conditions d¢ £ m and dey3 > m and by L(8) = (dy,...,ds). (The upper
part is the flag ({0} C Aq4,,, C--- C Ag, CC").) Let L: Zs — Zp,(5) denote
the associated map of flag manifolds.

The open orbit D C Zs under discussion is the set of all (positively
oriented in case some d; = m) T-generic flags. Those are the ones such that,
for each {4, j}, dim(Aqg,N7(Aq;)) is minimal, i.e. is equal to max{d;+d;—n, 0}.
See [9, §2.2]

Lemma 3.1. The base cycle Cy is the set of all mazimally isotropic flags in
D. In other words Cy consists of the flags

z=({0}C Ay, C---CAg, CC") € Z;

in D such that, for each {i,3}, dim(Ayq, ﬂAj‘j ) is mazimal. If § is symmetric,
then the flag z € Cy if and only if all the subspaces Aq in L(z) are isotropic.
In that case, Aj‘ = An—q for all Ay in L(z).

Remark. This result is contained in [9, §2.3], but our argument is more
direct.

Proof. It suffices to prove Lemma 3.1 when @ is a Borel subgroup of G¢ . That
is the case where § = (1,2,...,n). Then the set Cj of maximally isotropic
flags z € Z; is given by: the subspaces A4 in L(2) are isotropic and satisfy
AL = An—q. The orthogonal groups O,(R) and O,(C) act transitively on
Cj, with action on k(z) determined by k(L(z)) for z € C§ . The action of
O, (C) is transitive by Witt’s Theorem, and Cj is a complex flag manifold
of O,(C). Thus also the maximal compact subgroup O, (R) is transitive on
Cj . Passing to identity components, now CyN D is an orbit of Kg = SO, (R)
that is a complex flag manifold of K¢ = O,(C), and thus is the base cycle
Co. 0

The standard ordered basis { f1,..., fm; 7(fm), ..., 7(f1)} of isotropic vec-
tors will be used to determine base points of Schubert slices, i.e. points of
intersection of X' with Cy . For § nonsymmetric we will re-order this basis in
a simple way.

If g € B then, up to a nonzero scalar multiplication, which has no effect
on Z5 ,

9(fi) = fi +zm(f;) + ij(gi,jfi +mi,57(f) - (3.2)
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Here z;, the &; ; and the 7; ; are arbitrary complex numbers as g ranges
over B.

Lemma 3.3. Ifg € ArNr, then (again up to a nonzero scalar multiplication)
9(f;) has the same form (3.2) where z; ranges over the unit disk (|z| < 1),
and where the & ; and the n;; are arbitrary complex numbers, as g ranges
over B.

Proof.

9(f) = glezj—1) + V-1 glez;) = ()\2]'—1 ezj-1+ Z‘.<2j_1,3i,2j—1 ei)
+ V=1(Xg; €2 + aj €zj-1) + Z (Bi,2j €:)

i<2j—1
with A; positive real and «;, §; » arbitrary real. It follows immediately that
the &; ; and the 7; ; range over all of C as g ranges over B.

We can’t normalize the leading coefficient to 1 in (3.2) without losing
track of the fact g € Ag/Ng, but without that normalization we use (3.2) to
express

9(fy) = asfs +wr(f) + 253, (ifi +mg7(£:)
= (zj +ys)ezs1 + V=1les —yi)es +25) ,_ (&osfitmigm(f2)
Equating coefficients of ez;_1 we have z; + y; = A2;_1 + v—1 a; . Equating

coefficients of ez; we have x; — y; = Ay;. In other words z; = 1/2(Agj—1 +
AZ]’ + /-1 a]-) and Yy = 1/2()\2_1'_1 - Agj +v-1 Clj). Now

zj = y]'/Zj = ()\2]'_1 - Agj + Vv -1 aj)/(Azj_l + Azj + A" -1 aj) .
As the )\; are positive real and «a; is arbitrary real, the only restriction as g
varies over ArNVR is |2;] < 1. O

Since g € AgNR, and in particular 7(g) = g, the descriptions of Lemma 3.3
also describe the g(7(f;)).
If § is symmetric with L(8) = (dy,...,d;) we define our base point

zp=({0}C A4, C...CA3, CApyg,C...CAp_gq, CV) (3.4)
by
Ag, = Span(fy,... fs,) and Ay_q, = Aj fori < €. (3.5)

This is the flag associated with the standard ordered basis. Bach Ag, is
isotropic, so zp € D.

Lemma 3.6. Suppose that § is symmetric and that zp is defined as in (3.4)
and (3.5). Then B(z) N Co = {20}. In particular (ARNR)(20) = X is a
Schubert slice,
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Proof. Let g € B. According to (3.2), g(f1) is isotropic if and only if z; =0,
in other words if and only if it is a multiple of f; . Recursively in k one
uses (3.2) to see that g(Span(fi,..., fx)) is isotropic if and only if g fixes
Span(f1,..., fk)- Thus z € (B(20) N Cp) implies L(z) = L(z). As z € Cp,
and by symmetry of §, this implies z = zp. a

In dealing with nonsymmetric § it is necessary to change the ordering of
the basis. Keep in mind here that, in the standard ordered basis b, the only
difference between the f; and the 7(f;) is that the f; are in increasing order
and the 7(f;) are in decreasing order. If § is not symmetric it is necessary
to exchange the roles of certain of the f; with the corresponding 7(f;). This
will amount to changing the ordering of certain matrix blocks.

The ordering must be changed if there is a “gap” in L(d) in the sense
that, for some d, < d. adjacent in L(§), we have n —d., n —d and n — d,
in 6 where d; < d < d.. In the gaps, here for indices d, + 1 through d. — 1,
we change the order of the f; to be decreasing with j and the order of the
7(f;) to be increasing with j. Thus in the lower part L(z) of the base point
we will have

Ada = Span(fl)"'afdu)c Spa‘n(fl”"’fde)=Ad°

as usual, and in the upper part of the base point we will have

An“de = Span(fl""7fm77-(fm)a"'17_(fd¢+l))
- Spa'n(fh--')fmyT(fm)i"'aT(fd‘,+1)) =An,—da

as usual, but

Ap_g = Span(fl’ LS fm;T(f'm)7
s T(fae1)s T(faar1)s T(Fagw2)s - - o T(Faat (de—a))) -

Gaps may occur in the upper part of ¢ as well, but they will not require any
reordering.

Lemma 3.7. Let § be any dimension symbol, and zy the base point in Z
defined by the basis reordered as above. Then zy € Co, B(29) N Co = {2z},
and X := (ArNr)(z0) is a Schubert slice.

Proof. The spaces Ay, = Span(fi,..., fs;) in L(z) are isotropic, and if
n—d; € 6 then A, 4, = Aj‘j as before. The intermediate spaces A, —4 satisfy
Ag, C A,f_d C Aq, . Thus zp is maximally isotropic, so zg € Cj .

Fix g € B so that g(zp) is maximally isotropic. As in Lemma 3.6, the fact
that g(Span(fi, ..., f;)) is isotropic implies

g(Span(f1,..., f;)) = Span(f1,..., f;) .

If in addition n —d; € 4, then, since g(zo) is maximally isotropic, g(An_4,) =
An—_g; . Thus, to show that g(z0) = z we need only discuss g(An_g4) for the
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intermediate spaces in a gap, i.e. for d, < d < d. as in the discussion just
before the statement of Lemma 3.7.
As in (3.2) we express (up to a scalar that fixes the base point in Zj)

(T (fa+1)) = T(fag+1) + 2fag+1 + Ziéda (&fi + mir(f2))- (3.8)

Since g fixes Span(fy,..., f4,), we have Span(fi,...,fs.) C g(An—g). As
g(An—4) is maximally isotropic we also have Span(fi,..., f1,) C g(An—a)*.
Therefore all the n; vanish in (3.8). In other words,

9(7(fa.+1)) € Span(7(fa,+1), f1,-- - fm) -

Proceeding recursively in k for the g(7(f4,+r)) we obtain g(4,_q) = An—g.
Now g € B with g(z) € Cp implies g(20) = 2o . O

Our final goal in this section is to give an explicit description of the
Schubert slice X’ determined by the base point zp. For this let A denote the
open unit disc in C. The result for real special linear groups is

Proposition 3.9. Let § be any dimension symbol, let 29 € Co C D C Z;
denote the base point defined above, and consider the associated Schubert
slice ¥ = (ArNR)(20). Then X is biholomorphic to AP x C? where p = d; if
d =L(8), p=m if § # L(J), and p + ¢ = codimg(Cyp).

Since AP x C? is Stein, Theorem 2.3 gives us

Corollary 3.10. The cycle space 2(D) of an open SL,(R)-orbit D in a flag
manifold Zs is a Stein domain.

Proof of Proposition 8.9. Let g € B. Applying (3.2) one has

9(f5) = fi + 27 (£) + Zi<j77i,j7'(fi) modulo Span(g(f1),...,9(fj-1)) -

(3.11)
As mentioned above, the only restriction imposed if g € AgNg is |2;] < 1.
Also,

9(r(f3)) =7(f3) + 3, _ &sm(f:) modulo Span(g(f),.-»9(fm)) , (3.12)

where the §; ; can be chosen without restriction, even if ¢ € Ag Ng . Compare
with Lemma 3.3.

Now let zp be the base point in Zs defined by the re-ordered basis of
isotropic vectors. We may suppose that ) is the isotropy subgroup Q., of
Gc at zp . Let ™' denote the nilradical ™' = Y, 9 of q, where R is the
appropriate set of positive roots, let ut =3 . g&, opposite to g™, which
represents the holomorphic tangent space to Zs at zp, and let U™ denote
the corresponding unipotent subgroup of G¢ . We will describe B(2p) in the
coordinate chart U™ (z).
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Consider the most complicated case, where the upper part of § is not
empty. Given 1 < j £ m, let I; denote the set of indices 7 < j such that the
1-parameter group

6i,i () : T(f5) = T(f5) + tr(fi), T(fr) = 7(fr) for k # j,
kafkforlgkgm

belongs to U*. Then the g(z9),g € B, are described by (3.11) and by
o) =r(fi)+ 3, &am(f)- (313)

Here, as g runs over B all coefficients run over C independently, and if g is
constrained to run over Ag Ny the only restrictions are |z;] < 1for1 < j S m.
In this case p = m.

Finally consider the case where the upper part of § is empty. Then the
considerations of (3.12) and (3.13) are not needed, and the g(2;), g € AgNr,
are described by

g(fi)=fi+7(f)+ D0, mam(f), 1S5 S e

where, as g runs over AgNg, the 7; ; run over C, and the z; run over A,
independently. In this case p = d; . 0

3.2 The Case of the Real Form Ggr = SL,,,(H)

As in (2.7), n = 2m and V = C?>™ carries a quaternionic vector space struc-

ture H™ defined by j : v+ Jv where J = (_° ™). Lemma 2.8 exhibits the

quaternion linear group Gg = SL,,(H) as the real form of G¢ = SL2,,(C)
that is the centralizer of j in SL2m,(C). The Cartan involution 8 : g — *g~! of
SL2y (C) commutes with the complex conjugation 7 : g — jgj=! of SLgp, (C)
over SL,,(H), so it restricts to a Cartan involution (which we also call 4)
of SL,,(H). Thus Kg := Gr N SUszy, = Spm , the unitary symplectic group,
" whose complexification K¢ is the complex symplectic group Sp,,(C). Now
Kc = {g € G¢ | g*'w = w} where w is the standard complex symplectic
structure on V defined by w(v,w) = tv - Jw.

We refer to a flag z = (A4;) € Z; as j-generic if the dimensions
dim(A; N j(A;)) are minimal for all A;, A; in 2. A flag 2 € Z; is maxi-
mally w-isotropic if the dim(A; N A;L) are maximal for all A;, A; in z. Here
L refers to w. Maximally w-isotropic flags are j-generic.

Proposition 3.14. There is just one open Gr-orbit D in Zs ; it is the set of
all j-generic flags. The base cycle Cy in D, in other words the unique closed
Kc-orbit in D, is the set of all mazimally w-isotropic flags in Zs .
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Proof. Define D to be the set of all j-generic flags in Z;. To show that D is
the unique open Ggr-orbit in Z; it suffices to show that Gg is transitive on
D. Let Z. denote the manifold of full flags, corresponding to the dimension
symbol € = (1,2,...,2m — 1) Every j-generic flag z € Z;5 can be filled out to
a j-generic flag Z € Z,. To show that Gg is transitive on D, now it suffices
to prove transitivity on the set D, of all j-generic flags in Z. . We proceed to
do that.
Let z. be the base point in Z, associated to the ordered basis

{61, ceay em,j(em), e ,j(el)}

where {ej1,...,€2m} is the standard basis of V. Let z be any j-generic flag
in Z,. Then z is defined by an ordered basis {v1,...,Vm,Wn,...,w1}. By
J-genericity,

Span(vy, ... yUm) Nj(Span(vy, ..., vy)) =0,

so the set {v1,...,v,} is linearly independent over H, and we can define
g € Gr by g(vj) = ej for 1 £ j £ m. It follows that g(j(v;)) = j(e;) for
1 £ j £ m. In other words we may assume that z is defined by

{e1, - remyWm,-.., W1} .

Since we may redefine each w; modulo Span(e,...,e,) we may also
assume that each w; € j(Span(ey, ..., en)). By j-genericity,

Wm ¢ j(spa’n(ela ey em—l)) )

SO we may suppose Wy = j(em) + D ;< @i J(e:i). Now define g € Ggr by
g(e;) = e; for i < m and g(em) = em — ;. @i j(€;). In other words, we
may assume w,, = j(e;). Continuing this procedure we may assume that
each w; = j(e;). Thus we have g € Gr with g(z) = z.. This completes the
proof that the set of all j-generic flags in Zs forms the unique open Gg-orbit
D there.

For the second statement, assume first that the dimension symbol § is
symmetric. Let C; denote the set of all maximally w-isotropic flags in Z;.
Then C; is closed in Z; because it is defined by equations, and it contains
the base point of zg € Cy C Z; defined by the ordered basis

{e1,.--,em,j(em),...,J(e1)} -

As Cy is the unique closed Kc-orbit in D, we need only check that K¢ acts
transitively on C .
Let 2 € C; and denote

L(z) = (0 C Span(vi,...,vq,) C ... C Span(vi,...,vq,) CV).
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We may recursively normalize so that w(v;,j(v;)) = d;j for 1 £ 4,5 S de. By
Witt’s Theorem, the map vy — e;, j(v;) — j(e;), for 1 £ i £ dg, extends to
an element k € K¢ . Since L(k(z)) = L(z), d is symmetric, and k(z) and 2
are maximally w-isotropic, it follows that k(z) = zp. The second statement
is therefore proved for symmetric 4. _

To handle the nonsymmetric case, let § denote the symmetrized dimension
symbol § U ¢’ consisting of all the d; and all the n — d;. The set C of all
maximally isotropic flags in Zz maps onto C; under the natural projection

Zz = Zs. As C is a closed Kc-orbit, C; also is a closed K¢-orbit. That
completes the proof of the second statement. O

Exactly as in Sect. 3.1 the main goal here is to give a concrete description
of a Schubert slice for a given open Gr-orbit D in the flag manifold Z; for
an arbitrary dimension symbol 8. For this it is first necessary to determine
an appropriate Iwasawa decomposition Gg = Kr Ar Vg .

Regard V = H™, the direct sum of quaternionic lines H(e;), 1 < j £ m.
Our Ag consists of the hermitian operators v = > v; = Y a;v; where v; €
H(e;) and a; > 0 with ajasz...am = 1. Evidently this group is commutative
and is contained in GR, and its elements are semisimple with all eigenvalues
positive real. It is maximal for this: any such group containing the group
Ag just defined, preserves each line Hfe;), acts on H(e;) by positive real
scalars, and preserves volume, hence is equal to Ag . Thus our Ag is the split
component of an Iwasawa decomposition of Gg .

Consider § = (2,4,...,2m — 2) and let 29 € Zs be the flag associated to
the ordered C-basis {e1, j(e1), €2,J(€2), - - - , €m,J(ém )} The isotropy subgroup
P¢ of G¢ at z is normalized by j, in other words invariant under complex
conjugation of G¢ over G, so Pc is the complexification of Pr = Pc N
GRr, and a moment’s thought shows that Pr = MgrArNg where (i) Mg =
Zky(Ar) = (SL1(H))™, the product of the quaternion special linear groups
of the He;), (ii) A is the group we defined above, and (iii) Ng is a real form
of the unipotent radical of P . So Py is a minimal parabolic subgroup of Gg
and we have the Iwasawa decomposition Gr = KRArNg .

B will be the Borel subgroup of G¢ defined by the ordered C-basis
{e1,j(e1),e2,j(e2),...,em,j(em)} of V. It contains AgNg and is contained
in Pc .

We proceed as in Sect. 3.1. The main points are (i) to determine a base
point zg € Co C D C Z; such that B(zp) N Cp = {2z} and (ii) to explicitly
compute X = (ArNgr)(z0). We summarize this as follows.

Proposition 3.15. There exists 29 € Cy such that B(z) N Cp = {20} and
such that (ArNr)(20) = B(z) = CP where p = codim¢(Cyp).

Proof. First consider the case of a symmetric dimension symbol §. Here
let 29 € Zs be associated to the standard ordered basis {e1,...,em,j(em),
...,J(e1)}. Normalizing the leading coefficients, for g € B we have

g(ej) =e;+ Zi<j(zi’jei + Wy, j j(e,)) for 1 g j é m. (316)
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By induction on k now

g(Span(es, ..., ex)) is w-isotropic if and only if
g(Span(ey,...,ex)) = Span(ey,...,ex) .

Thus, if g(z9) € Cp then L(g(20)) = L(zp). Since § is symmetric, g(zp) € Cop
further implies g(20) = z0. Now B(z) N Co = {20} and X = (ArNr)(20) is
a Schubert slice. ‘

We parameterize B(zg) in the case of symmetric §. As in Sect. 3.1 we use
the coordinate chart U*(2p) where U™ is the unipotent subgroup of G¢ whose
Lie algebra ut is opposite to the nilradical q'z‘;l of the isotropy subalgebra of
gc at zo. We have § = (dy,...,d;) and symmetry implies dy = n — d; . Let
L(6) = (d1,...,de). If g € B and j £ m then, modulo linear combinations of
the g(e;) for 1 £ ¢ < j, and normalizing the leading coefficients,

glej) =e;+ ijzi,j Jles) - (3.17)

Similarly, modulo linear combinations of the g(e;) for 1 £ ¢ £ m, normalizing
leading coefficients,

9(i(es)) = i(ev) + Zwaa,b jlea) - (3.18)

Thus B(zp) is parameterized by (3.17) and (3.18) for 1 £ j £ dp and dp4q <
b £ m. There are no restrictions on the coefficients z; j, w3 € C.
If g € AR Ngr then we have, again normalizing leading coefficients,

g(ej) =¢€; + ij(gi,jei +m,;(G)(ei)) for 1S jsm (3.19)

where there are no restrictions on the &; ;,7: ; € C. If we set {5 = W, and
7i,; = 2;,j and compare (3.18) with (3.19) we see that (ArNr)(20) = B(2).

We just proved Proposition 3.15 in the case of symmetric dimension sym-
bol, using the base point zy € Z5 associated to the standard ordered basis
{e1,...,em,j(em),...,j(e1)}. For the general case we must re-order this ba-
sis in order to manage gaps in L(§). This goes essentially as in the case of
SL,(R).

As in Sect. 3.1, suppose that there is a gap in L(4) between adjacent
entries d, < d. there. We reorder the standard basis so that, in the range of
the gap, the ordered subset

{i(eq, ) j(eq.<1), .-, 3(ed,+2),3(ed,+1)}

is reversed to
{i(ed +1),3(ed +2), - - - i(eq.—1),d(eq.)} -

The base point 2y € Z; is the flag associated to this reordered basis.
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As in the symmetric case, if g € B and g(z) € Cop, then g(A4,) = Aq,
for all d; except possibly when d; =n — d and d is in a gap, d, < d < d. as
above. In that case the reordered basis yields

An—q = Span(ey,...,em,j(em),-.-
cosd(ede1) d(ed 1) 3(ed 42), - - - v J(€d, 4 (d—a))) -

Now
9(i(eats) =learts) + Do oy mgeat Do, Wuilen)
But

g(Span(ey, ..., em,j(em), ..., i(edq,+1)))
= Span(ey,...,em,j(€m),. .- J(€a.+1)) -

In particular Span(ey, ..., em) C g(A,—4). Thus, modulo elements of g(A,—4),
9((edurs)) = ilean+i) + D

Because of the “maximally isotropic” condition,

u<da+jw“’jj(e“) . (3.20)

Spa‘n(ely LR ed,,) C g(An—d)J- )

and that implies vanishing of the w,, ; for all u, j. Thus g(An_q) = Ap_q for
gap flag entries as well. We have proved B(29) N Cp = {2}

Finally, we show that B(z) = (ArNr)(20) as in the symmetric case. For
this note that there was no change in the ordering in L(zp) and, as we saw
in (3.20), in the upper part of 2 the point is that only terms involving j(e,)
appear. So the choice £, ; = Wy ; is possible as in the symmetric case. This
completes the proof of Proposition 3.15. a

Corollary 3.21. For an arbitrary flag manifold Zs of G¢ = SLypy(C), and
an open orbit D C Zs of Gr = SL,,(H), the cycle space 2(D) is a Stein
domain in the affine homogeneous space 2 = Ge/Kc .

Proof. This is immediate from Theorem 2.3 and the fact that X = CP is
Stein. O

Corollaries 3.10 and 3.21, and the fact that open SU(k, £)-orbits are mea-
surable, combine to prove Theorem 1.1.

3.3 Example with Gg = U(n,1): Comparison of Transversal
Varieties

In this section Gg is the unitary group U(n,1) acting on the complex pro-
jective space Z = P,(C), and Gg is its complexification GL,41(C). We
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use the unitary group U(n,1) rather than special unitary group SU(n,1)
for notational convenience; this has no effect on the spaces we consider. Fix
a Ggr-orthonormal basis: the hermitian form h that defines Gg is given by
h(ei,e;) = 6;if 1 £i < n, by —§;,; if ¢ = n+ 1. There are 3 orbits: the open
ball Dy = Ggr(20), 20 = €n+1C consisting of negative definite lines; its bound-
ary S = Gr(cz),cz0 = (en + en+1)C, consisting of isotropic lines; and the
complement D; = Gg(21),21 = c*2z = e,C of Dy U S consisting of positive
definite lines. Here c is a certain Cayley transform.

Let Pr denote the Gr-stabilizer of the point czq € S. Its Lie algebra pg
is the sum of the non—positive eigenspaces of ad(zo), so pr = p} +pg' + P>
where pg is the s-eigenspace. Calculate

u(n—1) 00 Opoy v u
pS = 0 ably, pg'= v 00]5,
0 ba -v 00 (3.22)

0n1 0 O
PR’ = 0 d d
0 —-d-d

where a,b,d € R, u € R®~D*1 and vy € R1("~1) The real parabolic subal-
gebra pr and its complexification pc = p2 + pEl + pc % are given by

un-1) v u
pr = v a+db+d and (3.23)
-v b—da-d

gi(n-1;C) u u
pc = v a+db+d

-1 b—-da—-d
The base cycle in D, is

C1 = Ko(21) = (U(n) x UQ))(z1) (3.24)

= {Span(v) € Z |v € Span(e; A---Aen)} 2 Pry(C) .

The complexification Pc of Pg has Levi factor PQ with Lie algebra p2. The
Borel subalgebras of p are just the

pi 00
by = 0ab||pieb]anda,beC (3.25)
0ba

where b} is a Borel subalgebra of gl,_;(C). Let B; denote the Borel sub-
group of P? with Lie algebra by . Then the fixed points of B; on Z are z; =
(en+ens1)C, (en—€n41)C, and a unique point on ¥; . We choose b) to be the
lower triangular matrices in gl(,_1(C). Then e,_1C is the unique Bj-fixed
point in Y; .
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The unipotent radical P2"® of Pc has Lie algebra p! = pg! + pg’. The
Borel subgroup B; € PQ determines the Borel subgroup B = B F¢™® C G¢
with Lie algebra b = by +pg! +pg?,

P, v w p) is lower triangular ,
b= v a+db+d||ueCUX1 oy g Clxn-1) & (3.26)

—vb—da—d/| 14 q,b,deC.

Compute
0 v u I u u
exp|l v d d|=}v 1+d+%vu d+%vu
—v —d —d —v —d+%vu 1—d+%vu

to see that the orbit B(e,,—1C) satisfies
B(en-1C) = P7(en—1C) = {(en—1 + ten —ten11)C |t € C}. (3.27)

Here in effect ¢ is the last entry of the row vector v in the matrix exponential
just above. That comes from pc 1 It comes from Pr ! if and only if u* +v =
0, which does not effect the range of possibilities for v. Thus B(e,_1C) =
PP (e, 1C).

We have an Iwasawa decomposition Gg = KrArNr = NrArKR given
by Kr = U(n) x U(1), Ar = exp(ag) , and ng = (ng N by) + pg'© . Since
B(en_1C) = Pa™®(e,—1C) we have the slice

Zs = (A]RN]R)(Cn_l(C) = B(en_1<C) . (328)

This explicitly shows that the slice (3.28) is biholomorphic to C, with closure
in Z that is the projective line based on the subspace Span(e,—1, (en, —€n+1))
of C**+1, Now it is transversal to C;, with complementary dimension, so it
meets every cycle C transversally and at just one point, and thus is a Schubert
slice. In sharp contrast, the transversal variety X constructed in [17] is, as
described at the end of Sect. 1, holomorphically equivalent to the unit disk
Ain C.
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