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ABSTRACT. Let Z = G/Q be a complex flag manifold and let Go be a real 
form of G. Then the representation theory of the real reductive Lie group 
Go is intimately connected with the geometry of Go-orbits on Z. The open 
orbits correspond to the discrete series representations and their analytic con-
tinuations, closed orbits correspond to the principal series, and certain other 
orbits give the other series of tempered representations. Here I try to indicate 
some of that interplay between geometry and analysis, concentrating on the 
complex geometric aspects of the open orbits and the related representations. 
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COMPLEX GEOMETRY AND REPRESENTATIONS OF LIE GROUPS 203 

0. Introduction. 

There is an mysterious intimate correlation between the theory of homogeneous 
complex manifolds and the theory of unitary representations of real Lie groups. This 
relation is becoming clear in the case of a real reductive Lie group Go. Let G be 
the complexification of G0 and suppose that G0 has a compact Cartan subgroup. 
Then the open G0-orbits on a complex flag manifold Z = GIQ (where Q is a 
parabolic subgroup of G) can be used to construct the discrete series representations 
of G0 as the action of G0 on L2 cohomologies of various sorts. If Go is compact, 
this is the famous Bott-Borel-Weil Theorem. If G0 is not compact, one usc the 
same idea, even though noncompactness introduces a number of nontrivial technical 
problems, but finally one does get good geometric realizations for discrete series 
representations. Whether G 0 has a compact Cartan subgroup or not, the other 
series of representations of G0 that are involved in the Plancherel formula, all 
come out of discrete series representations of certain subgroups Jt10 C Go by a 
straightforward construction, and those representations occur as cohomologies over 
certain partially complex G0-orbits. Here I'll sketch some of the main points in 
this beautiful liaison of geometry with analysis. 

This paper updates [141], with fewer details on the older material but with 
much more material on singular representations, cycle spaces, and double fibration 
transforms. 

Part I addresses geometric aspects of complex flag manifolds Z = G I Q and 
G0-orbits on Z. In Sections 1 through 4, we review the basic facts on complex 
flags, real group orbits and convexity of real group orbits. This material is found 
in much more detail in [133], [116] and [139]. Then in Section 5 we indicate the 
current state of information on cycle spaces of open G0-orbits, from [128], [139], 
[149], [150], [88], [89] and [90]. Finally, in Section 6, we indicate the current state 
of affairs on the double fibration transforms that come out of these cycle spaces; 
see [97], [99] and [150] for details. 

Part II is concerned with the representation theory of real reductive (or semisim-
ple) Lie groups Go . It concentrates on the series of unitary representations that are 
involved in the Plancherel Theorem and Fourier Inversion Formula of G0 . As we 
will see in Part III, those are the representations that appear in a straightforward 
geometric setting on G0-orbits in complex flag manifolds Z = G I Q. In Section 7 
we illustrate the construction with the "principal series", where a certain subgroup 
M 0 C G0 is compact and thus presents no technical complications. Then in Sec-
tion 8 we indicate the main results from Harish-Chandra's theory of the "discrete 
series", which we need both for itself and for the cases where Jt10 is noncompact. 
In Section 9 we fit this together for the construction of all the relevant series of 
unitary representations of G0 . In Section 10 we give a brief indication of just how 
these "tempered series" of representations give the Plancherel Theorem and Fourier 
Inversion Formula of Go . 

Part III indicates the geometric realization of tempered representations as 
square integrable cohomologies of certain partially holomorphic vector bundles over 
Go-orbits in complex flag manifolds Z = GIQ. Much as in Part II, we start in Sec-
tion 11 illustrating the construction for principal series representations where there 
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204 JOSEPH A. WOLF 

essentially are no technical problems. In Section 12 we indicate the realization of 
discrete series representations on certain Hilbert spaces of L2 harmonic (0, q)-forms 
with values in a homogeneous holomorphic vector bundle over an open Go-orbit. 
Then in Section 13 we fit the two together to realize tempered representations in 
general on certain Hilbert spaces of £ 2 partially harmonic partially (0, q)-forms 
with values in a homogeneous partially holomorphic vector bundle over an appro-
priate G0-orbit. Finally, in Section 14, we look at some of the many approaches to 
geometric realization of non-tempered representations. 

PART I. GEOMETRY OF FLAG MANIFOLDS. 

Complex flag manifolds are of considerable interest in algebraic geometry, in differ-
ential geometry, and in harmonic analysis. The most familiar ones are the complex 
Grassmann manifolds and the other compact hermitian symmetric spaces. In this 
Part we discuss the theory of complex flag manifolds and of real group orbits on 
those flag manifolds. Our emphasis is on the geometry of open orbits, which are 
instrumental for the realization of discrete series representations for semisimple Lie 
groups. 

1. Parabolic Subalgebras and Complex Flags. 

We start with the definitions of Borel subgroups and subalgebras, parabolic 
subgroups and subalgebras, and complex flag manifolds. Parabolic subgroups and 
flag manifolds were invented by J. Tits [121], and independently Borel subgroups 
were invented by A. Borel [19]. Also see [20], [21], and [22]. 

Fix a complex reductive Lie algebra g and a Cartan subalgebra ~ C g. Thus 
g = g' EB3 where g' = [g, g] is semisimple and 3 is the center of g, and ~ ng' is a Cartan 
subalgebra of g', and ~ = (~ n g') EB 3· Let E = E(g, ~) denote the corresponding 
root system, and fix a positive subsystem E+ = E+(g, ~). The corresponding Borel 
subalgebra 

(1.1) (J = ~+ L g_a C g 
aE:!::+ 

has its nilradical1 (J-n = I: g_a and a Levi complement ~- In general a subalgebra 
.s C g is called a Borel subalgebra if it is conjugate by an inner automorphism of 
g to a subalgebra of the form (1.1), in other words if there exist choices of~ and 
E+(g, ~)such that .sis given by (1.1). 

Let G be a connected Lie group with Lie algebra g. The Cartan subgroup of 
G corresponding to ~ is H = Za(~), the centralizer of ~ in G. It has Lie algebra 
~' and it is connected because G is connected, complex and reductive. The Borel 

1 Here we describe the nilradical as a sum of negative root spaces, rather than positive, so 
that, in applications, positive functionals on ~ will correspond to positive bundles (instead of 
negative bundles), and holomorphic discrete series representations will be highest weight (instead 
of lowest weight) representations. 
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COMPLEX GEOMETRY AND REPRESENTATIONS OF LIE GROUPS 205 

subgroup B C G corresponding to a Borel subalgebra b C g is defined to be the 
G-normalizer of b, that is, 

(1.2) B = {g E G I Ad (g) b = b} . 
The basic facts on Borel subgroups are: 

LEMMA 1.3. B has Lie algebra b, B is a closed connected subgroup of G, and 
B is its own normalizer in G. 

LEMMA 1.4. (See [122], [144] and [145]) Let Gu C G be a compact real form. 
Then Gu is transitive on X= G/B, and X has a Gu-invariant Kahler metric. In 
particular X has the structure of compact Kahler manifold. 

LEMMA 1.5. There is a finite dimensional irreducible representation 1r of G 
with the property: let [v] be the image of a lowest weight vector in the projective 
space lP'(Vn) corresponding to the representation space of 1r. Then the action of G 
on Vn induces a holomorphic action of G on lP'(Vn), and B is the G -stabilizer of 
[v]. In particular X = G / B is a projective algebraic variety. 

LEMMA 1.6. B is a maximal solvable subgroup of G. 

A subalgebra q c g is called parabolic if it contains a Borel subalgebra. For 
example, let W be the simple root system corresponding to ~+ and let <P be an 
arbitrary subset of W. Every root a E ~ has unique expression 

(1.7) a= L n,p(a)'l/J 
</JEW 

where the n,p(a) are integers, all;:; 0 if a E ~+and all~ 0 if a E ~- = -~+. Set 

(1.8) <Pr ={a E ~I n,p(a) = 0 whenever '1/J ~ <P} 
and 

(1.9) <Pn ={a E ~+I a~ <Pr} ={a E ~I n,p(a) > 0 for some '1/J ~ <P}. 
Now define 

(1.10) r -n "th r h "'""" d -n "'""" qq, = q + q Wl q = 'J + L...... ga an q = L...... g_a . 

Then qq, is a subalgebra of g that contains the Borel subalgebra (1.1), so it is a 
parabolic subalgebra of g. 

PROPOSITION 1.11. Let q C g be a subalgebra that contains the Borel subalgebra 
b = f)+ LaE~+ g_a of g. Then there is a set <P of simple roots such that q = qq, . 

The parabolic subgroup Q C G corresponding to a parabolic subalgebra q C g 
is defined to be the G-normalizer of q, that is, 

(1.12) Q = {g E G I Ad(g)q = q}. 

The basic facts on parabolic subgroups are most easily derived from the corre-
sponding results for Borel subgroups. However, the two notions were developed 
separately, and from different viewpoints, in the 1950's. 

LEMMA 1.13. The parabolic subgroup Q C G defined by (1.12) has Lie algebra 
q. That group Q is a closed connected complex subgroup of G, and Q is its own 
normalizer in G. In particular, a Lie subgroup of G is parabolic if and only if it 
contains a Borel subgroup. 
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LEMMA 1.14. Fix a standard parabolic subgroup Q = Qq, in G. Then there is 
a finite dimensional irreducible representation 1r of G with the property: let [v] be 
the image of a lowest weight vector in the projective space 1P'(V1r) corresponding to 
the representation space of 1r. Then the action of G on VJr induces a holomorphic 
action of G on lP'(VJr), and Q is the G-stabilizer of [v]. In particular Z = G IQ is 
a projective algebraic variety. 

Since Q is its own normalizer in G, 
LEMMA 1.15. Let Z = GIQ where Q is a parabolic subgroup of G. Then we can 

view Z as the space of all G-conjugates of q, by the correspondence gQ f--7 Ad(g)q. 
Write qz for the parabolic subalgebra of g corresponding to z E Z, and write Qz for 
the corresponding parabolic subgroup of G. Then the usual action g : g'Q f---> gg'Q 
of G on Z carries over tog: qz f---> Ad(g)qz = qg(z) . 

Let B c Q c G consist of a Borel subgroup contained in a parabolic subgroup. 
Then we have complex homogeneous quotient spaces X = G I B and Z = G I Q, and 
a G-equivariant holomorphic projection X ---+ Z given by gB f---> gQ. In particular, 
transitivity of Gu on X gives 

LEMMA 1.16. Let Gu C G be a compact real form. Then Gu is transitive on 
Z = GIQ. 

Combining Lemmas 1.14 and 1.16 we have 
LEMMA 1.17. Let Gu C G be a compact real form. Then the isotropy subgroup 

Gu n Q is the centralizer of a torus subgroup of Gu, and Z has a Gu -invariant 
Kahler metric. Thus Z has the structure of Gu -homogeneous compact simply con-
nected Kahler manifold. 

At this point we summarize: 
PROPOSITION 1.18. Let Q be a complex Lie subgroup of G. Then the following 

conditions are equivalent. (1) GIQ is a compact complex manifold. (2) GIQ is a 
projective algebraic variety. ( 3) If G u denotes a compact real form of G then G I Q is 
a Gu-homogeneous compact Kahler manifold. (4) GIQ is the projective space orbit 
of an extremal weight vector in an irreducible finite dimensional representation of 
G. (5) G IQ is a G-equivariant quotient manifold of G I B, for some Borel subgroup 
B c G. (6) Q is a parabolic subgroup of G. 

We will simply refer to these spaces Z = G IQ as complex flag manifolds. 

2. Real Group Orbits on Complex Flags. 

We now consider the action of a real group on a complex flag manifold, de-
veloped in [133] and [134]. Also see [146], [134] and [135]. The most familiar 
case is the action of SL(2; JR) on the Riemann sphere P 1 (C) by linear fractional 
transformation. 

Let G0 be a real form of G. In other words, G0 is a Lie group whose Lie algebra 
g0 is a real form of g. Although G is connected, G0 does not have to be connected, 
but we do need some control over the components. For this reason, and for some 
technical reasons that will come out in the representation theory, we assume that 
Go is of Harish-Chandra class developed in [69], [70] and [71]: 
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DEFINITION 2.1. A real Lie group Go belongs to the Harish-Chandra class of 
reductive Lie groups if (i) the Lie algebra g0 is reductive, (ii) the component group 
G0 /G8 is finite, (iii) the derived group [Gg, Gg] is closed in G0 , and (iv) if g E Go 
then Ad(g) is an inner automorphism of the complex Lie algebra g. 

The results we describe in this report hold for a somewhat larger class of re-
ductive Lie groups developed a bit earlier [135]. 

The group Go acts on the complex flag manifold Z = G/Q by g: qz f---+ Ad(g)qz 
as in Lemma 1.15, because of condition (iv) in Definition 2.1. 

We write T both for the complex conjugation of g over g0 and for the corre-
sponding conjugation of Gover its analytic subgroup exp(g0 ). 

The basic results on the G0-orbit structure of Z = G / Q depends on the con-
sequence 

LEMMA 2.2. The intersection of two Borel subalgebras of g contains a Cartan 
subalgebra of g. 

of the Bruhat decomposition ([26], [62]) of Z. From this, 

LEMMA 2.3. The intersection q n Tq contains a T-stable Cartan subalgebra ~ 

of g. 

THEOREM 2.4. Consider an orbit G0 (z) on Z = GjQ. Then there exist aT-
stable Cartan subalgebra ~ C qz of g, a positive root system ~+ = ~+ (g, ~), and a 
set <P of simple roots, such that qz = qq, and Qz = Qq,. 

There are only finitely many G0-conjugacy classes of Cartan subalgebras ~ 0 in 
g0 , for each ~ 0 there are only finitely many positive root systems ~+ = ~+ (g, ~), 
and for each such ~+ there are only finitely many subsets <P of the simple root 
system. Thus 

CoROLLARY 2.5. There are only finitely many G0 -orbits on Z. The maximal-
dimensional orbits are open and the minimal-dimensional orbits are closed. 

COROLLARY 2.6. In the notation of Theorem 2.4, q2 n Tqz is the semidirect 
sum of its nilpotent radical (q,I;n n Tq,I;n) + (q:p n Tq,I;n) + (q,I;n n Tq:I,) with the 
Levi complement q:p n Tq:i, = ~ + L<I>''nr<I>' ga . In particular, dim!R'. go n qz = 
dime q:p + I<Pn n T<Pnl. 

COROLLARY 2.7. In that notation, codimiR(G0 (z) C Z) = I<Pn n T<Pnl. In 
particular, G0 (z) is open in Z if and only if <Pn n T<l>n is empty. 

3. The Closed Orbit. 

We now look at the closed real group orbit. This material was developed in 
[133]. 

There is least one closed G0-orbit on Z, for minimal dimensional orbits are 
closed. Consider the case where G = SL(2; C), G0 = SU(1, 1), and X is the 
Riemann sphere. G acts as usual by linear fractional transformations. Let D = 
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208 JOSEPH A. WOLF 

Go(O), the unit disk. There are three G0-orbits: 

Go(O), interior of D : Qo = { ( ~ a~ 1 )} and Ho = { ( e~e e~iO) I () real}, 

Go(oo), exterior of D: Q00 = { (~ a~ 1 )} and Ho = { (e~e e~ie) I() real}, 

Go(l), boundaryofD: Q 1 ={(~ ~) lad-bc=l,a+b=c+d}and 

Ho = { ± (~~~~gj ~~~m) It real}. 

The first two give the open orbits, with H 0 compact, and the third gives the closed 
orbit, where Ho is the T0 Ao of an Iwasawa decomposition of G0 . That mirrors the 
general case for closed orbits: 

THEOREM 3.1. Let X= GjQ be a complex flag manifold and let Go be a real 
form of G. Then there is a unique closed orbit G0 (z) C Z. Further, there is an 
Iwasawa decomposition Go= KoA0 N0 such that Go n Qz contains H0 N0 whenever 
Ho is a Cartan subgroup of G0 that contains A 0 . 

THEOREM 3.2. Let Z = GjQ be a complex flag manifold and let Go be a real 
form of G. Let Go(z) be the unique closed Go-orbit on Z. Then dimR G0 (z) ~ 
dime Z, and the following conditions are equivalent. 

1. dimR Go(z) =dime Z. 
2. r<Pn = q,n. 

3. View G as the group of complex points, and G0 as an open subgroup in the 
group of real points, of a linear algebraic group defined over R Then Qz is the 
group of complex points in an algebraic subgroup defined over R 

4. Z is the set of complex points in a projective variety defined over IR, and 
Go(z) is the set of real points. 

4. Open Orbits. 

At the other extreme, in general we have several open real group orbits. The 
material here is from [133], except that the material on the exhaustion function is 
from [116]. 

Fix a Cartan involution () of g0 and G0 . () is an automorphism of square 1 
and the fixed point set K 0 = Gg is a maximal compact subgroup of Go. Thus 
go= £o +.so where £o is the Lie algebra of K 0 and is the (+I)-eigenspace of() on 
go , and .s0 is the ( -1 )-eigenspace. The Killing form of g0 is negative definite on £0 
and positive definite on .s0 , and £0 l_ .s0 under the Killing form. 

Every Cartan subalgebra of g0 is Ad(G0 )-conjugate to a B-stable Cartan subal-
gebra. A {}-stable Cartan subalgebra 1) 0 C g0 is called fundamental if it maximizes 
dim (IJo n £0 ), compact if it is contained in £0 (a more stringent condition). More 
generally, a Cartan subalgebra of g0 is called fundamental if it is conjugate to a 
{}-stable fundamental Cartan subalgebra, compact if it is conjugate to a {}-stable 
compact Cartan subalgebra. 
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THEOREM 4.1. Let Z = G I Q be a complex flag manifold, G a connected reduc-
tive complex Lie group, and let G0 be a real form of G. The orbit G0 (z) is open in 
Z if and only if qz = qq, where 

(i) qz n g0 contains a fundamental Cartan subalgebra ~o of go and 
(ii) <I> is a set of simple roots for a positive root system I;+ (g, ~) such that 

T'E+ =I;-. 

Fix ~ 0 = 0~ 0 , I;+(g, ~) and <I> as above. Let W(g, ~)~ 0 and W(q:I,, ~)~ 0 denote the 
respective subgroups of Weyl groups that stabilize ~ 0 . Then the topological com-
ponents of the open G0 -orbits on Z are parameterized by the double coset space 
W(t, ~ n t)\ W(g, ~)~a IW(qz, ~)~o. 

COROLLARY 4.2. Suppose that G0 has a compact Cartan subgroup, i.e. that 
£0 contains a Cartan subalgebra of g0 . Then an orbit G0 (z) is open in Z if and 
only if g0 n qz contains a compact Cartan subalgebra ~o of go , and then, in the 
notation of Theorem 4.1, the topological components of the open G0 -orbits on Z 
are parameterized by W(t, ~)\W(g, ~)IW(q~, ~). 

A careful examination of the way t 0 sits in both t and g0 , relative to the 
integrability condition [45] for homogeneous complex structures, gives us 

THEOREM 4.3. Let Z = GIQ be a complex flag manifold, G a connected reduc-
tive complex Lie group, and let G0 be a real form of G. Let z E Z such that Go(z) 
is open in Z, and let ~ 0 c g0 n qz be a 0-stable fundamental Cartan subalgebra of 
g0 . Then K 0 (z) is a compact complex submanifold of G0 (z). Let K be the com-
plexification of K 0 , analytic subgroup of G with Lie algebra t = to® C. If Go (and 
thus K 0 ) is connected, then K 0 (z) = K(z) ~ KI(K n Q 2 ), complex flag manifold 
of K. 

If Go is not connected then of course one has essentially the same result, but 
one must be careful about topological components. 

COROLLARY 4.4. The compact subvariety K 0 (z) is a deformation retract of 
G0 (z). In particular, G0 (z) is simply connected and has connected isotropy subgroup 
(Qz n TQz)O at Z. 

Fix a complex flag manifold Z = GIQ. An open orbit G0 (z) C Z is called 
measurable if it carries a G0-invariant volume element. If that is the case, then 
the invariant volume element is the volume element of a G0-invariant, possibly 
indefinite, Kahler metric on the orbit, and the isotropy subgroup Go n Qz is the 
centralizer in G0 of a (compact) torus subgroup of G0 . In more detail, measurable 
open orbits are characterized by 

PROPOSITION 4.5. Let D = G0 (z) be an open G0 -orbit on the complex flag 
manifold Z = G I Q. Then the following conditions are equivalent. 

1. The orbit G0 (z) is measurable. 

2. Go n Qz is the G0 -centralizer of a (compact) torus subgroup of G0 . 

3. D has a G0 -invariant possibly-indefinite Kahler metric, thus a Go-invariant 
measure obtained from the volume form of that metric. 

4. T<l>r = <l>r, and T<l>n = -<!>n where qz = qq, . 
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5. qz n Tqz is reductive, i.e. qz n Tqz = q~ n Tq~ . 

6. qz n Tqz = q: · 
7. Tq is Ad (G) -conjugate to the parabolic subalgebra q- = qr + qn opposite to q. 

In particular, if one open G0 -orbit on Z is measurable, then they all are measurable. 

Note that condition 4 of Proposition 4.5 is automatic if the Cartan subalgebra 
1) 0 , relative to which q2 = q.., , is the Lie algebra of a compact Cartan subgroup 
of G0 , for in that case Ta = -a for every a E ~(g, 1)). In particular, if G0 

has discrete series representations, so that by a result of Harish-Chandra it has a 
compact Cartan subgroup, then every open G0-orbit on Z is measurable. 

Condition 4 is also automatic if Pis a Borel subgroup of G, and more generally 
Condition 7 provides a quick test for measurability. 

Bounded symmetric domains D c en are convex, and thus Stein, so cohomolo-
gies Hk(D; F) = 0 fork> 0 whenever F--+ Dis a coherent analytic sheaf. This is 
a key point in dealing with holomorphic discrete series representations. More gen-
erally, for general discrete series representations and their analytic continuations, 
one has 

THEOREM 4.6. Let Z = G I P be a comple.r flag manifold, G a connected reduc-
tive complex Lie group, and let G0 be a real form of G. Let D = C0 ( z) c Z = G I P 
be a measurable open orbit. Let Y = K 0 (z), maximal compact subvariety of D, and 
let s = dimrc Y. Then D is ( 8 + 1) -complete in the sense of Andreotti Grauert [2]. 
In particular, ifF--+ D is a coherent analytic sheaf then Hk(D; F) = 0 fork> 8. 

Indication of Proof. Let lKz --+ Z and IKD = KziD --+ D denote the canonical 
line bundles. Their dual bundles lLz = IK:Z --+ Z and ILD = IKD --+ D are the 
homogeneous holomorphic line bundles over Z associated to the character 

(4.7) 
Write D G0 IV0 where V0 is the real form G0 n Qz of Q~. Write V for the 
complexification Q~ of V0 , Pc ;v for half the sum of the roots that occur in q~ , and 
.A= 2pc;v. If a E ~(g, I)) then (i) (a, .A) = 0 and a E q,r, or (ii) (a, .A) > 0 and 
a E q,n, or (iii) (a, .A)< 0 and a E q,-n. Now TA =-A. Decompose Qo =to+ So 
under the Cartan involution with fixed point set t 0 , thus decomposing the Cartan 
subalgebra IJo c 9o n qz as IJo = to + ao with to = IJo n to and ao = IJo n So. Then 
.A(ao) = 0. 

View D = GoiVo and Z = GuiVu where Gu is the analytic subgroup of G for 
the compact real form 9u = £o + v'=1 so , and where Vu is its analytic subgroup for 
qu n 9z , compact real form of Q~ . Then e>-- is a unitary character both on V0 and 
on Vu, so 

( 4.8) 
lLz --+ Z = GuiVo has a Cu-invariant hermitian metric hu, 
ILD --+ D = G0 IV0 has a C 0 -invariant hermitian metric h0 . 

With this information we obtain 
LEMMA 4.9. The hermitian form v'=1 EiBhu on the holomorphic tangent bundle 

of Z is negative definite. The hermitian form v'=1 8Bh0 on the holomorphic tangent 
bundle of D has signature n - 2s where n = dimrc D. 
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COROLLARY 4.10. Define</>: D ~ lR by</>= log(h0 /hu)· Then the Levi form 
.C( </>) has at least n - s positive eigenvalues at every point of D. 

The next point is to show that</> is an exhaustion function forD, in other words 
that {zED I </>(z) ~ c} is compact for every c E R It suffices to show that e-<1> 
has a continuous extension from D to the compact manifold Z that vanishes on 
the topological boundary bd(D) of Din Z. For that, choose a Gu-invariant metric 
h~ on JL:Z = lKz normalized by huh~ = 1 on Z, and a Go-invariant metric h0 on 
lL'b = JKD normalized by h0 h0 = 1 on D. Then e-<1> = h 0 /h~. So it suffices to show 
that h 0 /h~ has a continuous extension from D to Z that vanishes on bd(D). 

The holomorphic cotangent bundle 1'z ~ Z has fiber Ad(g)(q~)* = Ad(g)(q_;-n) 
at g(z), so its Gu-invariant hermitian metric is given on the fiber Ad(g)(q_;-n) at g(z) 
by Fu(~, ry) = -(~,TOrt) where (,) is the Killing form. Similarly the G0-invariant 
indefinite-hermitian metric on 1''0 ~ D is given on the fiber Ad(g)(q_;-n) at g(z) 
by Fo(~, rt) =-(~,Try). But lKz = det 1'z and JKD = det 1''0, so 

( 4.11) h~/h~ = c ·(determinant of F0 with respect toFu) 

for some nonzero real constant c. This extends from D to a coo function on Z 
given by 

(4.12) f(g(z)) = c · det Fol -n · 
Ad(g)(qz ) 

It remains only to show that the function f of (4.12) vanishes on bd(D). If 
g(z) E bd(D) then G0 (g(z)) is not open in Z, so 

Ad(g)(qz) + TAd(g)(qz) "I g. 
Thus 9a C Ad(g)(q_;-n) while there exists an o: E E(g, Ad(g)~) such that 

9-a C/- Ad(g)(qz) + TAd(g)(qz). 
If (3 E E(g, Ad(g)~) with 913 C Ad(g)(q_;-n) then Fo(ga, g13) = 0, so f(g(z)) = 0. 
Thus </>is an exhaustion function for D in Z. In view of Corollary 4.10 now D is 
(s + 1)-complete, and the Theorem is proved. 

In the non-measurable case, ( s + 1 )-completeness is not completely settled. 

5. Cycle Spaces 

We now look at the linear cycle space associated to an open real group orbit. 
It is contained in a component of the Barlet cycle space ([14], [15], and also see 
[30]) for that open orbit. The general material here was developed in [133] and 
[139], and the explicit information comes from [149], [88], [89] and [90]. 

As above, Z = G/Q is a complex flag manifold, Go is a real form of G, and 
D = G0 (z) c Z is an open orbit. Theorem 4.3 says that 

Y = Ko(z) ~ Ko/(Ko n Pz) ~ Kj(K n Pz) 
is a complex submanifold of D. Y is not contained in any compact complex sub-
manifold of D of greater dimension, so it is a maximal compact subvariety of D. 

Let L = {g E G I gY = Y}. Then L is a closed complex subgroup of G, so 
Mz = {gY I g E G} ~ G/L has a natural structure of G-homogeneous complex 
manifold. Since Y is compact and Dis open in Z, MD= {gY I g E G and gY CD} 
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is open in Mz , and thus has a natural structure of complex manifold. The linear 
cycle space of D is 

(5.1) MD : topological component of Yin MD = {gY I g E G and gY CD}. 

Thus MD has a natural structure of complex manifold. Its structure is given by 

THEOREM 5.2. If D is measurable then MD is a Stein manifold. 

This is proved by taking the exhaustion function¢ of Corollary 4.10 and "push-
ing it down" from D to MD. In general, G, Q, Z, D, K and Y break up as direct 
products according to any decomposition of g0 as a direct sum of ideals, equiva-
lently any decomposition of G0 as a local direct product. Here we may assume that 
G is connected and simply connected. So, for purposes of determining L we may, 
and do, assume that G0 is noncompact and simple, in other words that G0 / K 0 is 
an irreducible riemannian symmetric space of noncompact type. 

As usual we say that Go is of hermitian type if the irreducible riemannian 
symmetric space G0 j K 0 is an hermitian symmetric space. 

Let e be the Cartan involution of Go with fixed point set K 0 and g = e + s 
under e, as usual. By irreducibility of G0 j K 0 , the adjoint action of K 0 on s 0 = 
g0 n s is irreducible. G0 is of hermitian type if and only if this action fails to be 
absolutely irreducible. Then there is a positive root system 'I;+ = 'I;+(g, ~) such 
that s = s+ + s~ where s+ is a sum of 'I;+ ~positive root spaces and represents the 
holomorphic tangent space of G0 j K 0 , and s~ = s+ is a sum of 'I;+ ~negative root 
spaces and represents the antiholomorphic tangent space. WriteS± = exp(s±) c G. 
Then G0 jK0 is an open G 0 ~orbit on GjKS~. 

Now we have three cases, based on the possibilities for L = {g E G I gY = Y}: 

1. (Trivial Case) K = G, i.e. D = Z, so Mz (and thus MD) is reduced to a single 
point. These cases have been classified [142]. 

2. (Hermitian Case) I= e +s±, i.e., e <;;;I<;;; g, so Mz = GjKS~ is a projective 
variety and B = G0 j K 0 is a bounded symmetric domain. This is the situation 
where the two maps of the double fibration 

Go/(Ko n Qz) 

/ ~ 
D B 

are simultaneously holomorphic for some choice between B and B and some choice 
of invariant complex structure on G0 j(L0 n K 0 ). Then MD =B. 

3. (Generic Case) I= e, so K is the identity component of Land Mz is a nontrivial 
affine variety. Here a number of cases are known: 

• D ~ SU(2p, q)j(S0(2p) x U(q)). Then MD has an explicit description, 
and that description shows that it is a Stein manifold [127]. 

• B = G0 j K 0 is a bounded symmetric domain and G0 is a classical group. 
Then MD = B x B [149]. Some special cases had been worked out m 
[103], in [34], in [97] and in [98]. 
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• B =Go/ Ko is a bounded symmetric domain and Dis a pseudo-riemannian 
symmetric space. Then MD= B x B [150]. 

• G0 = SL(n; IR), real special linear group. Then MD has an explicit de-
scription, and that description shows that it is a Stein manifold [88]. 

• G0 = SL(n; JHI), quaternion special linear group. Then MD has an explicit 
description, and that description shows that it is a Stein manifold [90]. 

The proof [139] of Theorem 5.2 is rather easy in Cases 1 and 3 above, but in 
Case 2 it involves detailed information [146] on the Go-orbit structure of G I K s_ . 

The case [127] where D ~ SU(2p, q)/(S0(2p) x U(q)) was the first nontrivial 
case worked out. It was done in view of then-recent work on moduli spaces for 
compact Kahler manifolds in dimension > 1 ([52] and [53]). In [128] it was first 
shown that MD is Stein in some degree of generality, but the emphasis was on auto-
morphic cohomology in connection with [52] and [53]. This theory of automorphic 
cohomology has been extended in [137], [125], [129], [130], and [131]. 

The proof of Theorem 5.2 does not quite work in the non-measurable case, but 
there we have explicit descriptions (see just above), which in particular prove Stein, 
except when Go is a complex simple group or is of type E6 with maximal compact 
subgroup of type F4 or 0 4 . Theorem 5.2 would be shown in general, and probably 
with less effort, if we could show that MD is closed in the Barlet cycle space of D. 
There is some progress in that direction ([16], [143]). 

For other approaches, viewing MD as a Stein neighborhood of Go/ K 0 in G / K, 
see [1], [11], [24], [25], [45], [43], [44], [47], [87], [101] and [147]. Also see [28], 
[29] and [92] for an approach based on Grauert tubes and the Monge-Ampere 
equations. 

6. The Double Fibration Transform 

Double fibrations are an old topic, starting with the Crofton formulae and 
Chern's intersection theory of two homogeneous spaces of the same group, the clas-
sical Radon and X-ray transforms, the Gelfand-Graev horocycle transforms [48] 
and Helgason's group--theoretic reformulation of the horocycle transform. Real-
analytic double fibration transforms come up in [12], [117] and [151], with the 
Identity Theorem [112] as a degenerate early case, in the study of cohomology rep-
resentations. Holomorphic double fibration transforms were first used in the study 
of automorphic cohomology [128]. Penrose' twistor theory (cf. [3], [104], [105], 
[106], [107] and [86]) took advantage of those transforms, and the special case 
Go = SU(2, 2) was reworked, with physical applications, in [41], as the Penrose 
Transform. The material here is taken from [150]. 

In general let D = G0 (z) be an open orbit in the complex flag manifold Z = 
G / P, let Y be the maximal compact linear subvariety K 0 ( z), and consider the 
linear cycle space MD: component of Yin {gY I g E G and gY C D}. Then we 
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have a double fibration 

(6.1) D MD 

where WD = {(Y',y') I y' E Y' E MD} is the incidence space. The projections are 
given by 1-l(Y', y') = y' and v(Y', y') = Y'. 

Let n = dime D and s = dime Y as before. Consider a negative homogeneous 
holomorphic vector bundle lE ---> D. Then we can expect nonzero cohomology only 
in degree s. For many purposes, for example for making estimates of one sort or 
another, it is better to have representations of G0 occur on spaces of functions 
rather than on cohomology spaces. Here we indicate a double fibration transform 
that carries H 8 (D; O(JE)) to a space offunctions on MD. Given a coherent analytic 
sheaf £ ---> D we construct a coherent sheaf £' ---> M and a transform 

(6.2) 

We refer to the transform (6.2) as a double fibration transform. The Penrose trans-
form is the case where G0 = SU(2, 2) and Z is complex projective space P 3 (C). 

One wants two things in (6.2): that P be injective, and that there be an explicit 
description of its image. Assuming (6.5) below, injectivity of P is equivalent to 
injectivity of j(P) in (6.4) below. There are several ways to ensure this. The most 
general is the collection of vanishing conditions in Theorem 6.6 below. Another, 
more specific to our situation, is that in many cases we know that the fibers of 1-l are 
Stein manifolds. Finally, in some cases one knows that HP(D; £) is an irreducible 
representation space for a group under which all our constructions are equivariant, 
so P is an intertwining operator, thus zero or injective. 

The double fibration transform is constructed in several steps. 

We first pull cohomology back from D to WD in (6.1). Let 1-l-1 (£) ---> WD 
denote the inverse image sheaf. As 1-l is open, it is the sheaf defined by the presheaf 
whose value at an open set fJ C WD is r(U,£) where U = 1-l(U). Here, as usual, 
r denotes the space of sections. For every integer r ~ 0 there is a natural map 
1-l(r) : Hr(D; £)---> Hr(WD; 1-l-1 (£)) given on the Cech cocycle level by 1-l(rl(c)((J) = 
c(!-l((J)) where c E zr(D; £)and where (J = (w0 , ... , wr) is a simplex. 

PROPOSITION 6.3. [27] Suppose that the fiber F of 1-l : W D ---> D is connected 
and that Hr (F; C) = 0 for 1 ;;=:; r ;;=:; p- 1. Then the map 1-l(r) is an isomorphism for 
r ;;=:; p- 1 and is injective for r = p. In particular, if the fibers of 1-l are contactable 
then 1-l(r) is an isomorphism for all r. 

To complete the pull-back, we change the inverse image sheaf 1-l-1 ( £) ---> W D 

into a coherent analytic sheaf over W D . This is necessary for the push-down step. 

As usual, if X is a complex manifold then Ox ---> X denotes its structure 
sheaf, the sheaf of germs of holomorphic ((:>valued functions on X. If lE ---> X is 
a holomorphic vector bundle then O(JE) ---> X is its sheaf of germs of holomorphic 
sections. 
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Denote J.L*(E) = J.L- 1 (E) ®1c'(OD) OwD. It is a sheaf of OwD-modules. If 
it happens that E = O(JE) for some holomorphic vector bundle lE --+ D, then 
J.L*(E) = O(J.L*(JE)), where J.L*(JE) is the pull-back bundle. In any case, [O"] f-+ [O"] ® 1 
defines a map i: J.L- 1 (E)--+ J.L*(E) which in turn specifies the coefficient morphisms 
ip: HP(WD;J.L- 1 (E))--+ HP(WD;J.L*(E)) for p ~ 0. Our natural pull-back maps are 
the compositions 

(6.4) 

that is, j(P) = ip . J.L(p). 

Consider the case E = O(JE) for some holomorphic vector bundle lE --+ D. Then 
J.L*(E) = O(J.L*(JE)), we realize these sheaf cohomologies as Dolbeault cohomologies, 
and the pull-back maps are given by pulling back [w] f-+ [J.L*(w)] on the level of 
differential forms. 

Proposition 6.3 is not quite enough to show that the maps j(P) of (6.4) are 
isomorphism. That involves some study of relative Dolbeault cohomology and the 
vanishing hypothesis of Theorem 6.6 below. 

The second step is to push cohomology down from WD to N[D· This requires 

(6.5) v: WD--+ M is a proper map and M is a Stein manifold. 

THEOREM 6.6. Suppose that the fiber F of J.L : W D --+ D is connected and, for 
some fixed integers ~ 0, that Hr(F; !C) = 0 for 1 ~ r < s. Assume (6.5) that 
v : W D --+ M is a proper map and that MD is a Stein manifold. Suppose further 
that HP(v- 1(Y'); n~(JE)Iv-'(Y')) = 0 for allY' E MD, all p < s, and 1 ~ q ~ m. 
Then P: H 8 (D; E)--+ H 0 (MD; R 8 (J.L*(E))) is injective. 

The argument is a little bit technical. Write RP gives the pth Leray de-
rived sheaf in the The Leray spectral sequence for J.L : w D --+ MD . Write n~ 
for relative holomorphic q-forms on W D . The assumption on F ensures, tha.t 
J.L(s) : H 8 (D; E) --+ H 8 (WD; J.L- 1 (E)) is injective. The Leray spectral sequence 
for J.L : WD --+ MD and n~(E) --+ WD, and the Stein condition on MD' give 
HP(WD; n~(E)) ~ H 0 (MD; RP(D~(E))). The vanishing assumption for certain 
HP(v- 1 (Y'); n~(E)Iv-l(Y')) says 

RP(D~(E)) = 0 for p <sand 1 ~ q ~ m. 
So 

HP(WD; n~(E)) = 0 for p <sand 1 ~ q ~ m, 
and 

Now i 8 : H 8 (W D; J.L- 1E) --+ H 8 (W D; J.L* E) is injective, and Proposition 6.3 shows 
that j(s) : H 8 (D; E) --+ H 8 (WD; J.L*(E)) is injective. We conclude that the double 
fibration transform P: H 8 (D; E)--+ H 0 (MD; R 8 (J.L*(E))) is injective. 

In the cases of interest to us, lE = O(JE) for some holomorphic vector bundle 
lE --+ D, and P has an explicit formula. Let w be an lE-valued (0, s )-form on D 
representing a Dolbeault cohomology class [w] E H~(D,JE). Note R 8 (J.L*(E)) = 
O(JHIB(J.L*(lE)Jil-'(Y)) where the latter bundle has fiber H 8 (Y'; J.L*(lE)Jil-'(Y')) over 
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Y' E MD. Thus 
P([w])(Y') is the section of R 8 (J.L*(£))-+ MD 

(6.7) 
whose value at Y' E MD is J.L*(w)lv-l(Y')· 

In other words, 

(6.8) P([w])(Y') = [J.L*(w)iv-l(Y')] E H~(MD;lffiB(J.L*(E)Iv-l(YJ)). 

This is most conveniently interpreted by viewing P([w])(Y') as the Dolbeault class 
of wiY', and by viewing Y' f-+ [wiY'] as a holomorphic section of the holomorphic 
vector bundle over MD whose fiber at Y' is H 8 (Y'; J.L*(E)Iv-l(Y'))· 

In order to make the double fibration transform explicit one needs to know 

• the exact structure of MD and 
• the differential equations that pick out image of P 

The structure of MD was addressed at the end of the previous section. 

There has been a lot of work on the image of double fibration transforms. Al-
most all of this has been on the image of the Radon transform [108], the X -ray 
transform (see [5] and [38]), the Funk transform [46], and the Penrose transform 
([104], [105], [106], [107], [37], [39],). The Funk and Radon transforms are essen-
tially the same, and they can be viewed as Penrose transforms [6]. For the image of 
the Penrose transform in twistor theory see, for example, [3], [4], [7], [17], [35], [36], 
[41], [86], [126], and some of the references in [49] and in [37]. See [73], [74], [75], 
[76], [77], [78], [79], [80] and [81] for connections between Radon transforms and 
analysis on Riemannian symmetric spaces of noncompact type, with consequences 
for principal series representations. There also is a D-module approach ([31]and 
[32]) which, I expect, will soon have consequences in semisimple representation 
theory through connections with [72]. See [112], [128], [109] and [151] for the 
image of the first double fibration transforms related to semisimple representation 
theory (rather than particular examples). See [37] and [40] for a more geometric 
viewpoint, and, finally, see [118], [99] (and eventually, [100]) for the image of the 
double fibration transform in our setting. 

PART II. REPRESENTATIONS OF REDUCTIVE LIE GROUPS. 

In this Part we describe those unitary representations of the reductive Lie group 
that come into the Plancherel formula, and we indicate the Plancherel Plancherel 
formula based on their characters. For the most part, these are the representations 
that have the cleanest geometric realization in real group orbits on complex flag 
manifolds. See [69], [70] and [71] for Harish-Chandra's treatment ofthe Plancherel 
formula, [135] and then [84] and [85] for another approach. 

7. The Principal Series. 

The "principal series" of unitary representations of a semisimple or reductive 
Lie group Go was the first series to be constructed in some degree of generality. We 
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consider it separately from the other tempered series in order to demonstrate the 
general construction without the technical considerations of the discrete series. 

A subalgebra Po C go is a ( rea0 parabolic subalgebra of go if it is a real form of a 
parabolic subalgebra p c g. A subgroup Po c G0 is a parabolic subgroup of Go if it 
is the G0-normalizer of a parabolic subalgebra, say Po = {g E Go I Ad(g )Po = Po} 
where Po is a parabolic subalgebra of g0 . In that case Po is the Lie algebra of Po . 

For example, let Go = K 0A0N0 is an Iwasawa decomposition. Let M0 be the 
centralizer of Ao in Ko . Then MoAoNo is a minimal parabolic subgroup of G0 . 

Any two minimal parabolic subgroups of Go are conjugate. Now fix a minimal 
parabolic subgroup Po = MoAoNo . 

Whenever E is a topological group we write E for its unitary dual. Thus E 
consists of the unitary equivalence classes [77] of (strongly continuous) topologically 
irreducible unitary representations 1J of E. Now [ry] E Mo and a E a0 determine 
[a17 ,17] E Po by 
(7.1) a 11 ,17 (man) = ry(m)ei17(ioga)_ 

The corresponding principal series representation of Go is 

(7.2) 1r 11 ,17 = Ind ~~ ( a 11 ,17 ) , unitarily induced representation. 

The principal series of Go consists of the unitary equivalence classes of these repre-
sentations. A famous result of Bruhat says that if a satisfies a certain nonsingularity 
condition then 1r 11 ,17 is irreducible. 

8. The Discrete Series. 

The representations of the "discrete series" are the basic building blocks for 
the representations involved in the Plancherel formula. We recall the definition and 
Harish-Chandra parameterization of the discrete series for reductive Lie groups. 
For application we have to make G0 more general so that the description applies 
to certain subgroups of Go as well as to Go . Later we will show how discrete series 
representations can be realized over certain open orbits. 

The discrete series of a unimodular locally compact group Go is the subset 
~ C Go consisting of all classes [1r] for which 1r is equivalent to a subrepresen-
tation of the left regular representation of G0 • These are equivalent: (i) 1r is a 
discrete series representation of Go, (ii) every coefficient fu,v(x) = (u, 1r(x)v) be-
longs to L2 (G0 ), (iii) for some nonzero u, v in the representation space Hrr, the 
coefficient fu,v E L2 (G0 ). Then one has orthogonality relations much as in the 
case of finite groups: there is a real number deg( 1r) > 0 such that the £ 2 ( G0 )-inner 
product of coefficients of 1r is given by 

1 --
(8.1) Uuv.Jst) = -d ( )(u,s)(v,t)fors,t,u,vEHrr. , , eg 7r 

Furthermore, if 1r1 is a discrete series representation not equivalent to 1r, then 

(8.2) (fu,v,fu',v') = 0 for u,v E H'Tr and u',v' E H1r'· 
These orthogonality relations come out of convolution formulae. With the usual 
f * h(x) = [L(f)h](x) = J G f(y)h(y- 1x)dy we have fu,v * !s,t = de:(1r) (u, t)fs,v for 
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s, t, u, v E H7r. Also fu,v * fu',v' = 0 for u, v E H7r and U 1 , v1 E H1r' whenever 7r and 
7r1 are inequivalent discrete series representations of Go. 

If Go is compact, then every class in G0 belongs to the discrete series, and 
if Haar measure is normalized as usual to total volume 1 then deg(1r) has the 
usual meaning, the dimension of H1r· The orthogonality relations for irreducible 
unitary representations of compact groups are more or less equivalent to the Peter~ 
Weyl Theorem. More generally, if G0 is a unimodular locally compact group 
then L2 (G0 ) = 0 L2 (G0 ) EB 1 L2 (G0 ), orthogonal direct sum, where 0 L2 (G0 ) = 
""""' - H Q9 H* the "discrete" part and 1 L 2 (G ) = 0 L 2 (G ).i the "continu-L...[7r]EGo,d 7r 1r ' c ' 0 0 , 

ous" part. If, further, G0 is a group of type I then 1 L2 ( G0 ) is a continuous direct 
sum (direct integral) over G0 \ Go,d of the Hilbert spaces H1r Q9 H;. 

Recall our assumption that Go belongs to the Harish~Chandra class of reductive 
Lie groups (2.1): the Lie algebra g0 is reductive, the component group G0 /G8 is 
finite, the derived group [Gg, G8J is closed in G0 , and if g E G0 then Ad(g) is an 
inner automorphism of the complex Lie algebra g. The results we describe hold 
somewhat more generally, but that is not the point here. 

If [1r] E G0 and f E C~(G 0 ) then 1r(f) = J 0 j(x)1r(x)dx is a trace class 
operator on H1r, and the map 

(8.3) 87r : C~ ( G0 ) -> C defined by 87r (f) = trace 1r(f) 

is a distribution on G0 . 87r is called the character, the distribution character or the 
global character of 1r. The equivalence class [1r] determines 87r and, conversely, 87r 
determines [1r]. 

Let Z(g) denote the center of the universal enveloping algebra U(g). If we 
interpret U(g) as the algebra of all left-invariant differential operators on G0 then 
Z(g) is the subalgebra of those which are also invariant under right translations. If 
1r is irreducible then d7rlz(g) is an associative algebra homomorphism X1r : Z(g) -> C 
called the infinitesimal character of 1r. We say that 7r is quasi-simple if it has an 
infinitesimal character, i.e. if it is a direct sum of irreducible representations that 
have the same infinitesimal character. 

Let 7r be quasi-simple. Then the distribution character 87r satisfies a system 
of differential equations 

(8.4) z · 87r = X1r(z)81r for all z E Z(g). 
Now let 7r be irreducible. A serious study of these equations shows that 87r is 
integration against a locally L 1 function T1r that is real analytic on a dense open 
subset G~ of G0 , 

87r(f) = 1 f(x)T1r(x)dx for all f E C~(G 0 ). 
Go 

(8.5) 

So we identify 87r with the function T1r , and it makes sense to talk about a priori 
estimates on characters and coefficients as well as explicit character formulae. 

Fix a Cartan involution() of G0 : () E Aut(G0 ), () 2 = 1, and the fixed point set 
K 0 = Gg is a maximal compact subgroup of G0 . The choice is essentially unique 
because any two are conjugate in Aut(G0 ). If G0 = U(p, q) then e(x) = tx~ 1 and 
K 0 = U(p) x U(q). 
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Every Cartan subgroup of Go is Ad( G8)-conjugate to a B-stable Cartan sub-
group. In particular, G0 has compact Cartan subgroups if and only if K 0 contains 
a Cartan subgroup of G0 . 

Harish-Chandra proved that G0 has discrete series representations if and only if 
it has a compact Cartan subgroup. Suppose that this is the case and fix a compact 
Cartan subgroup To c Ko of Go. Let I:= I:(g, t) be the root system, r;+ = E+(g, t) 
a choice of positive root system, and let p = ~ LaEE+ a. If ~ E t then p( ~) is half 
the trace of ad(~) on LaEE+ g<>. 

If 1r is a discrete series representation of G0 and 81r is its distribution character, 
then the equivalence class of 1r is determined by the restriction of 87r to T0 n G~. 
Harish-Chandra parameterized the discrete series of G0 by parameterizing those 
restrictions. 

Let G6 denote the finite index subgroup ToG8 = Zc0 ( G8)G8 of Go. Here 
T0 = Zc0 (G8)T8, so T0 = Td. Lemma 11.2 says that the group Mo of a minimal 
parabolic subgroup of G0 satisfies M0 = MJ, and similarly in that context we have 
Uq,,o = U!, 0 . In general, where M0 may be noncompact, this need not hold. In 
any case, the Weyl group wt = W(G6, T0 ) coincides with W 0 = W(Gg, T8) and is 
a normal subgroup of W = W (Go, To). 

To= (Zc 0 (G8)T8)~ consists of the x®ei(>..-p) where A E it0 and .A-p satisfies 
an integrality condition, where X E Zc 0 (G8)~, and where X and ei(>..-p) restrict to 
(multiples of) the same unitary character on the center of G8. 

Given x Q9 ei(>..-p) E To as above, with A is regular, i.e., there are unique 
discrete series representations 1r~ of G8 and 1r~,>.. = x01r~ of G6, whose distribution 
characters satisfy 
(8.6) 

~ _ q(>..) LwEWo sign(w)ew(>..) ~ _ ~ 
e1ro(x)- (-1) I1 ( /2 - /2) and e t (zx) -tracex(z)81ro(x) 

A aEE+ e<> - e <> 1rx,A A 

for z E Zc0 (G8) and x E T8 n G~, where q(.A) is the cardinality 

q(.A) =\{a E r:+(e, t) I (a, .A)< 0}\ + \{,6 E r:+(g, t) \ r:+(e, t) 1 (,6, .A)> 0}\. 
The same datum (x, .A) specifies a discrete series representation 7rx,>.. of Go, by the 
formula 7rx,>.. = Ind~~(1r~,>..). This induced representation is irreducible because 

0 

its conjugates by elements of Go/G6 are mutually inequivalent, consequence of 
regularity of A. 1r x,>.. is characterized by the fact that its distribution character is 
supported in G6 and is given on G6 by 

(8.7) e -'""' e t . "'-1 7rx,A - .L..,..1~i~r 7rx,A li ' 

with 'Yi = Ad(gi) \ct where {91, ... , 9r} is any system of coset representatives of 
0 

G0 modulo G6. To combine these into a single formula one chooses the 9i so that 
they normalize T0 , i.e. chooses the 'Yi to be a system of coset representatives of W 
modulo wt. 

Every discrete series representation of G 0 is equivalent to a representation 1r x,>.. 
as just described. Discrete series representations 7rx,>.. and 7rx'.>..' are equivalent if 
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and only if x' ®ei>-' = (x®ei>-) ·w- 1 for some w E W. And>. is both the infinitesimal 
character and the Harish-Chandra parameter for the discrete series representation 
7r x,>- . 

9. The Various Tempered Series. 

A representation of Go is called tempered if its character is a tempered dis-
tribution in a suitable sense. This means that it is weakly contained in the left 
regular representation or, roughly, that it is involved in the Plancherel formula 
for Go . Tempered representations are constructed from a class of real parabolic 
subgroups of G0 called cuspidal parabolic subgroups, constructed using minimal 
parabolic subgroups, but using a discrete series representation on the part of the 
parabolic corresponding to M 0 . 

A (real) parabolic subgroup P0 C G0 is called cuspidal if the commutator 
subgroup of the Levi component (reductive part) has a compact Cartan subgroup. 

Let H0 be a Cartan subgroup of G0 . Fix a Cartan involution e of Go such that 
B(H0 ) = H0 . Write K 0 for the fixed point set G~, maximal compact subgroup of 
Go. Decompose 

~o = to EB no and Ho = To x Ao where 
(9.1) To= Ho n Ko, e = -1 on ao, and Ao = expc(ao). 

Then the centralizer Zc0 (A0 ) of A0 in G0 has form M0 x A0 where B(M0 ) = M0 . 

The group M0 is a reductive Lie group of Harish-Chandra class. To is a compact 
Cartan subgroup of M0 , so M0 has discrete series representations. Now suppose 
that~+= ~+(g, ~)is defined by positive root systems ~+(m, t) and ~+(g 0 , a0 ) as 
in (11.1). 

The Cartan subgroup H 0 C Go and the positive system~+ = ~+(g, ~)define 
a cuspidal parabolic subgroup P0 = M 0 A 0 N 0 of G0 as follows. The Lie algebra of 
No is no= l.::aEE+(go,ao)(go)-a, Mo and Ao are as above, and MoAo = M0 x A0 is 
the Levi component of P0 . One extreme is the case where dim a0 is maximal; then 
Po is a minimal parabolic subgroup of G0 . The other extreme is where dim a0 is 
minimal; if a0 = 0 then P0 = G0 . 

Every cuspidal parabolic subgroup of G0 is produced by the construction just 
described, as H0 varies. Two cuspidal parabolic subgroups of G0 are associated if 
they are constructed as above from G0-conjugate Cartan subgroups; then we say 
that the G0-conjugacy class of Cartan subgroups is associated to the G0-association 
class of cuspidal parabolic subgroups. 

In the same manner as the construction of the principal series representations, 

(9.2) [17] E Mo and O" E a~ determine [a17 ,u] E Q0 by a 17 ,u(man) = 1J(m)eiu(loga)_ 

Then we have 

(9.3) 1r 17 ,u = Ind ~~ ( a 17 ,u) , unitarily induced representation. 

The H 0-series or principal H 0-series of Go consists of the unitary equivalence 
classes of the representations (9.3) for which 17 is a discrete series representation of 
Mo. 
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The character formula for the 1r ry,a is a bit complicated, and we just refer to 
[135] and [84]. We mention that the formula is independent of choice of I:+(g0 , no) 
so, as the terminology indicates, 7r ry,a = Ind ~~ ( ary,a) is independent of choice of 
I;+ (g0 , n0 ). In fact this is the case even if T7 does not belong to the discrete series 
of M 0 . 

10. The Plancherel Formula. 

There are two approaches to the Plancherel formula. Harish-Chandra starts 
with an analysis of his Schwartz space C (Go) and construction of functions on G0 as 
wave packets of Eisenstein integrals ([69], [70], [71]). He knew that it is better to 
step through the conjugacy classes of Cartan subgroups from maximally compact 
to minimally compact, using explicit character formulae [54]. This was first carried 
out in real rank 1 [111], and then carried out in general in [84] and [85]. That is 
the argument we indicate here. 

We start with Kostant's "cascade construction" for the conjugacy classes of 
Cartan subgroups of G0 . Suppose first that Go has a compact Cartan subgroup 
T0 . Fix a Cartan involution() of G0 such that B(T0 ) =To and the corresponding ±1 
eigenspace decomposition g0 = ~ 0 + so where ~o is the Lie algebra of the maximal 
compact subgroup Ko = {g E Go I B(g) = g }. If a E I:(g, t) then either 9a C ~ and 
we say that a is compact, or 9a C s and we say that a is noncompact. 

Let a E I:(g, t) be noncompact. Let g[a] = 9a + 9-a + [ga, 9-a] ~ s[(2; <C), 
let G[a] denote the corresponding analytic subgroup of G, and consider the cor-
responding real forms g0 [a] = g0 n g[a] ~ s[(2; JR;.) and Go[a] = G0 n G[a]. Then 
G0 [a] n T0 is a compact Cartan subgroup, and we can simply replace it by the 
noncompact Cartan subgroup of G0 [a]. Let n0 [a] denote the Lie algebra of that 
noncompact Cartan subgroup. Then we have a new Cartan subalgebra and a new 
Cartan subgroup 

IJo{ a} = (ton (go[a] n to)..l) + 9o[a] n no and Ho{ a}= Zc0 (IJo{ a}), 
where Zc0 denotes the centralizer in G0 . The point is that H0 { a} has one compact 
dimension less than that of To and one noncompact dimension more. 

Let a, (3 E I:(g, t) be noncompact. We can carry out the above construction 
for a and (3 independently, one after the other, if a and (3 are strongly orthogonal 
in the sense that neither of a± (3 are roots. (We write this relation as aJfi. It 
implies a _l (3.) If a.=L_(J then we have the new Cartan subalgebra and a new Cartan 
subgroup given by 1) 0 {a,(3} =(ton ((g0 [a] EB g0 [{3]) n to)..l) + (n0 [a] EB n0 [f3l) and 
Ho{ a, {3} = Zc0 (!Jo{ a, {3} ). Here Ho{ a, {3} has two compact dimensions less than 
that of T0 and two noncompact dimensions more. 

We say that a set S of noncompact roots is strongly orthogonal if its elements 
are mutually strongly orthogonal. Then as above we have a Cartan subalgebra by 

(10.1) 

and the corresponding Cartan subgroup is H0 {S} = Zc0 (1) 0 {S}). Here H0 {S} 
has lSI compact dimensions fewer than T0 has, and Ho{S} has lSI noncompact 
dimensions more than T0 has. 
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Cartan subgroups H 0 {S1 } and H 0 {S2} are Go-conjugate just when some ele-
ment wE W(G0 , T0 ) sends S1 to S2 . Every Cartan subgroup of G0 is conjugate to 
1) 0 { S} for some set S of strongly orthogonal noncom pact roots. This sets up a hier-
archy among the conjugacy classes of Cartan subgroups of Go: Ho{Sl} ~ Ho{S2} 
if and only if w(S2) C S1 for some wE W(G0 , T0 ). That in turn sets up a hierarchy 
among parts of the regular set G~. If H0 is any Cartan subgroup of Go we denote 
G~ 0 = G~ n Ad(G)H0 , the set of all regular elements G~ that are conjugate to an 
element of H0 . Now G~o{Sd ~ G~o{S 2 } if and only if some Weyl group element 
wE W(G0 ,T0 ) sends S2 to a subset of S1 . Here G~o sits at the top, the G~o{a} 
sit just below, the G~a{a,/3} are on the next level down, and finally the part of G~ 
corresponding to the Cartan subgroup of the minimal parabolic subgroups sit at 
the bottom. 

If Go does not have a compact Cartan subgroup, let H 0 = T0 x A0 be a 
fundamental (maximally compact) Cartan subgroup, so T0 is a Cartan subgroup of a 
maximal compact subgroup K 0 C G0 . Let P0 = MoA0 N0 be an associated cuspidal 
parabolic subgroup. Then just do the cascade construction for M0 , obtaining 
a family of Cartan subgroups HM,o{S} C M0 as S runs over the W(M0 , T0 )-

conjugacy classes of strongly orthogonal sets S C I:(m, t) of noncompact roots of 
m. Then the H 0 {S} = HM,o{S} xA0 give the conjugacy classes ofCartan subgroups 
of Go. 

The character formulae for the various tempered series exhaust enough of G0 

for a decomposition of L2 (Go) essentially as 

(10.2) "' "' 1 H1r ® H:,. m(Ho : X : v : iJ)diJ. L....t L....t x,v,a ''x,v,a 
[Ho)ECar{Go) x®ev-pm ETa a~ 

Here Car( G0 ) denotes the set of G0-conjugacy classes [Ho] of Cartan subgroups 
H0 and the Borel measure m(Ho : x : v : iJ)diJ is the Plancherel measure on ~. 
In general the Plancherel density m(Ho : x : v : IJ) has a formula that varies 
with the component of the regular set. This was worked out by Harish-Chandra 
for groups of Harish-Chandra class, and somewhat more generally by Herb and 
myself. Harish-Chandra's approach is based on an analysis of the structure of the 
Schwartz space, while Herb and I use explicit character formulae. These explicit 
formulae allow us to prove (10.2), as follows. 

Start with G~ 0 where H 0 represents the conjugacy class of Cartan subgroups 
of G0 that are as compact as possible. The H 0-series representations suffice 
to expand functions f E C 0 (G~ 0 ). That expansion formula gives us a map 
C[f(Go)--+ c=(Go \ G~o) by f ~ h where rx denotes right translation by X EGo 
and h(x) = f(x)- Lx®ev-pm ETa fa~ 81rx,v," (rxf)m(Ho : X : V : iJ)diJ. This 
map requires an exact knowledge of the characters of the H 0-series. Now let 
{ Ho{ a 1 }, ... , Ho{ am,} be a set of representatives of the conjugacy classes of Car-
tan subgroups just below H 0 . The H 0 { ai}-series representations suffice to expand 
functions f E C 0 (G~o{ai}). Those expansions do not interact at this level, nor do 
they introduce nonzero values in G~ 0 , so they give us a map 
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where 

h(x)-h(x) = 

L L r. 81rx,v,a(rxf)m(Ho{ai}: X: v: a-)da-. 
< < - Ja 0 {a,} 

l=i=m' x®eV-Pm ETo{ai} 

Now simply proceed down one level at a time. The tricky point here is to know the 
character formulae completely, so that one knows fJ well enough to compute iJ+1 . 

Thus one obtains exact information on the Plancherel densities m(H0 : x : v : a-) 
and the final form 

(10.3) f(x) = L L _1. 81rx,v,a(rxf)m(Ho: X: V: a-)da-
HoECar(Go) x®ev-pm ETa 0 

of the Plancherel formula. 

PART Ill. GEOMETRIC REALIZATIONS OF REPRESENTATIONS. 

Now we show how the tempered representations 1rry, 17 are realized on appropriate 
real G0-orbits on complex flags Z = G / Q. The material on L2 realizations is taken 
from [135]. 

11. L 2 Realizations of the Principal Series. 

In order to realize the principal series of Go on closed orbits, we need the 
Bott-Borel-Weil Theorem for M 0 , where Po = MoAoNo is a minimal parabolic 
subgroup of G0 . We have to be careful here because the compact group M0 need 
not be connected. We~vyill first decompose Mo as the product ZM0 (M8)M8 where 
M8 is its identity compo~nt, then indicate the analog of the Cartan highest weight 
description for M 0 . That done, the standard Bott-Borel-Weil Theorem for M8 will 
carry over to Mo. 

A Cartan subgroup To c M 0 specifies a Cartan subgroup H 0 = T0 Ao ~ To x 
A0 in G0 . Our choice of P0 specifies a choice of positive restricted root system 
~+(go, ao): the Lie algebra of No is given by no= I::aEI;+(go,o.o)(go)-a. Now any 
positive root system ~+(m, t) specifies a positive system ~+(g, f)) by 

(11.1) 
a E ~+(g, f)) if and only if either alao = 0 and alt E ~+(m, t) 

or alao =/= 0 and al 9 a0 E ~+(go, ao). 

LEMMA 11.2. M 0 = ZM0 (M8)M8. Given a representation class [17] E Mo, 
there exist unique classes [x] E z;;;:(i:1g) and [17°] E M8 such that [17] = [x Q9 17°], 
and [x] and [17°] restrict to multiples of the same unitary character on the center of 
M8 . 
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Let Wm denote the set of simple roots in~+ (m, t). Every subset iP C Wm defines 

J.p ={~ E t I ¢(0 = 0 for all¢ E <P} with real form J<P,o = mo n~.p, 
U.p =ZM(J.p), U.p,o = M 0 n U.p, and their Lie algebras U.p and U.p,o , 

(11.3) t.p =U.p + L m~,, parabolic subalgebra of m , 
,n:+(m,t) 

so 

R.p =N M ( t.p), corresponding parabolic subgroup of M , and 
S.p =M / R.p, associated complex flag manifold. 

Lemma 11.2 holds for U.p,o, M 0 acts transitively on S.p, and M0 n R.p = U.p,o, 

LEMMA 11.4. S.p is a compact homogeneous Kahler manifold under the action 
of Mo, and S.p = Mo/U<P,o___as coset space. Furthermore U.p,o = ZM0 (M8)Ug,o, so 
U.p,o decomposes as does M 0 in Lemma 11.2. 

An irreducible unitary representation JL of U<P,o, say with representation space 
V~", gives us 

(11.5) Ap,q(S.p;V~"): spaceofc= V~"~valued (p,q)~formsonS.p, { 
V ~" ---> S.p : Uq,, 0 ~homogeneous, hermitian, holomorphic vector bundle, 

O(V ~") : sheaf of germs of holomorphic sections of V ~" ---> S.p . 

Ap,q ( S.p; v It) is the space of c= sections of v~,q = v It® AP ('ll'*) ®A q ('lf*) ---> S.p . 
V~,q has an 1Vf 0 ~invariant hermitian metric, so we also have the Hodge~Kodaira 
orthocomplementation operators 

~: Ap,q(S.p;V~")---> An~p,n~q(S.p;V:) 

and E: An~p,n~q(S.p; v:)---> Ap,q(S.p; Vp), 
(11.6) 

where n = dime S.p. The global M 0 ~invariant inner product on AP·q(S.p; V ~") is 
given by taking the inner product in each fiber of V~·q and integrating over S.p, 

t; 
(11.7) (F1, F2)s., = { (F1, F2)mu.,, 0 d(mU<t>,o) = { F1i\~F2 . JN!o Js., 
In the usual way that gives us the Kodaira~Hodge~Laplace operator D = 8[/ +8*8 
on AP,q(S.p; V p), where 1\ means exterior product followed by contraction of VP 
against v;. So we arrive at the Hilbert space 

(11.8) 1i~'q(S.p;Vp): V~"~valued square integrable harmonic(p,q)~forms on S.p 

Everything is invariant under the action of M 0 , and the natural action of the 
group M 0 on 1i~,q ( S.p; V P) is a unitary representation. Denote 1i~ ( S.p; V ~") = 
1ig'q(S.p;Vp)· 

Let Pm denote half the sum of the roots in ~+(m, t), and let rJ8 denote the 
irreducible representation of M8 of highest weight v- Pm (corresponding to infin-
itesimal character v). With these conventions, the Bott~Borel~Weil Theorem for 
M 0 is 
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THEOREM 11.9. Let [p,] = [x \>9 p,~] E Uip,O and fix an integer q ~ 0. 

1. If ((3- Pu"' + Pm, a) = 0 for some a E ~(m, t) then H~(Sip; V 11,) = 0. 

2. If ((3- Pu"' +Pm, a) -=/:- 0 for all a E ~(m, t), let w be the unique element in W(m, t) 
such that (w((J- Pu"' + Pm),a) > 0 for all a E ~+(m, t). Then H~(Sip;VI-') = 0 for 
q -=/:- qo , and Mo acts irreducibly on H~o (Sip; V ~-') by [x \>9 118]. 

Fix [p,] = [x\>9p,~] E Uip,O and a- E a0. We will use the Bott-Borel-Weil Theorem 
11.9 to find the principal series representation 1rx®1J8,a of G0 on a cohomology space 
related to the closed orbit in the complex flag manifold Zip = G /Qip. Here the 
simple root system Wm C 1}! by the coherence in our choice of ~+(g, b), so 1> C 1}! 

and 1> defines a parabolic subgroup Qip C G. 

Let Zip= 1Qip E G/Qip = Zep. As AoNo c Go n Qip we have Go n Qip (in the 
sense of the action on Zip) equal to Uip, 0 A0 N0 . Thus Yip = G0 (zip) is the closed 
G0-orbit on Zip, and Sip sits in Yip as the orbit M0 (zip). Here Po = M0 A0 No = 
{g EGo I gSip =Sip}. 

LEMMA 11.10. The map Yip---+ G0 /P0 , given by g(zip) f-+ gP0 , defines a Go-
equivariant fiber bundle with structure group M0 and whose fibers gSip are the max-
imal complex analytic submanifolds of Yip . 

The data (p,, a-) defines a representation fJ-L,a ( uan) = e(Pg +ia)(log a) J-t( u) of 
Uip,oAoNo where p9 = ~ LaEE+ a. That defines a G0-homogeneous complex vector 
bundle 

(11.11) V J-L,a ---+ Go/Uip,oAoNo = Yip such that V J-L,a is"' = V 1-' • 

Each V J-L,a \9 s"' is an Ad(g )P0-homogeneous holomorphic vector bundle. Also, as 
[p,] is unitary we have a K 0-invariant hermitian metric on V J-L,a . 

The complexified tangent bundle of Yip has a subbundle 1!' ---+ Yip defined by 

1l'\ 9 s"' ---+ gSep is the holomorphic tangent bundle of gSip . 

It defines 

{ 
vp,q = v \>9 AP(1!'*) \>9 Aq(1f)---+ y,. J-L,a J-L,a '±' , 

(11.12) Ap,q(Yip;VJ-L,a): C 00 sections ofV~',~---+ Yep, and 
O(V J-L,a) : sheaf of C 00 sections of V J-L,a holomorphic over every gSep . 

Ap,q (Yip; V J-L,a) is the space of V J-L,a-valued partially (p, q )-forms on Yip . 

We take the positive definite Uip,0-invariant hermitian inner product on fiber 
VI-' of V ~-' ---+ Sip, and translate it around by K 0 to obtain a K 0-invariant hermitian 
structure on V~','b- ---+ Yip. In the same way we have a K 0-invariant hermitian 
metric on 1!'---+ Yep. So we have Ko-invariant Hodge-Kodaira orthocomplementation 
operators H • AP,q(Y,.·V ) ---+ An-p,n-q(Y,.·\1* ) and~· An-p,n-q(Y,.·\1* ) ---+ # · '±'l Ji-,a '±'' J-L,a # • '±'l Jl.,a 
Ap,q (Yip; V J-L,a). where n = dime Sip . 

We obtain the global Go-invariant hermitian inner product on Ap,q (Yip; V J-L,a) 
from the inner product along each fiber of Yip ---+ Go/ P0 by integrating over Go/ Po, 

(11.13) 
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where A means exterior product followed by contraction of V!L against v;. 
The a operator of Zip induces the a operators on each of the gSip, so they 

fit together to give us an operator a: AP,q(Yip;'V!L,a) ---7 AP,q+l(Yip;'V!L,a)· It has 
formal adjoint a* : Ap,q+l (Yip; v /L,O") ---7 Ap,q (Yip; v IL·"") given by a* = -ija~. That 
defines the "partial Kodaira-Hodge-Laplace operator" 

(11.14) 

Ap,q(Yip;V~t,a) is a pre Hilbert space with the global inner product (11.13). Denote 

(11.15) 
Essentially as in the case of the Bott-Borel=Weil Theorem, we apply Weyl's Lemma 
along each gSip to see that the closure of 0 of 0, as a densely defined operator on 
L~·q (Yip; V ~t.a) from the domain Ap,q (Yip; V ~t,a), is essentially self-adjoint. Its kernel 

(11.16) 

is the space of V ~t,a -valued square integrable partially harmonic (p, q )-forms on Yip . 

The factor eP" in the representation "Y~t,a that defines V ~t,a insures that the 
global inner product on Ap,q (Yip; V IL·"") is invariant under the action of G0 . It 
corresponds to the t::J.(G0 /P0 ) in the definition (7.2) of (unitarily induced) principal 
series representation. 

The other ingredients in the construction of 1t~,q (Yip; V IL·"") are invariant as 
well, so G0 acts naturally on 1t~,q (Yip; V IL·"") by isometries. This action is a unitary 
representation of G0 . 

Write 1t~(Yip;'V~t,a) for 1tg'q(Yip;'V~t,a)· We combine the Bott-Borel-Weil The-
orem 11.9 with the definition (7.2) of the principal series, obtaining a geometric 
realization of the principal series of G0 based on the closed G 0-orbit in the com-
plex flag Zip= G/Qip, as follows. 

THEOREM 11.17. Let [p,] = [X 0 p,~] E Uip,O and a E u0, and fix q ~ 0. 

1. If ((3- Pu., + Pm, a) = 0 for some a E ~(m, t) then every 1t~(Yip; V IL·"") = 0. 

2. If (f3-Pu., +Pm, a);/:- 0 for all a E ~(m, t), let w be the unique element in W(m, t) 
such that (w((3- Pu., + Pm),a) > 0 for all a E ~(m,t). Then H~(Yip;'V~t,a) = 0 
for q ;/:- qo, and the natural action of Go on 1-{~ 0 (Yip; V ~t,a) is the principal series 
representation 7r x®'72 ,a· 

12. L2 Realizations of the Discrete Series. 

Suppose that Go has a compact Cartan subgroup T0 c K 0 . Let Z = G/Q be 
a complex flag manifold, let z E Z, set D = G0 (z), and suppose that 

(12.1) D is open in Z and G0 has compact isotropy subgroup U0 at z. 

Passing to a conjugate, equivalently moving z within D, we may suppose To C U0 . 

Let JL E U0 , let ElL denote the representation space, and let JElL ---+ D ~ G0 /U0 
denote the associated holomorphic homogeneous vector bundle. Then p, is finite 
dimensional and is constructed as follows. First, U0 n Gg is the identity component 

Licensed to Univ of Calif, Berkeley.  Prepared on Sat Aug 31 17:19:57 EDT 2013 for download from IP 169.229.32.136.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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U8, and U0 = Zoo ( G8)U8. Second there are irreducible unitary representations 
[X] E z~g) and [tL0 ] E U8 that agree on Zo0 such that [tL] = [X@ tL0]. 

Let (3 - Pu denote the highest weight of fLo, corresponding to infinitesimal 
character (3, and suppose that 

(12.2) A = (3- Pu + p9 is regular. 

Then G0 has a discrete series representation 1fx,>-, whose infinitesimal character has 
Harish-Chandra parameter A. 

Since tL is unitary, the bundle JEll ----+ D has a G0-invariant hermitian metric. 
Essentially as in the compact case, we have the spaces 

(12.3) A6p,q) (D; JEll) : c:xo compactly supported JEll-valued (p, q)-forms on D, 

the Kodaira-Hodge orthocomplementation operators 
~ ·A (p,q) (D·JE ) ----+ A (n-p,n-q) (D·JE*) 
H·o 'll o 'll 

and i+ · A(n-p,n-q)(D·JE*)----+ A(p,q)(D·JE) 
H· 0 ' ll 0 ' ll 

(12.4) 

where n =dime D. Thus we have a positive definite inner product on A6p,q) (D; JEll) 
give by 

(12.5) 

and thus 

(12.6) 

Let 0 denote the Kodaira-Hodge-Laplace operator 8 8* +8*8 of lEw Then 0 is 
a hermitian-symmetric elliptic operator on L~O,q) (D; JEll) with domain A6p,q) (D; ~ll), 
and a result of Andreotti and Vesentini allows one to conclude that its closure 0 is 
self-adjoint. Accordingly, we have the Hilbert spaces 

(12.7) H~p,q)(D;lEil) ={wE Domain(D) I D(w) = 0} 

of L2 harmonic JEll-valued (0, q)-forms on D. G0 acts on H~p,q) (D; JEll) by a unitary 
representation. 

We write H~(D; JEll) for H~O,q\D; JEll) and we write 7f~ for the unitary repre-
sentation of Go on H~(D; JEll). 

THEOREM 12.8. Let [tL] = [x Q9 tL0] E Uo where tL0 has highest weight (3 - Pu 
and thus has infinitesimal character (3. If A+ p (as in (12.2)) is ~(g, t)-singular 
then every H~(D; JEll)= 0. Now suppose that A= (3- Pu + p9 is ~(g, t)-regular and 
define 

(12.9) 
qu(A) = l{a E ~+(e, t) \ ~+(u, t) I (A, a)< O}l 

+ 1{!3 E ~+(g, t) \ ~+(e, t) 1 (A, !3) > o}l. 

Then H~(D;lEil) = 0 for q -1- qu(A), and Go acts irreducibly on H~"(>-)(D;lEil) by 
the discrete series representation 7f x,>- of infinitesimal character A. 

One can also realize the discrete series on spaces of L 2 bundle-valued harmonic 
spinors [136]. 

Licensed to Univ of Calif, Berkeley.  Prepared on Sat Aug 31 17:19:57 EDT 2013 for download from IP 169.229.32.136.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



228 JOSEPH A. WOLF 

13. £ 2 Realizations of the Various Tempered Series. 

Choose a Cartan subgroup H0 C Go. We are going to realize the Ho-series 
representations of Go in a way analogous to the way we realized the principal series 
in §11, with Theorem 12.8 in place of the Bott-Borel-Weil Theorem 11.9. 

Let(} be the Cartan involution of Go that stabilizes H0 , split Ho = T0 x Ao and 
let Zc0 (A0 ) = M0 x Ao as before. Fix a positive root system E+ = E+(g, ~)defined 
by positive root systems E+(m, t) and E+(g0 , a0 ) as in (11.1). Let Po = M0 AoNo 
be the corresponding cuspidal parabolic subgroup of Go associated to Ho. 

Following the idea of the geometric realization of the principal series, we fix a 
set <I> C Wm where Wm is the simple root system for E+(m, t). Then as in (11.2) we 
have 

(13.1) 

3<~> = {~ E t I¢(~)= 0 V¢ E <I>} and its real form 3-P,o = mo n~.P3.P, 

U.p = ZM(3.p), U.P,O = Mo n U.p, and Lie algebras U.p and U.p,o ' 

t.p = U.p +""""' m_l', parabolic subalgebra of m , 
L.,..I'EE+(m,t) 

R.p = N M ( t.p), corresponding parabolic subgroup of M , and 
S.p = M / R.p, associated complex flag manifold. 

Let r.p denote the base point, r.p = 1R.p E R.p . As T0 is a compact Cartan subgroup 
of Mo contained in Uo~>,o, D.p = M0 (r.p) C S.p is a measurable open M0-orbit on 
R.p. We now assume that U.p,o is compact, so the considerations of §11 apply to 
D.p c S.p. 

Fix [~-t] = [x 0 1-l~] E tJ;:o as before. Given u E a0 we will use the Theorem 
12.8 to find the H 0-series representation nx 0 '1~,o- on a cohomology space related to 
a particular orbit in the complex flag manifold Z.p = G j Q.p . Here as before, the 
simple root system Wm C \]i by the coherence in our choice of E+(g, ~), so <I> C \]i 
and <I> defines a parabolic subgroup Q.p C G. 

Let z.p = 1Q.p E GjQ.p = Z.p. As AoNo c Go n Q.p we have Go n Q.p = 
U.p,0 A0 N0 . Thus Y.p = G0 (z.p) is a G0-orbit on Z.p, and D.p sits in Y.p as the orbit 
Mo(z.p). Here note that Po= MoAoNo = {g EGo I gD.p = D.p}. 

LEMMA 13.2. The map Y.p --+ G0 jP0 , given by g(z.p) t--> gPo, defines a G0 -

equivariant fiber bundle with structure group M0 and whose fibers gD.p are the 
maximal complex analytic submanifolds of Y.p . 

The data (~-t,u) defines a representation 1'~-t,o-(uan) = eCP.+io-)(ioga)~-t(u) of 
U.p,oAoNo where p9 = ~ L:::oEE+ 9o. That defines a Go-homogeneous vector bun-
dle 

(13.3) 

Each IE~-t,o-lgDq, is an Ad(g)P0-homogeneous holomorphic vector bundle. 

Since [~-t] is unitary and K 0 acts transitively on G0 / P0 we have a K 0-invariant 
hermitian metric on IE~-t,o- . We will use it without explicit reference. 
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Consider the subbundle '][' ----+ Y.p of the complexified tangent bundle to Y.p 
defined by 

(13.4) 'll'lgD.p ----+ gD.p is the holomorphic tangent bundle of gD.p . 

It defines 

{ 
lEp,q = lE 0 AP('ll'*) 0 Aq('F*)----; D .... 

~,u ~,u ~ , 

(13.5) Ab'q (Y.p; lEJt,a) : C 00 compactly supported sections of lEJt,a ----+ Y.p , 
O(lEJt,a) : sheaf of C00 sections of lEJt,a holomorphic over every gD.p . 

Ap,q (Y.p; lEJt,a) is the space consisting of all lEJt,a-valued partially (p, q )-forms on 
Y.p , and Ab'q (Y.p; lEJt,a) is the subspace of compactly supported forms. 

The fiber El' of lEI' ----+ D.p has a positive definite U.p,0-invariant hermitian 
inner product because f..L is unitary; we translate this around by K 0 to obtain a K 0-

invariant hermitian structure on the vector bundle JE~·,'b- ----+ Y.p . Similarly '][' ----+ Y.p 
carries a K0-invariant hermitian metric. Using these hermitian metrics we have 
K 0-invariant Hodge-Kodaira orthocomplementation operators 

~ : Ab'q (Y<t>; lEJt,a) ----+ A~-p,n-q (Y<t>; lE~,a) 
(13.6) 

d ~ An-p,n-q(Y, JE" ) Ap,q(Y, lE ) an H : o <I>; Jt,a ----+ o <I>; Jt,a ' 

where n = dime D.p . The global G0-invariant inner product on Ab'q (Y<t>; lEJt,a) is 
given by taking the M 0-invariant inner product along each fiber of Y.p ----+ Go/ Po 
and integrating over Go/ Po, 

(13. 7) (F1, F2)Y.p = { ( { Fd\~F2) d(k(Ko n Mo)), 
} K 0 /(K0 nMo) } kD.p 

where A means exterior product followed by contraction of El' against E;. 

The a operator of Z<t> induces the a operators on each of the gD.p, so they fit 
together to give us an operator 

- +1 (13.8) 8: Ab'q (Y.p; lEJt,a) ----+ Ab'q (Y.p; lEJt,a) 

that has formal adjoint 

(13.9) 

That in turn defines an elliptic operator, the "partial Kodaira-Hodge-Laplace op-
erator" 

(13.10) 

Ab'q (Y.p; lEJt,a) is a pre Hilbert space with the global inner product (13.10). Denote 

(13.11) 

Apply Andreotti-Vesentini along each gD.p to see that the closure of 0 of 0, as 
a densely defined operator on L~,q (Y<t>; lEJt,a) from the domain Ab'q (Y<t>; lEJt,a), is 
essentially self-adjoint. Its kernel 

(13.12) 

is the space of square integrable partially harmonic (p, q)-forms on Y.p with values 
in lEJt,a . 

Licensed to Univ of Calif, Berkeley.  Prepared on Sat Aug 31 17:19:57 EDT 2013 for download from IP 169.229.32.136.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



230 JOSEPH A. WOLF 

The factor ePg in the representation 'YJ.l,a that defines lEJ.l,a insures that the 
global inner product on Ag,q (Yq,; lEJ.l,a) is invariant under the action of G0 . The 
other ingredients in the construction of 1i~,q (Yq,; lEJ.l,a) are invariant as well, so G0 
acts naturally on 1i~,q (Yq,; lEJ.l,a) by isometries. This action is a unitary representa-
tion of Go. 

As before we write 1{~ (Yq,; lEJ.l,a) for 1ig,q (Yq,; lEJ.l,a). 

We can now combine Theorem 12.8 with the definition (9.3) of the H 0-series, 
obtaining 

THEOREM 13.13. Let [f.L] = [x 181 f.L~] E u.;:o where f.L0 has highest weight (3- Pu 
and thus has infinitesimal character (3. Let 

(13.14) V = (3- Pu., + Pm, 

suppose a E a0, and fix an integer q ~ 0. 

1. If (v, a) = 0 for some a E ~(m, t) then 1i~(Yq,; lEJ.l,a) = 0. 

2. If (v, a)=/:- 0 for all a E ~(m, t), define 

(13.15) 
Qu.,(v) =I{ a E ~+((enm),t) \ ~+(u,t) I (v,a) < O}l 

+ 1{!3 E ~+(m, t) \~+((en m), t) I (v,(J) > O}l. 

Then 1iq (D; lEJ.l,a) = 0 for q =/:- Qu., (v), and the action of Go on Jiqu., (v) (D; lEJ.l,a) is 
the Ho-series representation 11"x,v,a of infinitesimal character v + ia. 

A variation on this theorem [136] realizes the tempered series on spaces of L2 
bundle-valued partially harmonic spinors. 

14. Approaches to Non-Tempered Representations. 

There are a number of approaches to the problem of finding good geometric 
realizations of representations that need not be tempered - or even need not be 
unitary. There is no general agreement here on which approaches are "best", so I'll 
just give thumbnail descriptions of the four that I find most interesting. I apologize 
in advance to the many researchers in this area whose approach is not mentioned 
or is only mentioned in passing, and whose papers are not referenced. 

Geometric quantization. In the Kostant-Souriau theory of geometric quanti-
zation, one considers a linear functional >. E g0 on the Lie algebra g0 of Go and 
the coadjoint orbit 0 = Ad*(Go)(>.). Let Lo denote the Go-stabilizer of>., so 
0 ~ Go/ Lo as homogeneous space, and let lo be the Lie algebra of L0 . For com-
plexification we drop the subscript 0, as before. A polarization for 0 is a (complex) 
subalgebra q C g that (i) contains [ with dim g- dim q = dim q- dim [ and (ii) is 
Ad*(L0 )-invariant. The coadjoint orbit 0 is integral if exp(27rH.A) : L8 -+Cis 
well defined. Then every extension x of exp(27rH.A) to an irreducible represen-
tation of L0 , say on a vector space Ex , leads to a Go-homogeneous vector bundle 
lEx -+ 0 with typical fiber Ex . 

By Ad(Lo)-invariance, q acts on Ex in a manner consistent with the action 
of L 0 . This can happen in several different ways; choose one. Denote this ac-
tion just by dx. Also, q acts by differential operators on local sections, s(x; ~) = 
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ftlt=o(s(xexp(t6))) + Aftlt=o(s(xexp(t6))) for ~ = 6 + A6 E q with 
6, 6 E 9o. Let Ex denote the sheaf of local sections s of Ex such that s(x; ~) + 
dx(~)s(x) = 0 for all ~ E q. Then one studies the representations of Go on the 
cohomologies Hq(O; Ex)· 

The most familiar example is where 0 has an invariant complex structure, 
q = [ + n in such a way that n represents the antiholomorphic tangent space, 
dx(n) = 0 so that s(x; ~) + dx(~)s(x) = 0 simplifies to s(x; ~) = 0, and s(x; ~) = 0 is 
the Cauchy-Riemann equation, so Ex is the sheaf of germs of holomorphic sections 
of Ex ---+ 0. Our £ 2 realizations of tempered representations were done by an £ 2 

partially harmonic form variation on this pattern. Essentially this works because 
we are dealing with semisimple coadjoint orbits there, and their polarizations are 
parabolic subalgebras. 

Several things can go wrong here. It can happen that there is no invariant 
polarization. A method of moving polarizations was developed to deal with the 
case where the polarization is invariant only under a certain subgroup of £ 0 . An-
other approach to this problem is given by the theory of metalinear structures. It 
can happen that one is looking for representations in some topological category, so 
one looks for the Hq(O; Ex) as cohomologies of some complex of topological vector 
spaces, and one needs a closed range theorem for the differentials of the complex 
in order that the cohomologies inherit a topology. This can be very delicate, but it 
has been settled in a few cases by using hyperfunction (instead of c=) coefficients; 
see [115], [117], [138] and [151]. It can happen that one looks to unitarize these 
representations, but the positive definite hermitian metrics of the previous three 
sections are not available. This has been carried out in a few cases; see the sub-
section "Indefinite metric harmonic theory" below. It can happen that one tries 
to realize representations that cannot occur on semisimple coadjoint orbits; there 
one goes in principle to the nascent technical theory of unipotent representations. 
And finally there is the problem (which the theory of unipotent representations 
tries to address) that, for most real semisimple Lie groups, the unitary dual is not 
completely known. 

Double fibration transforms. This is a tool for investigating growth properties 
of Frechet space representations on Dolbeault cohomology, with an eye toward 
questions of unitarity and Lebesgue class, and as such is essentially a tool for use 
in geometric quantization. It hasn't really been applied yet, but I think that it will 
be extremely useful for analysis of non-tempered representations. Historically this 
sort of thing was done the other way around, starting with differential equations 
and then getting a representation on Dolbeault (or some other) cohomology whose 
double fibration transform was the set of solutions to the differential equations. 

Let D = G0 (z) C Z = G/Q be a measurable open orbit and let E---+ D be a 
negative Go-homogeneous holomorphic vector bundle. Let s denote the complex 
dimension of the maximal compact subvariety Y0 = K 0 (z) of D. Theorem 4.6 says 
that Hq(D; O(E)) = 0 for q > s and the negativity ensures that Hq(D; O(E)) = 0 
for q < s. We have (6.5). In many cases we have verified that the fiber F of J1 : 
W D ---+ D is contractible, so Theorem 6.6 says that the double fibration transform 
map P: H 8 (D; O(E))---+ H 0 (MD; R/(Jl*(O(E))) is injective. Now the point is to 
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characterize its image by a set of PDE which will allow us to make a priori growth 
estimates on the coefficients of the representation of Go on H 8 (D; O(IE)). 

Dual reductive pairs and the {) correspondence. A pair of subgroups G0 , G~ C 
Sp(n; IR) is a dual reductive pair if they are reductive in the real symplectic group 
Sp(n; IR) and each is the centralizer of the other in Sp(n; IR). There are just a few 
such pairs: 

(O(p,q),Sp(k;IR)) in Sp((p+q)k;IR)), 
(U(p,q),U(k,€)) in Sp((p+q)(k+f);IR), and 
(Sp(p, q), S0*(2k)) in Sp((p + q)k; IR), 

which Howe calls Type I, and the Type II pairs 

(GL(u, JF), GL( v, JF)) in Sp(uvd; IR), d = dimJR lF, for lF = IR, C, and JHI. 

The point, for us, is Howe's theorem that the metaplectic representation 1-l of (the 
double cover of) Sp(n; IR) has restriction to GoG~ of the form J ai 0 a~ dm(i) with 
ai E Go and a~ E ~, and such that ai determines a~ and a~ determines ai , a. e. 
m(i). The correspondence Go 3 ai f-* a~ E ~ is the {) correspondence. If one 
knows one of Go,~ it gives a lot of useful information about the other. This is 
especially useful when one of G0 , G~ is compact. Also, representations that occur 
on dual reductive pairs are automatically unitary, and they are sufficiently concrete 
so that one can often check questions of growth and irreducibility. 

Indefinite metric harmonic theory. Consider a variation on the L2 realizations 
of the discrete series in Section 12, in which the isotropy subgroup U0 of G0 may 
be noncompact. Thus the open orbit D = G0 (z) C Z = G/Q carries an invariant 
pseudo-kiihler metric from the Killing form of g, but perhaps does not carry an 
invariant positive definite hermitian metric. In the language of geometric quanti-
zation, D is an elliptic coadjoint orbit. 

Let [J.L] E Uo and let EJ.L be the representation space. The associated vector 
bundle JElL__, D ~ G0 jU0 is a G0-homogeneous hermitian holomorphic vector bun-
dle. As in (12.3) one has the space A~,q) (D; JElL) of compactly supported !ElL-valued 
coo (p, q)-forms on D, and, from the invariant pseudo-kiihler metric, one has the 
Kodaira-Hodge orthocomplementation operators (12.4). The problem is that the 
inner product (F1,F2)D = fvF1l\~F2 on A~,q)(D;1E!L) will in general be indefinite 
rather than positive definite, so the definition of L~p,q) (D; JElL) is problematical. The 
approach of [109] is to use an auxiliary hermitian metric which is not G0-invariant, 
but for which L~,q) (D; JElL) is defined and is a space on which Go acts by a bounded 
representation. Then, relative to the invariant pseudo-kiihler metric one still has 
a* and the indefinite metric analog 0 = aa* + a*a of the Kodaira-Hodge-Laplace 
operator. We say that a form w E L~p,q) (D; JElL) is harmonic if it is annihilated by 
the closure Ei of 0, strongly harmonic if aw = 0 =a* w. 

Let ii.~(D; IE!L)Ko denote the space of Ko-finite L2 strongly harmonic !ElL-valued 
(0, q)-forms on D. It has a natural map w f--+ [w] to K 0-finite Dolbeault cohomology 
Hq(D;IE!L)Ko of JElL __, D. Let 7-l~(D;IE!L)Ko denote the image. Under certain 
circumstances, in [109] it is shown that every Dolbeault class [w] E ii.~(D; IEIL)Ko 
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has a "best" representative w, that (w,w)D = JDw7\~w > 0 for [w] =/= 0, and that 
(-,·)Dis null on the kernel of H~(D;lEI-')Ko ---> Hq(D;lEI-')Ko· That unitarizes the 
action of G0 on certain Dolbeault cohomologies as the Hilbert space completions 
of the H~ (D; lEI-') Ko. Although it moves rather slowly, this program remains quite 
active and has since been carried much further. See [8], [9], [10], [13], [18], [138], 
[152], [153], [154] and [155]. 
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