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REAL GROUPS TRANSITIVE
ON COMPLEX FLAG MANIFOLDS

JOSEPH A. WOLF

(Communicated by Rebecca A. Herb)

Abstract. Let Z = G/Q be a complex flag manifold. The compact real form
Gu of G is transitive on Z. If G0 is a noncompact real form, such transitivity
is rare but occasionally happens. Here we work out a complete list of Lie
subgroups of G transitive on Z and pick out the cases that are noncompact
real forms of G.

0. The problem

Let Z = G/Q be a complex flag manifold where G is a complex connected
semisimple Lie group and Q is a parabolic subgroup. Let G0 be a real form of
G. If G0 is the compact real form, then it is transitive on Z. On a number of
occasions the question has come up as to whether any noncompact real form of G
can be transitive on Z. Here I’ll record the answer. The rough answer is “yes, but
just a few.” The precise answer, Corollaries 1.7 and 2.3 below, follows from a more
general classification, Theorems 1.6 and 2.2. This more general classification uses a
technique of D. Montgomery [M], together with some results of [W1] that depend
in an essential way on a classification [O1] of A. L. Onishchik.

After this paper was written I learned of Onishchik’s book [O2]. There is some
overlap for compact groups, but there are no inclusions.

1. The solution for irreducible flags

We formulate the problem in terms of transitive subgroups. Let Gu be the
compact real form of G, so Z = Gu/(Gu ∩Q) and Gu ∩Q is the compact real form
of the reductive part of Q. Let A ⊂ G be a closed subgroup that is transitive on
Z. The identity component A0 of A is transitive on Z, because Z is connected,
so a maximal compact subgroup B0 ⊂ A0 already is transitive on Z, according to
Montgomery [M]. We may replace A by a conjugate and assume B = A ∩ Gu. So
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now we have several expressions:
Z = G/Q = Gu/(Gu ∩Q) = A/(A ∩Q) = B/(B ∩Q)

= A0/(A0 ∩Q) = B0/(B0 ∩Q).
(1.1)

According to [W1, Prop. 3.1] there are just a few possibilities for a homoge-
neous almost–hermitian manifold Z to have distinct expressions such as Gu/Lu and
B0/(B0 ∩ Lu), where Gu is the identity component of the group of all almost–
hermitian isometries, Gu is simple, Lu is the centralizer of a torus subgroup of Gu,
and B0 $ Gu with B0 connected. They are :
(1.2) Z = P 2n−1(C) = SU(2n)/U(2n − 1) = Sp(n)/(Sp(n − 1) · U(1)), complex

projective space,
(1.3) Z = SO(2r + 2)/U(r + 1) = SO(2r + 1)/U(r), unitary structures on R2r+2,
(1.4) Z = SO(7)/(SO(5) ·SO(2)) = G2/U(2), 5–dimensional complex quadric, and
(1.5) Z = SO(8)/(SO(6) · SO(2)) = {Spin(7)/Z2}/U(3), 6–dimensional complex

quadric.
This applies in our situation because Lu = Gu ∩ Q is the centralizer of a torus
subgroup of Gu, and Z has a Gu–invariant hermitian metric.

Now return to the expression Z = G/Q. G (and thus Gu) is simple. Let A $ G
be a closed subgroup that is transitive on Z and let B be its maximal compact
subgroup. We may assume B = A ∩ Gu. Then B $ Gu, B0 is transitive on Z,
and the expression Z = Gu/Lu = B0/(B0 ∩ Lu) is given above. In each case the
group B0 is simple, so A0 has Levi decomposition A0 = A0

ssA
0
rad into semisimple

part and solvable radical, where B0 is a maximal compact subgroup of A0
ss. We

run through the 4 possibilities listed above.
For (1.2), G = SL(2n;C) and B0 = Sp(n). The semisimple Lie groups with max-

imal compact subgroup Sp(n) are Sp(n), Sp(n;C), the quaternionic linear group
SL(n;H), and, for n = 4, the real group F4,C4 . But F4 does not have a represen-
tation of degree 8, in other words F4 6⊂ G, so now A0

ss is one of Sp(n), Sp(n;C)
and SL(n;H). Each of them is irreducible on C2n, so the unipotent radical of the
algebraic hull of A0 acts trivially on C2n and the center of the reductive part of
A0 acts by scalars. As G acts effectively and by transformations of determinant
1 on C2n now A0

ss = A0, so A0 is one of Sp(n), Sp(n;C) and SL(n;H). If g ∈ G
normalizes A0, then some element g′ ∈ gA0 centralizes A0, because A0 has no ra-
tional outer automorphism. As A0 is irreducible on C2n now g′ is scalar (and thus
acts trivially on Z). Thus A = A0F where F can be any subgroup of the center
{e2πik/2nI | 0 5 k < 2n} of G.

For (1.3), G = SO(2r + 2;C) and B0 = SO(2r + 1). The semisimple Lie
groups with maximal compact subgroup SO(2r + 1) are SO(2r + 1), SO(2r +
1;C), SO(1, 2r + 1), and SL(2r + 1;R). But A0

ss = SL(2r + 1;R) would give
SL(2r+1;C) ⊂ SO(2r+2;C), so the respective dimensions would satisfy 4r2+4r 5
2r2 + 3r+ 1, forcing r = 0 and Z = (point). Thus1 A0

ss 6= SL(2r+ 1;R). Now A0
ss

is one of SO(2r+1), SO(2r+1;C), and SO(1, 2r+1). The last one acts irreducibly
on C2r+2, and there A0

ss = A0 as above. For the first two, recall that SO(2r + 1)
is absolutely irreducible on the tangent space so(2r + 2)/so(2r + 1) of the sphere
S2r+1, so A0

rad has Lie algebra reduced to 0, and again A0
ss = A0. Now A0 is one of

SO(2r + 1), SO(2r + 1;C), and SO(1, 2r + 1). If g ∈ G normalizes A0, then some

1 The author thanks the referee for a comment that improved and clarified his treatment of
this SL(2r + 1;R) case.
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element g′ ∈ gA0 centralizes A0, because A0 has no rational outer automorphism.
Thus either A = A0 or A/A0 has order 2 where A is one of O(2r+ 1), O(2r+ 1;C),
and SO(1, 2r + 1) · {±I}.

For (1.4), G = SO(7;C) and B0 = G2. The semisimple Lie groups with maximal
compact subgroup G2 are G2 and its complexification G2,C. They are irreducible
on C7 and have no rational outer automorphisms, so, as before, A0 is either G2 or
G2,C, and if g ∈ G normalizes A0, then some element g′ ∈ gA0 centralizes A0. This
forces g′ to be central in SO(7;C), so g′ = 1 and A = A0. Thus A is either G2 or
G2,C.

Finally, (1.5) is obtained from the case r = 3 of (1.3) by applying the triality
automorphism, so it does not give us anything more.

In summary,

Theorem 1.6. Consider a complex flag manifold Z = G/Q. Suppose that Z is
irreducible, i.e., that G is simple. Then the closed subgroups A ⊂ G transitive on
Z, Gu 6= A 6= G, are precisely those given as follows:

1. Z = SU(2n)/U(2n − 1) = P 2n−1(C) complex projective (2n − 1)–space;
G = SL(2n;C) and A = A0F where A0 is one of Sp(n), Sp(n;C) and SL(n;H),
and F is any subgroup of the center {e2πik/2nI | 0 5 k < 2n} of G. Here F acts
trivially on Z, so A and A0 have the same action on Z.

2. Z = SO(2r + 2)/U(r + 1), unitary structures on R2r+2; G = SO(2r + 2;C)
and A = A0F where A0 is one of SO(2r + 1), SO(2r + 1;C), and SO(1, 2r + 1),
and where F is any subgroup of the center {±I} of G. Here F acts trivially on Z,
so A and A0 have the same action on Z.

3. Z = SO(7)/(SO(5) · SO(2)), 5–dimensional complex quadric; G = SO(7;C)
and A is either the compact connected group G2 or its complexification G2,C.

Picking out the cases where A is a real form of G we have

Corollary 1.7. Consider a complex flag manifold Z = G/Q. Suppose that Z is
irreducible, i.e., that G is simple. Then the (connected) noncompact real forms
G0 ⊂ G transitive on Z are precisely those given as follows:

1. Z = SU(2n)/U(2n − 1) = P 2n−1(C) complex projective (2n − 1)–space;
G = SL(2n;C) and G0 is the quaternion linear group SL(n;H), which has maximal
compact subgroup Sp(n).

2. Z = SO(2r + 2)/U(r + 1), unitary structures on R2r+2; G = SO(2r + 2;C)
and G0 is the Lorentz group SO(1, 2r + 1), which has maximal compact subgroup
SO(2r + 1).

2. The solution for flag manifolds in general

We complete the solution of the problem by reducing it to the case where Z is
irreducible.

Proposition 2.1. Decompose G =
∏
Gi, the local direct product of complex con-

nected simple Lie groups. Thus Z =
∏
Zi, the product of irreducible flag manifolds

Zi = Gi/Qi where Qi = Q ∩ Gi. Then A0 =
∏
A0
i with A0

i = A0 ∩ Gi and
B0 =

∏
B0
i with B0

i = B0 ∩Gi. The groups A0
i and B0

i are connected, simple, and
transitive on Zi.

Proof. The solvable radical of A0 is contained in a Borel subgroup of G, and thus
has a fixed point on Z. It is normal in the transitive group A0 so it fixes every
point. Thus A0 is semisimple. Similarly B0 is semisimple.
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Let πi : G → Gi denote the projection. The compact connected group πi(B0)
is transitive on Zi. So it must be the compact real form Gu,i = Gi ∩ Gu of Gi or
one of the compact connected transitive groups described in (1.2), (1.3) or (1.4).
(Recall that (1.5) is in fact a special case of (1.3).) In all cases, πi(B0) is nontrivial
and simple. Now πi annihilates all but one of the simple factors of B0. Obviously
no simple factor of B0 is annihilated by every πi. So now B0 =

∏
B0
α where the B0

α

are simple and where the index set I for G =
∏
I Gi is a disjoint union of subsets

Iα with B0
α ⊂

∏
i∈Iα Gi. The proof of Proposition 2.1 is reduced to the case where

B0 (and thus also A0) is simple, and there it is reduced to the proof that Gu is
simple.

We may now assume B0 simple. Suppose that Gu is not simple. Projecting to
G1 ×G2 we may assume G = G1 ×G2. View the isomorphisms πi : B0 ∼= πi(B0)
as identifications. Denote Ei = πi(B0

C), the complexification of the image of B0 in
Gi. Denote Eu,1 = πi(B0), the compact real form of Ei. Denote Pi = Ei ∩Qi, the
parabolic subgroup of Ei that is its isotropy subgroup in Zi, so Zi = Ei/Pi. Now
B0
C = {(e, e) | e ∈ E1}, B0

C ∩Q = {(p, p) | p ∈ (P1 ∩ P2)}, and Z = B0
C/(B

0
C ∩Q) ∼=

E1/(P1 ∩ P2). In particular P1 ∩ P2 is a parabolic subgroup of E1. Compute
complex dimensions: dimE1 − dim(P1 ∩ P2) = dimB0 − dim(B0 ∩Q) = dimZ =
dimZ1 + dimZ2 = (dimE1−dimP1) + (dimE1−dimP2). On the Lie algebra level
this says dim e1 = dim p1 + dim p2 − dim(p1 ∩ p2), in other words p1 + p2 = e1. As
p1 ∩ p2 is a parabolic subalgebra of e1 we have a Cartan subalgebra h and a Borel
subalgebra s with h ⊂ s ⊂ p1 ∩ p2. In the root order such that s is the sum of h

and the negative root spaces, no parabolic containing s can contain the root space
for the maximal root. This contradicts p1 + p2 = e1. The contradiction proves Gu
simple and completes the proof.

Combining Proposition 2.1 with Theorem 1.6 we have

Theorem 2.2. Let Z = G/Q, the complex flag manifold, where G is a complex
connected semisimple Lie group acting with finite kernel on Z. Then the closed
subgroups A ⊂ G transitive on Z are precisely those given as follows. Decompose
G =

∏
Gi with Gi simple, so Z =

∏
Zi with Zi = Gi/(Q ∩ Gi). Then A = A0F

where A0 =
∏
Ai with Ai = (A∩Gi)0, and Ai is equal to Gi, or to its compact real

form Gu,i, or to one of the three types listed in Theorem 1.6, and F is any subgroup
of the center of G. Here F acts trivially on Z, so A and A0 have the same action
on Z.

Picking out the cases where A is a real form of G we have, as in Corollary 1.7,

Corollary 2.3. Let Z = G/Q, the complex flag manifold, where G is a complex
connected semisimple Lie group acting with finite kernel on Z. Then the (connected)
real forms G0 ⊂ G transitive on Z are precisely those given as follows. Decompose
G =

∏
Gi with Gi simple, so Z =

∏
Zi with Zi = Gi/(Q ∩ Gi). Then A =

∏
Ai

where Ai = A ∩Gi either is the compact real form Gu,i of Gi or is one of the two
types listed in Corollary 1.7.
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