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HERMITIAN SYMMETRIC SPACES, CYCLE SPACES, AND
THE BARLET–KOZIARZ INTERSECTION METHOD FOR

CONSTRUCTION OF HOLOMORPHIC FUNCTIONS

Joseph A. Wolf

Abstract. Under certain conditions, a recent method of Barlet and Koziarz [2]
constructs enough holomorphic functions to give a direct proof of the Stein con-
dition for a cycle space. Here we verify those conditions for open G0–orbits on X,
where G0 is the group of a bounded symmetric domain and X is its compact dual
viewed as a flag quotient manifold of the complexification G of G0 . This Stein
result was known for a few years [9], and in fact a somewhat more precise result is
known [12] for the flag domains to which we apply the Barlet–Koziarz method, but
the proof here is much more direct and holds the possibility of greater generality.
Also, some of the tools developed here apply directly to open orbits that need not
be measurable, avoiding separate arguments of reduction to the measurable case.

1. Introduction

Let G0 be a real semisimple Lie group, G its complexification, Q a parabolic
subgroup of G and X = G/Q the corresponding flag manifold, and D an open
G0–orbit on X. Let MD denote the linear cycle space of D (see (2.6) and (2.7)
below). The usual proof [9] that MD is a Stein manifold, in the case where D
is measurable, i.e. where D carries a G0–invariant positive Radon measure, is
rather indirect. One constructs a particular exhaustion function on D, uses it to
verify that D is (s+1)–complete where s is the complex dimension of the cycles
in MD , and then in a rather technical way pushes the exhaustion function from
D to MD . This is done in such a way that (a slight modification of) the resulting
function on MD is a strictly plurisubharmonic exhaustion function there. If D
is not measurable, one studies [10] a minimal flag covering of X and D.

Under certain conditions (2.11) the Barlet–Koziarz intersection method can
show directly that MD is Stein. That is the new element of this paper. One
uses the intersection method to construct enough holomorphic functions to show
that D is holomorphically convex, and at that point the Stein condition follows
from some elementary conditions. The delicate points here are the G0–orbit
structure of the boundary of D in X, construction of a certain transversal X ′ to
the elements of MD , and an implicit application of some results from intersection
theory on the Chow ring of X. See Proposition 2.13.
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In Section 2 we describe the Barlet–Koziarz method and specialize it to flag
domains.

In the case where G0 = SU(p, q) and X is the complex Grassmann manifold
Gr(p, q), we verify the conditions (2.11) with classical computation. This is done
in §3, and it is done in a way that indicates the procedure in a more general
symmetric space setting. There are really two parts here: elucidation of the
G0–orbit structure of X and construction of a certain sort of transversal to the
cycles. The result is Proposition 3.12.

The general hermitian symmetric space considerations are in Sections 4 and
5. The G0–orbit structure is described in §4 using partial Cayley transforms,
which leads more or less directly to construction of the transversals in §5. The
result is Proposition 5.17.

The conditions (2.11) were first used by Barlet and Huckleberry where G0 =
SL(n + 1; R) and X is the complex projective space Pn(C), so there is just
one open orbit D = Pn(C) \ Pn(R). The cycles have codimension 1 in D so
one can use complex projective lines for transversals. The technique described
here started when I noticed that their considerations, codimension 1 cycles and
transversal projective lines, held as well for the case G0 = SU(p, q) and X =
P p+q−1(C). Later, Huckleberry and Simon [3] carried out a complete analysis
of the case where G0 = SL(n + 1; R) and X is an arbitrary flag manifold of
G = SL(n + 1; C).

I wish to thank Daniel Barlet and Alan Huckleberry for explaining their early
example to me, Vincent Koziarz for his cooperation in keeping me informed as
[2] progressed and for his comments on earlier versions of this paper, Robin
Hartshorne for some discussions on intersection theory, and, especially, Alan
Huckleberry for comments and suggestions on the organization and material in
Section 2.

2. The method

Here is the method used for our examples, extracted from the more general
results of [2] and reformulated for consistency with the usual notation of complex
flag manifolds and hermitian symmetric spaces.

Let D be an open submanifold of a complex projective variety X. Fix an
integer s � 0. Fix irreducible components C0

s (D) and C0
s (X) in the respective

Barlet cycle spaces of (complex) dimension s in D and X, such that C0
s (D) ⊂

C0
s (X). Choose

X ′ ⊂ X : closed nonsingular subvariety of X such that

(i) codim (X ′ ⊂ X) = s,

(ii) X ′ meets every element Y ∈ C0
s (D), and

(iii) X ′′ = X ′ ∩ D is a Stein manifold.

(2.1)
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Let
f : X ′′ → C be a holomorphic function , and define

F : C0
s (D) → C by F (Y ) =

∑
y∈X′(b)∩Y

f(y).
(2.2)

Lemma 2.3. Suppose that (2.1) holds. Let Y ∈ C0
s (D) . Then X ′ ∩ Y is finite.

In particular F is well defined in (2.2).

Proof. Hypothesis (2.1) says that X ′ meets Y . X ′ ∩ Y ⊂ D because Y ⊂ D.
X ′ ∩ Y is the intersection of the compact variety Y with the Stein manifold
X ′′ = X ′ ∩ D, so it is a compact subvariety of X ′′, and thus finite.

Now we can state a special case of [2, Proposition 1]), the basic step in the
Barlet–Koziarz intersection method for construction of holomorphic functions
on cycle spaces:

Proposition 2.4. If (2.1) and (2.2) hold, then F is holomorphic on C0
s (D).

Now that we have a construction of holomorphic functions, we look at holo-
morphic convexity. Here is a special case of [2, Proposition 3].

Proposition 2.5. For every Y in the boundary bd(C0
s (D)) of C0

s (D) in C0
s (X),

suppose that there is a subvariety X ′ ⊂ X such that (i) X ′ satisfies (2.1) and (ii)
X ′ ∩ Y meets the boundary bd(D) of D in X. Then C0

s (D) is holomorphically
convex.

Suppose in addition that if Y1 �= Y2 in C0
s (D) then there is a closed subvariety

X ′ ⊂ X such that (i) X ′ satisfies (2.1) and (ii) X ′ ∩ Y1 �= X ′ ∩ Y2 . Then C0
s (D)

is Stein.

We reformulate Proposition 2.5 for the special case where G0 is a real semisim-
ple Lie group, G is its complexification, Q is a parabolic subgroup of G, X is
the complex flag manifold G/Q, and D is an open G0–orbit in X. We refer to
this case as the “flag domain case.”

In the flag domain case, we have a particular cycle

Y0 = K0(x0) = K(x0)(2.6)

where D = G0(x0), K0 is an appropriately chosen maximal compact subgroup
of G0 , and K is the complexification of K0 . See [7] for the fact that Y0 is
a complex flag manifold sitting as a maximal compact subvariety of D. Here
s = dimC Y0 and we make use of

MD := topological component of Y0 in {gY0 | g ∈ G and gY0 ⊂ D}.(2.7)

rather than C0
s (D). Observe that

E := {g ∈ G | gY0 = Y0} is a closed complex subgroup of G.(2.8)

Then MD has topology and complex structure as an open submanifold of

MX = {gY0 | g ∈ G} ∼= G/E.(2.9)
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Here (2.9) is the definition of MX . See [9] or [12] for details.
We may assume that X is irreducible, i.e. that G is simple. For everything

breaks up as a product according to the decomposition of G as a product of
simple closed normal subgroups. If G0/K0 is not a bounded symmetric domain
then the Lie algebra e of E is a maximal subalgebra of the Lie algebra g of G,
so either E = G with G0 transitive on X, or K is the identity component E0

of E. In these cases MX is an affine variety. If G0/K0 is a bounded symmetric
domain then there is another possibiity, E = KM±, parabolic subgroup of G
such that G/KM± is the hermitian symmetric flag manifold dual to G0/K0 . In
this case MX is a projective variety.

C0
s (D) denotes the irreducible component of the Barlet cycle space of D that

contains MD , and C0
s (X) is the irreducible component of the Barlet cycle space

of X that contains MX .

Lemma 2.10. The inclusions MD ↪→ C0
s (D) and MX ↪→ C0

s (X) are holomor-
phic. If (2.1) and (2.2) hold, then F : MD → C is holomorphic.

Proof. The complex structure on C0
s (X) is G–invariant, so each G–orbit on

C0
s (X) is a complex submanifold, and in particular MX is a complex submanifold

of C0
s (X). Now the open submanifold MD of MX is a complex submanifold of

C0
s (X) contained in C0

s (D), thus is a complex submanifold of C0
s (D). Thus the

inclusions are holomorphic and the last statement is an immediate consequence
of Proposition 2.4.

It is not quite as easy to carry Proposition 2.5 over from C0
s (D) to MD , but

one can suitably adjust the statement and proof for the flag domain case. There
(2.1) plus the hypothesis of the first part of Proposition 2.5 will be replaced by
the condition:

There is a closed complex submanifold X ′ ⊂ X such that

(i) codim (X ′ ⊂ X) = s,

(ii) x0 ∈ X ′ ∩ Y0 and X ′ is transversal to Y0 at x0 ,

(iii) X ′′ = X ′ ∩ D is a Stein manifold, and

(iv) X ′ meets every G0–orbit on bd(D).

(2.11)

The hypothesis of the second part of Proposition 2.5 will not be an issue.

A standard and straightforward intersection number argument gives

Lemma 2.12. In the flag domain case, let X ′ be a closed complex submanifold
of X such that (i) codim(X ′ ⊂ X) = s, (ii) X ′ meets the base cycle Y0, and X ′

is transversal to Y0 in at least one intersection point, and (iii) if Y ∈ MD then
X ′ ∩ Y is finite. Then X ′ ∩ Y is non–empty for every Y ∈ MD .

Proposition 2.13. In the flag domain case, if (2.11) holds, then MD is Stein.



HERMITIAN SYMMETRIC SPACES 555

Proof. Write cl(·) and bd(·) for Zariski closure and for boundary in the compact
variety C0

s (X). Then MX is Zariski–open in cl(MX) because the action of G
on C0

s (X) is algebraic. Now cl(MX) is a compact subvariety of C0
s (X), and

cl(MX) is a disjoint union MX ∪ F where F ⊂ bd(MX) is a union of lower–
dimensional subvarieties. Now bd(MD) is a disjoint union (bd(MD) ∩ F ) ∪ B.
Here B ⊂ bd(C0

s (D)) because B ⊂ MX .
Let {Yn} ⊂ MD with {Yn} → Y ∈ bd(MD). Now either Y ∈ B or Y ∈

bd(MX).
Suppose Y ∈ B. C0

s (D) is holomorphically convex by Proposition 2.5 and
Lemma 2.12. Thus we have F : C0

s (D) → C holomorphic with lim |F (Yn)| = ∞.
Suppose Y ∈ bd(MX). Then bd(MX) is not empty, so MX cannot be projec-

tive. Now MX is affine, thus Stein, so we have F : MX → C holomorphic with
lim |F (Yn)| = ∞.

Now MD is holomorphically convex.
If Y1 �= Y2 in C0

s (D) and x ∈ Y1 ∩ Y2 ∩ X ′ then we have g ∈ G0 with
g(x) ∈ Y1 \ Y2 , and we replace X ′ by g(X ′). So, as in the second part of
Proposition 2.5, MD is Stein.

3. Grassmann manifold example

In this Section we work out the case where X is the complex Grassmann
manifold Gr(p, q) of q–dimensional linear subspaces of C

p+q, and G0 is an in-
definite special unitary group SU(p, q). This illustrates the situation where X
is an hermitian symmetric flag manifold, compact dual to a bounded symmetric
domain G0/K0, treated in Sections 4 and 5 below. Of course one can skip this
Section and go directly to §4 and §5.

Notation. If {u1, . . . , u�} are linearly independent vectors in C
p+q then [u1 ∧

· · · ∧ u�] denotes their span. Fix a basis {e1, . . . , ep+q} of C
p+q in which the

hermitian form defining G0 = SU(p, q) is given by h(u, v) =
(∑

1�i�p uivi

)
−(∑

1�i�q up+ivp+i

)
. Here u =

∑
uiei and v =

∑
viei . If W is a subspace of

C
p+q and 0 � s � dimW then Gr(s, W ) denotes the Grassmann manifold of

s–dimensional subspaces of W . So Gr(s, W ) ∼= Gr(r, s) ∼= Gr(s, Cr+s) where
dimW = r + s.

The SU(p, q)–orbits on Gr(p, q) are given by the restriction of h to the ele-
ments of the orbit. So the orbits are the

Da,b,c = {x ∈ Gr(p, q) | x has sign and rank (+,−, 0) = (a, b, c)}
= SU(p, q)([e1 ∧ · · · ∧ ea ∧ ep+1 ∧ · · · ∧ ep+b ∧ f1 ∧ · · · ∧ fc])
where fj = ep+1−j + ep+q+1−j

(3.1)

Here of course a � p, b � q, a + b + c = q, and c � min(p, q). The boundary is
given by degeneration of h on the elements of the orbit. Thus an orbit

Da′,b′,c′ is in the closure of Da,b,c if and only if a′ � a and b′ � b.(3.2)
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In particular, the open orbits are the

Da = Da,q−a,0 = SU(p, q)([e1 ∧ · · · ∧ ea ∧ ep+1 ∧ · · · ∧ ep+q−a])(3.3)

and their boundaries are the union of the orbits given by

bd (Da) =
⋃

0�i�a,0�j�q−a,

0<i+j�min(p,q)

Da−i,q−a−j,i+j .(3.4)

Note that the bounded symmetric domain G0/K0 here is D0, and its boundary
orbits are the D0,q−j,j for 1 � q � min(p, q). The boundary orbit

D0,q−min(p,q),min(p,q)

is the Bergman–Shilov boundary of D0 .
Fix D = Da as in (3.3). It will be convenient to denote

C
p+q = S+ ⊕ S− ⊕ T+ ⊕ T−,(3.5)

where S+ = [e1 ∧ · · · ∧ ea] and T+ = [ea+1 ∧ · · · ∧ ep] are positive definite, and
S− = [ep+1∧· · ·∧ep+q−a] and T− = [ep+q−a+1∧· · ·∧ep+q] are negative definite.
Then Da = SU(p, q)(S+ ⊕ S−). The “base cycle” in Da is

Y0 = S(U(p) × U(q))([e1 ∧ · · · ∧ ea ∧ ep+1 ∧ · · · ∧ ep+q−a])

= Gr(a, [e1 ∧ · · · ∧ ep]) × Gr(q − a, [ep+1 ∧ · · · ∧ ep+q]).
(3.6)

In particular s = dimC Y0 = a(p+q−2a). If g ∈ SL(p+q; C) and Y = gY0 ⊂ Da ,
then

U =g(S+ ⊕ T+) � 0, V = g(S− ⊕ T−) � 0, C
p+q = U ⊕ V, and

Y =YU,V = {U ′ ⊕ V ′ | U ′ ⊂ U,dimU ′ = a, V ′ ⊂ V, dimV ′ = q − a}.(3.7)

Let G1
∼= GL(2a; C) denote the general linear group on S+ ⊕ T−, let G2

∼=
GL((p− a) + (q − a); C) denote the general linear group on T+ ⊕ S−, and write
S(G1 × G2) for the determinant 1 elements of the product as a subgroup of
SL(p + q; C). Our transverse manifold will be

X ′ = X ′
a = S(G1 × G2)(S+ ⊕ S−)

= G1(S+) × G2(S−) = Gr(a, S+ ⊕ T−) × Gr(q − a, T+ ⊕ S−).
(3.8)

Then X ′
a∩Da consists of all W+⊕W− where W+ is an (a–dimensional) maximal

positive definite subspace of S+⊕T− and W− is a ((q−a)–dimensional) maximal
negative definite subspace of T+ ⊕ S−. In particular

Lemma 3.9. X ′
a ∩ Da is a bounded symmetric domain, and thus is a Stein

manifold.

The next lemma illustrates Lemma 2.12 in our Grassmann manifold setting.

Lemma 3.10. The manifold X ′
a meets every cycle Y ∈ MD .
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Proof. Express Y = YU,V as in (3.7). If v ∈ C
p+q decompose v = vs,+ + vt,+ +

vs,− + vt,− with vs,± ∈ S± and vt,± ∈ T±. Now v �→ vs,+ + vt,+ has negative
definite kernel, hence is one to one on U , so U has a basis {ui = ei+ui,s,−+ui,t,− |
1 � i � p}. Similarly V has a basis {vj = ep+j + vj,s,+ + vj,t,+ | 1 � j � q}.

Some g1 ∈ G1 , with block form matrix ( I 0
∗ I ) relative to S+ ⊕T−, sends ui to

u′
i = ei + ui,s,− for 1 � i � a. Similarly some g2 ∈ G2 , with block form matrix

( I 0
∗ I ) relative to S−⊕T+, sends vj to v′j = ep+j +vj,s,+ for 1 � j � q−a. Now we

have g = (g1, g2) ∈ G1×G2 such that g−1[u1∧· · ·∧ua] has basis {u′
i = ei+ui,s,− |

1 � i � a} and g−1[v1∧· · ·∧vq−a} has basis {v′j = ep+j +vj,s,+ | 1 � j � q−a}.
If we add an appropriate linear combination of these v′j to u′

i we kill off their
ui,s,− summands, changing u′

i to u′′
i = ei + u′′

i,s,+ for 1 � i � a. However each
u′′

i,s,+ is in the span S+ of {e1, . . . , ea}. Now g−1[u1 ∧ · · · ∧ ua ∧ v1 ∧ · · · ∧ vq−a]
has basis {ei | 1 � i � a} ∪ {v′j | 1 � j � q − a}. If we add an appropriate linear
combination of these ei to v′j we kill off their v′j,s,+ summands, changing v′j to
ep+j . Now g−1[u1 ∧ · · ·∧ua ∧ v1 ∧ · · ·∧ vq−a]} has basis {ei | 1 � i � a}∪{ep+j |
1 � j � q − a}.

We have proved that g(S+ ⊕ S−) = [u1 ∧ · · · ∧ ua ∧ v1 ∧ · · · ∧ vq−a]. Thus
g(S+ ⊕ S−) ∈ Y = YU,V . But g(S+ ⊕ S−) ∈ X ′

a because g was constructed as
an element of G1 × G2. So X ′

a meets Y .

Lemma 3.11. X ′
a satisfies (2.11)(i), (2.11)(iii) and (2.11)(iv) for the open orbit

Da .

Proof. It follows from the definition (3.8) that the codimension of X ′ in Gr(p, q)
is pq − (a2 + (p − a)(q − a)) = a(p + q − 2a) = s.

Lemma 3.9 says that X ′
a ∩ Da is Stein.

The linear space S+ ⊗ T− on which G1 acts, has a subspace R1 of rank
and sign (a − i, 0, i) given by R1 = [e1 ∧ . . . ea−i ∧ f ′′

1 ∧ · · · ∧ f ′′
i ] where f ′′

k =
ea+1−k +ep+q+1−k . The linear space T+⊗S− on which G2 acts, has a subspace
R2 of rank and sign (0, q−a−j, j), given by R2 = [ep+1∧. . . ep+q−a−j∧f ′

1∧· · ·∧f ′
j ]

where f ′
k = ep+1−k + ep+q−a+1−k . Thus X ′

a contains the space R1 ⊕ R2, which
has rank and sign (a − i, q − a − j, i + j). In other words, X ′

a meets the orbit
Da−i,q−a−j,i+j . In view of (3.4) now X ′

a meets every boundary orbit of Da .
That completes the proof.

Proposition 2.13 combines with Lemmas 3.10 and 3.11 to give us

Proposition 3.12. Let D be an open orbit of SU(p, q) on the Grassmann man-
ifold Gr(p, q). Then the Barlet–Koziarz intersection method shows that MD is
Stein.

Proof. We have all of (2.11) except (2.11)(ii). But (2.11)(ii) was only used to
show that X ′

a meets every cycle Y ∈ MD , and we proved that directly as Lemma
3.10. Thus, essentially as in Proposition 2.13, we conclude that MD is Stein.
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4. Cayley transforms and boundary structure

In this Section we recall the explicit real group orbit structure of flag manifolds
that are the compact duals to bounded symmetric domains. That uses the
Cayley transform methods of [5], [6] and [7], as described in [8], and extends
(3.1), (3.2), (3.3) and (3.4) to the more general setting of hermitian symmetric
spaces.

Let B = G0/K0 be an irreducible hermitian symmetric space of noncompact
type, in other words an irreducible bounded symmetric domain. The real Lie
algebra decomposes as usual into g0 = k0 + m0 where m0 represents the real
tangent space, [k0,m0] = m0, [m0,m0] = k0 , and k0 acts irreducibly (but not
absolutely irreducibly) on m0 . The complexified Lie algebra decomposes as

g = m+ + k + m− where [k,m±] = m±, [m±,m±] = 0, and [m−, m+] = k.(4.1)

The holomorphic tangent space of B is represented by m+ , and m− = m+

represents the antiholomorphic tangent space. The algebra k acts irreducibly on
each of m± . From (4.1) we have

(4.2) q = k + m− : parabolic subalgebra of g

with nilradical m−, reductive part k.

We may assume that G0 is contained as a real form in the connected simply
connected complex simple Lie group G with Lie algebra g. Let Q ⊂ G denote
the parabolic subgroup with Lie algebra q as in (4.2). Denote

X = G/Q complex flag manifold and x0 = 1Q ∈ X base point.(4.3)

The Borel embedding of B is

B ∼= G0(x0), open G0–orbit on X.(4.4)

Finally, we note that one can identify X with the compact dual symmetric space
Gu/K0 of B = G0/K0 . For that, Gu is the compact real form of G with Lie
algebra gu = k0 +

√−1 m0 , and Gu acts transitively on X with isotropy K0 at
x0 .

Choose a Cartan subalgebra t0 ⊂ k0 ; it also is a Cartan subalgebra of g0 .
Fix any positive root system ∆+(k, t). Extend it to a positive root system ∆+ =
∆+(g, t) by requiring that m+ be a sum of positive root spaces, thus that m− be
a sum of negative root spaces. Roots α, β are strongly orthogonal, written α⊥β,
if neither of α ± β is a root. Consider the “cascade construction”

Ψ ={ψ1, . . . , ψ�}, maximal set constructed by:

ψ1 is the maximal root in ∆+ (always noncompact),

ψi+1 is a maximal root in ∆(m+, t) with ψi+1 ⊥ {ψ1, . . . , ψi}.
(4.5)

Any two different roots of Ψ are strongly orthogonal, so Ψ is a maximal set of
strongly orthogonal noncompact positive roots. Any maximal set of strongly
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orthogonal noncompact positive roots is. K0–conjugate to the one constructed
in (4.5).

If α ∈ ∆ then hα ∈ √−1 t0 is defined by 2α(h)
〈α,α〉 = 〈hα, h〉 for all h ∈ t. One

can choose root vectors eα ∈ gα , normalized by [eα, e−α] = hα , such that the

xα,0 = eα + e−α and yα,0 =
√−1 (eα − e−α) for α ∈ ∆+(m, t)(4.6)

form a real basis of m0 . Here [xα,0, yα,0] = −2
√−1 hα . The almost complex

structure J is given by a central element z ∈ k0 ; in the basis (4.6) it is

Jxα,0 = [z, xα,0] = yα,0 and Jyα,0 = [z, yα,0] = −xα,0.(4.7)

Similarly (or consequently) mu =
√−1 m0 has a real basis consisting of the

xα =
√−1 xα,0 =

√−1 (eα + e−α) and yα =
√−1 yα,0 = −(eα − e−α)(4.8)

for α ∈ ∆+(m, t). From maximal strong orthogonality of Ψ we have maximal
commutative subspaces

a0 =
∑

ψ∈Ψ
xψ,0R ⊂ m0 and au =

∑
ψ∈Ψ

xψR ⊂ mu .(4.9)

Given ψ ∈ Ψ we have the 3–dimensional simple algebra

g[ψ] = gψ + g−ψ + hψC ∼= sl(2; C) in g,(4.10)

its noncompact real form

g0[ψ] = g[ψ] ∩ g0 = Span {xψ,0, yψ,0,
√−1 hψ} ∼= sl(2; R),(4.11)

and its compact real form

gu[ψ] = g[ψ] ∩ gu = Span {xψ, yψ,
√−1 hψ} ∼= su(2),(4.12)

They define 3–dimensional simple subgroups

G[ψ] ⊂ G for g[ψ], G0[ψ] ⊂ G0 for g0[ψ], Gu[ψ] ⊂ Gu for gu[ψ].(4.13)

Strong orthogonality of Ψ says that [g[ψ], g[ψ′]] = 0 for ψ, ψ′ ∈ Ψ with ψ �= ψ′.
If Γ ⊂ Ψ it follows that the

g[Γ] =
∑
ψ∈Γ

g[ψ] ⊂ g, g0[Γ] =
∑
ψ∈Γ

g0[ψ] ⊂ g0, gu[Γ] =
∑
ψ∈Γ

gu[ψ] ⊂ gu(4.14)

are well defined subalgebras that are Lie algebra direct sums. The corresponding
groups

(4.15) G[Γ] =
∏
ψ∈Γ

G[ψ] ⊂ G, G0[Γ] =
∏
ψ∈Γ

G0[ψ] ⊂ G0,

Gu[Γ] =
∏
ψ∈Γ

Gu[ψ] ⊂ Gu
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are locally direct products. Their orbits at the base point are

polydisk : B[Γ] = G0[Γ](x0), product of |Γ| unit disks, and

polysphere : X[Γ] = G[Γ](x0) = Gu[Γ](x0), product of |Γ|
Riemann spheres.

(4.16)

The (partial) Cayley transforms follow the classical model for the Riemann
spheres of (4.16). If Γ ⊂ Ψ we define the partial Cayley transform

cΓ =
∏
ψ∈Γ

cψ ∈ Gu[Ψ] ⊂ Gu where cψ = exp(π
4 yψ) ∈ Gu[ψ].(4.17)

Now define points and orbits in X by

if Γ,Σ ⊂ Ψ are disjoint, then xΓ,Σ = cΓc2
Σx0 and DΓ,Σ = G0(xΓ,Σ).(4.18)

We reformulate the Orbit Structure Theorem ([7, Theorem 10.6], or see [8, §7]):

Theorem 4.19. Assume that B = G0/K0 is irreducible, so G is simple. The
G0–orbits on X are just the DΓ,Σ where Γ and Σ are disjoint subsets of Ψ. An
orbit DΓ′,Σ′ is in the closure of DΓ,Σ (where Γ ∩ Σ = ∅ = Γ′ ∩ Σ′) if and only if
the cardinalities |Σ′| � |Σ| and |Σ ∪ Γ| � |Σ′ ∪ Γ′|. In particular

(i) DΓ′,Σ′ = DΓ,Σ if and only if both |Γ| = |Γ′| and |Σ| = |Σ′|;
(ii) the number of G0–orbits on X is (1 + 1)(1 + 2) where 1 = |Ψ|;
(iii) DΓ,Σ is open in X if and only if Γ is empty, so the open G0–orbits are the

1 + 1 orbits {D0, . . . , D�} where D|Σ| = D∅,Σ for 0 � |Σ| � 1;
(iv) bd (Di) is the union of the DΓ′,Σ′ �= Di with |Σ′| � i � |Σ′ ∪ Γ′|; and
(v) DΨ,∅ is the unique closed G0–orbit on X; it is in the closure of every orbit

and is the Bergman–Shilov boundary of B = D0 .

Theorem 4.19 gives us the boundary information that we will need in order to
extend Proposition 3.12 from Grassmann manifolds with G0 = SU(p, q), to all
hermitian symmetric spaces. The boundary orbit information (3.1), (3.2), (3.3)
and (3.4), for the case where G0 = SU(p, q), can of course, be extracted from
Theorem 4.19.

5. Construction and analysis of the transverse variety

Retain the setup and notation of Section 4. In this section we will construct
subvarieties X ′

i ⊂ X for 0 � i � 1 such that X ′
i satisfies (2.11) for the open orbit

Di . For this we have to define certain subspaces of g0 using the partial Cayley
transforms (4.17).
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Fix a subset Σ ⊂ Ψ. It is a fact [6] that Ad(c4
Σ) has square 1 as an automor-

phism of g, and that it preserves both m and g0 . Define

gΣ = {ξ ∈ g | Ad (c4
Σ)ξ = ξ} and gΣ

0 = gΣ ∩ g0 ,

kΣ = {ξ ∈ k | Ad (c4
Σ)ξ = ξ} and kΣ0 = kΣ ∩ g0 ,

mΣ = {ξ ∈ m | Ad (c4
Σ)ξ = ξ} and mΣ

0 = mΣ ∩ g0 ,

rΣ = {ξ ∈ m | Ad (c4
Σ)ξ = −ξ} and rΣ0 = rΣ ∩ g0 .

(5.1)

So gΣ = kΣ + mΣ and gΣ
0 = kΣ0 + mΣ

0 .
The case of [7, Lemma 11.6] (or see [8, Lemma 9.10]), where Γ is empty, says

Lemma 5.2. Define f : K0 × mΣ
0 × rΣ0 → G0 by f(k, ξ, η) = k exp(ξ) exp(η).

Then f is a real analytic diffeomorphism of K0 × mΣ
0 × rΣ0 onto G0 .

Our use of Lemma 5.2 will require a refinement of the notation (5.1). If Γ ⊂ Φ
we note that the centralizer of g[Ψ \ Γ] has form (subspace of t) +

∑
α⊥Ψ\Γ gα.

It is a reductive algebra with semisimple part

gΓ = kΓ + mΓ : derived algebra of t +
∑

α⊥Ψ\Γ
gα.(5.3)

which in turn has real forms

gΓ,0 = g0 ∩ gΓ = kΓ,0 + mΓ,0 and gΓ,u = gu ∩ gΓ = kΓ,u + mΓ,u .(5.4)

Of course we have the corresponding analytic groups

GΓ ⊂ G, GΓ,0 ⊂ G0 and GΓ,u ⊂ Gu(5.5)

and their orbits

XΓ = GΓ(x0) = GΓ,u(x0) ⊂ X and BΓ = GΓ,0(x0) = B ∩ XΓ .(5.6)

Note that gΓ has Γ as its maximal set of strongly orthogonal noncompact roots.
In effect, these groups and spaces repeat the situation of G0 and X with Ψ
reduced to Γ. Passage from G0 to GΓ,0 was exemplified in §3 by passage from
SU(p, q) to SU(p − a, q − a) with a = |Ψ \ Γ|.

We combine the idea of (5.1) with that of (5.3) and (5.4). If Σ ⊂ Φ ⊂ Ψ,
define

gΣ
Φ = {ξ ∈ gΦ | Ad (c4

Σ)ξ = ξ} = gΦ ∩ gΣ and gΣ
Φ,0 = gΣ

Φ ∩ g0 ,

kΣΦ = {ξ ∈ kΦ | Ad (c4
Σ)ξ = ξ} = kΦ ∩ kΣ and kΣΦ,0 = kΣΦ ∩ k0 ,

mΣ
Φ = {ξ ∈ mΦ | Ad (c4

Σ)ξ = ξ} = mΦ ∩ mΣ and mΣ
Φ,0 = mΣ

Φ ∩ m0 .

(5.7)

Then of course gΣ
Φ = kΣΦ + mΣ

Φ . We have real forms

gΣ
Φ,0 = g0 ∩ gΣ

Φ = kΣΦ,0 + mΣ
Φ,0 and gΣ

Φ,u = gu ∩ gΣ
Φ = kΣΦ,u + mΣ

Φ,u(5.8)

and analytic groups

GΣ
Φ ⊂ G, GΣ

Φ,0 ⊂ G0 and GΣ
Φ,u ⊂ Gu(5.9)
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and their orbits

XΣ
Φ = GΣ

Φ(x0) = GΣ
Φ,u(x0) ⊂ X and BΣ

Φ = GΣ
Φ,0(x0) = B ∩ XΣ

Φ .(5.10)

Here notice G∅
Φ = GΦ, G∅

Φ,0 = GΦ,0 , G∅
Φ,u = GΦ,u, X∅

Φ = XΦ , and B∅
Φ =

BΦ .

Lemma 5.11. If Σ ⊂ Ψ then

GΣ(x0) = XΣ ∼= (
XΨ\Σ × XΣ

Σ

)
=

(
GΨ\Σ(x0) × GΣ

Σ(x0)
)

and

GΣ
0 (x0) = BΣ ∼= (

BΨ\Σ × BΣ
Σ

)
=

(
GΨ\Σ,0(x0) × GΣ

Σ,0(x0)
)
.

Proof. This is essentially [7, Theorem 11.8 (1d)] with Γ = ∅. It is based on
the argument in the proof (see [7, p. 1215]) that gΣ = gΨ\Σ ⊕ gΣ

Σ ⊕ l∅,Σ where
l∅,Σ ⊂ k.

Lemma 5.12. If Σ ⊂ Ψ then

GΣ(x∅,Σ) = c2
ΣGΣ(x0) = c2

ΣXΣ and GΣ
0 (x∅,Σ) = c2

ΣGΣ
0 (x0) = c2

ΣBΣ .

Proof. This also is implicit in [7, Theorem 11.8 (1d)] with Γ = ∅. By con-
struction, Ad(c2

Σ) normalizes gΣ. Thus GΣ(x∅,Σ) = GΣ(c2
Σx0) = c2

ΣGΣ(x0) =
c2
ΣXΣ.

Ad(c2
Σ)gΣ has square 1 and commutes with both the Cartan involution θ and

the complex conjugation ξ �→ ξ of g over g0 . So Ad(c2
Σ) preserves both gΣ

0 and
its decomposition gΣ

0 = kΣ0 + mΣ
0 . Now Ad(c2

Σ) normalizes GΣ
0 and its maximal

compact subgroup KΣ
0 . Thus GΣ

0 (x∅,Σ) = GΣ
0 (c2

Σx0) = c2
ΣGΣ

0 (x0) = c2
ΣBΣ.

Fix the open orbit D = D|Σ| and let Y0 denote its base cycle, the maximal
compact subvariety K(x∅,Σ) = K0(x∅,Σ). Now use Lemma 5.2 to define a map

π : D → Y0 by π(k exp(ξ) exp(η))(x∅,Σ) = k(x∅,Σ).(5.13)

The maps βk of the Orbit Fibration Theorem ([7, Theorem 11.8], or see [8,
§9]) are well defined Cω fibrations1. When Γ = ∅ the Orbit Fibration Theorem
implies

Lemma 5.14. The map π of (5.13) is a well defined K0–equivariant real ana-
lytic fibration of D over Y0 . The fiber over x∅,Σ is c2

ΣBΣ = c2
Σ(BΨ\Σ × BΣ

Σ).

Proof. The fact that π is a real analytic fibration, is contained in [7] and [8]
for Γ = ∅. It is also shown there that the fiber π−1(x∅,Σ) = GΣ

0 (x∅,Σ). The
precise description of the fiber, asserted here, now follows from Lemmas 5.11
and 5.12.

Lemma 5.15. If Σ ⊂ Ψ then XΣ = c2
ΣXΣ = c2

Σ(XΨ\Σ × XΣ
Σ ), and it satisfies

(2.11) for the open G0–orbit D = D|Σ| on X .

1There may be a problem with holomorphicity of the βk but that is not of concern to us
here.
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Proof. Use Lemma 5.14 to see that dim c2
ΣXΣ = dim c2

ΣBΣ = dimπ−1(x∅,Σ) =
dimD − dimY0 , so the codimension of dim c2

ΣXΣ in X is dim Y0 , as required
for (2.11)(i).

The base point x∅,Σ of D = D|Σ| is contained in both XΣ and in Y0 , and
Lemma 5.14 ensures that the intersection at that point is transversal. Thus we
have (2.11)(ii).

Now we must show that c2
ΣXΣ ∩ D = c2

ΣBΣ, which is a bounded symmetric
domain, thus Stein. This is a consequence of [11, Theorem 3.8] as follows. Our X
is both the hermitian symmetric space X of [11] and the complex flag manifold
Z of [11]. Our x0 is the base point for both. Now the G0–orbits on X are the
DΓ,Σ as described in Theorem 4.19. Our Ad(c4

Σ) is the involutive automorphism
σ of [11]. The Cartan involution θ satisfies θ(yψ) = −yψ, so θ(cψ) = c−1

ψ and
this θ(cΣ) = c−1

Σ , so θAd(c4
Σ) = Ad(c−4

Σ )θ = Ad(c4
Σ)θ; so Ad(c4

Σ) commutes with
θ as required. Now our GΣ and its real form GΣ

0 , fixed point groups in G and G0

of Ad(c4
Σ), are the fixed point groups M and M0 of σ in [11]. Our XΣ = GΣ(x0)

is the space F = M(z) in [11]. Note that g[Ψ] ⊂ gΣ, so our Ψ is the Ψm of
[11]. Thus [11, Theorem 3.8], especially the last sentence of the theorem, which
is hidden at the top of page 400 there, gives the following. As Φ and Γ range
over disjoint pairs of subsets of Ψ,

GΣ
0 (xΓ,Φ) �→ G0(xΓ,Φ) = DΓ,Φ is a one–one map

from the set of GΣ
0 –orbits on XΣ onto the set of G0–orbits on X.

(5.16)

Conclusion: GΣ
0 (x∅,Σ) = c2

ΣBΣ is the only GΣ
0 –orbit in c2

ΣXΣ∩D. So c2
ΣXΣ∩D

= c2
ΣBΣ is a bounded symmetric domain, thus Stein, as required for (2.11)(iii).

According to Theorem 4.19 the G0–orbits in the boundary of D = DΣ are
those DΓ′,Σ′ �= D with Σ′ ⊂ Σ ⊂ (Σ′ ∪ Γ′). But as noted above, g[Ψ] ⊂ gΣ, so
every xΓ′,Σ′ ∈ XΣ = c2

ΣXΣ. Thus XΣ meets every G0–orbit on the boundary of
D. Now we have (2.11)(iv). This completes the verification of (2.11), and thus
the proof of Lemma 5.15.

Proposition 2.13 combines with Lemma 5.15 to give us

Proposition 5.17. Let D be an open G0–orbit the hermitian symmetric flag
manifold X. Then the Barlet–Koziarz intersection method shows that MD is
Stein.
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