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Isoclinic Spheres and Flat Homogeneous 
Pseudo-Riemannian Manifolds 

Joseph A. Wolf 

ABSTRACT. The structure theory ([3], [8]) for complete flat homogeneous 
pseudo-riemannian manifolds reduces the classification to the solution of some 
systems of quadratic equations. There is no general theory for that, but new 
solutions are found here by essentially the same construction as that used for 
isoclinic spheres in Grassmann manifolds [4]. It is interesting to speculate 
on a possible direct geometric relation between those constant positive curva-
ture riemannian spheres and the "corresponding" flat homogeneous pseudo-
riemannian manifolds. 

O.lntroduction. 

The structure of flat homogeneous riemannian manifolds is rather trivial [2]: 
they are the quotients M = En /f of an euclidean n-space by a discrete group of 
pure translations. Thus M is isometric to the product of an euclidean space with 
a flat torus. In the pseudo-riemannian case, however, there is the possibility of 
nontrivial holonomy [3]. A rather basic structure theory is worked out in [3] for 
complete flat homogeneous pseudo-riemannian manifolds, and a more refined struc-
ture theory is worked out in [8]. In Section 1 we recall that structure theory and 
indicate how solutions to the systems of quadratic equations for the holonomy lead 
to examples - and eventual classification. In Section 2 we describe an easy method 
that produces some solutions to the systems of quadratic equations. We use it in 
Section 3 to produce a family of solutions for each of the four real division algebras. 
We use it again in Section 4 to produce families for solutions which depend on 
"translational representations" of real Clifford algebras. Those translational repre-
sentations were developed in [4] for the study of "isoclinic spheres" in Grassmann 
manifolds. We recall the relevant part of that theory ([9], [4]) in Section 5 and note 
the connection between isoclinic spheres and complete flat homogeneous pseudo-
riemannian manifolds. Finally, in Section 6, we give some examples of parallel 
geometric structures whose construction takes advantage of our methods. 
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!.Structure Theory. 

We recall the structure theory of [3] and [8]. Let JR.P,q denote the real vec-
tor space JR.P+q with the nondegenerate bilinear form b(x, y) = L:; 1 ~i~p x;y; -
L:; 1:o;;:o;q Xp+iYp+i, let JEP.q denote the corresponding pseudQ---€uclidean space, and 
let O(p, q) denote the orthogonal group of JR.p,q. 

Let M be a complete connected flat homogeneous pseudo-riemannian manifold. 
Then (the appropriate) JEP,q is the universal pseudo-riemannian covering manifold 
of M' so M = JEP.q ;r where r is the group of deck transformations of the universal 
cover 1r : JEP,q ---+ M. The full isometry group I(JEP·q) is the semidirect product 
JR.P+q · O(p,q), which acts by (t,A): x f--+ t +Ax. Homogeneity of M is equivalent 
to the condition that the centralizer of r in I(JEP.q) is transitive on JEP,q, just as 
in the riemannian case [2]. Also, in the presence of homogeneity one need only 
check proper discontinuity of a discrete subgroup r c I(!Ep,q) at a single point, 
typically the origin, where one need only verify that the translation components of 
the elements of f form a discrete subset of JR.P,q. 

Fix a properly discontinuous discrete subgroup r C I(JEP,q) as above, such that 
M = !Ep,q /f is homogeneous. In [3] it is shown that JR.p,q = U EB W EB U* where 
U is a totally isotropic subspace of some dimension s, where W ~ JR.P-s,q-s with 
U .l = U EB W, and with U* totally isotropic and paired to U. This is done as follows. 

:',:.~A~;),~::::::~::: :::~r(, t f~P)~: ~ ,:,:::P::.: :::~:: 
0 0 I 

of JR.P,q. Here "skew basis" means a basis { u1, ... , U 8 ; v1, ... , Vp+q-2s; w1, ... , Ws} 

where b(u;,uj) = b(u;,vj) = b(vj,wk) = b(wj,wk) = 0, b(u;,wj) = 15;,j, and 
b(v;, Vj) = 15i,j if 1 ~ i ~ p- s, b(v;, vj) = -15i,j if p- s + 1 ~ i ~ p + q- 2s. Note 
that s is even, s ~ min(p, q), each t E U.l, and f is free abelian on some number 
m::::; p + q- s of generators 'Yi = (t;, A;). The t; are linearly independent and the 
o:; are antisymmetric. 

In [8] this was refined as follows. In general let p, q, s and m be integers ~ 0 
with s even, s ~ min(p, q) and m ~ p + q- s. Let t = { t 1 , .... tm} C JR.P+q be a 
linearly independent set of column vectors with last s entries 0. Let t~ denote the 
s x 1 column vector consisting of the first s entries oft; . Let a = { o:1 , ... , O:m} be a 
set of antisymmetric real s x s matrices such that (i) some real linear combination 
is nonsingular and (ii) t; is not in the range of o:;. Then the 

(1.1) basic datum: 15 = 15(p, q, s, m, t, a) 

defines a group of rigid motions of JEP,q as follows. Let U C JR.P.q be an s-dimensional 
totally isotropic subspace, JR.P,q = U EB W EB U* the corresponding decomposition 
as above, with each t; E U .l = U EB W. In an associated skew basis, A; E O(p, q) 
corresponds too:;. Now we have the 

(1.2) associated group: f5 = ("(1, ... , 'Ym) where 'Yi = (t;, A;) as above. 

PROPOSITION 1.3 .. Let 15 = 15(p, q, s, m, t, a) be a basic datum. Then the asso-
ciated group r 8 acts freely and properly discontinuously on JEP.q' and M8 = JEP.q ;r 8 
is a complete connected fiat pseudo-riemannian manifold. 

THEOREM 1.4 .. Fix a basic datum 15 = 15(p, q, s, m, t, a), a decomposition JR.P.q = 
U EB W EB U*, and the associated group r 8 , as above. If v E JR.P,q express v = 
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FLAT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS 305 

v' + v" + v"' with v' E U, v" E W and v"' E U*. Let T = Span { t;}. Then t; f-t a; 
extends uniquely to a linear map t f-t Gt from T to Span{ a;}. Define Sv: T ~ U 
by Sv(t) = t' + GtV111 • Then M6 = !Ep,q /f6 is homogeneous if and only if, for every 
v E :!Rp,q, there is a linear map Sv : UJ._ ~ U such that (i) Svlr = Sv and (ii) 
s~ = Svlu preserves each of the antisymmetric bilinear forms a; on u. 

There is also a result in [8] on just when two quotients M6 and M6' are equiv-
alent, when we have 8 = 8(p,q,s,m,t,a) and 8' = 8(p,q,s,m,t',a'). However we 
will not need that result here. 

The condition of Theorem 1.4 is the system 
(1.5) S~ ·a;· tS~ =a; for V E JRP,Q and 1 ~ i ~ m 
of quadratic equations. Here, by a change of Z-basis in the integral span of the 
{ t;} we may suppose that every nonzero a; is either zero or nonsingular. Thus 
the homogeneity condition becomes the requirement that certain linear transfor-
mations belong to certain intersections of real symplectic groups. In general little 
is known about the intersection of real symplectic groups, but obviously it contains 
the identity element. Our examples will be based on constructions that lead to 
S~ =I, where (1.5) is automatic. 

2.A Sufficient Condition. 

One does not yet have an effective general method for finding solutions to 
the quadratic system (1.5), but in this Section we exhibit a special method that 
produces some solutions, and in the following sections we see several interesting 
classes of complete flat homogeneous pseudo-riemannian manifolds based on that 
method. It seems unlikely that this special method leads to all relevant solutions 
to (1.5). 

THEOREM 2.1.. Let A be a real vector subspace of the space of real antisym-
metric s x s matrices such that 
(2.2) if a E A then either a = 0 or a is nonsingular. 

Let 8 = 8(p, q, s, m, t, a), be a basic datum such that a is a sequence of elements of 
A. Then the complete fiat pseudo-riemannian manifold Ep,q /f 6 is homogeneous. 

~;:r~ ::::. s: 7 .~~·:;):· ;~ .n::· ~h·(·n u ~~)'" :~a::.~-··,~:; :0: 
0 0 1 

then a; is nonsingular, so Ui E U is in the image of Ai - I, and 'Yi has a fixed 
point. Contradiction. Thus ai = 0 for 1 ~ i ~ r. So Sv(ui) = ui + aiv"' = u; for 
1 ~ i ~ r. 

We can now extend Sv : T n u ~ u to Sv : UJ._ ~ u with Bvlu = s~ =I and 
Bvlw arbitrary. Thus each s~. Gei . ts~ = Gei. Homogeneity follows. D 

CONSTRUCTION 2.3 .. One applies Theorem 2.1 as follows. Fix a real vector 
subspace A of the space of real antisymmetric s x s matrices such that: if a E A 
then either a= 0 or a is nonsingular, as in 2.2. Choose an integer m ~ 0. Choose 
elements a 1 , .. • , Om E A, not necessarily distinct and not necessarily nonzero. 
Let a= { a1, ... , am} and Aa = Span{ a1, ... , am}· Choose integers p, q ~ 0 such 
that s ~ min{p,q}, m ~ p + q- s, and dimAa ~ p + q- 2s. Choose linearly 
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306 JOSEPH A. WOLF 

independent column vectors h, ... , tm E JRP,q such that, for 1 ~ i ~ m, (i) the 
last s entries of ti are zero and ( ii) if ai =f. 0 then also the first s entries of ti are 
zero. Set t = {tt, ... ,tm}· Then 8 = 8(p,q,s,m,t,a), is a basic datum to which 
Theorem 2.1 applies, so Ep,q jr" is homogeneous. 

Theorem 2.1 is complemented by the following result, which leads to construc-
tions of relevant spaces A. 

PROPOSITION 2.4.. Let A = Span { e1 , ... , et} where each ei is an antisymmet-
ric nonsingular s x s real matrix. Suppose that i =f. j implies eiej + ejei = 0. Then 
e is nonsingular whenever 0 =f. e E A. 

Proof. For (I:;i aiei)2 = Li arer + Li<j (aiajeiej + ajaiejei) = Li arer' which is 
negative definite unless every ai = 0. D 

3.Examples Based On Division Algebras. 

Each of the real division algebras IF gives us an example of the space A of 
Proposition 2.4 through multiplication by its pure imaginary elements. The case 
IF= IR is not interesting, so we omit it. 

EXAMPLE 3.1.. IF= C = Span{1, i}, complex number field viewed as a division 
algebra over R Denote r(t) = ( .!!t 6). Consider a vector space U = JR2 E9 · · · EBIR2, 
s/2 summands. Let e be the linear transformation r(tt) E9 · · · E9 r(t8 ; 2) of U where 
each ti =f. 0. Here e is multiplication by tmi on mth summand JR2 9:! C, and A = 
Span{e}. 

EXAMPLE 3.2.. IF = lHI = Span{1, i,j, k}, real quaternion division algebra. 
Consider a vector space U = JR4 E9 · · · E9 JR4, s j 4 summands. Define 

e1: multiplication by t1,mi on the mth summand JR4 9:! lHI, 
e2: multiplication by t 2 ,~ on the mth summand JR4 9:! lHI, 
e3: multiplication by t3,mk on the mth summand JR4 9:! lHI, 

where each ta,m E IR with ta,m =f. 0. Here A= Span{e1,e2,e3}. 

EXAMPLE 3.3 .. IF=({))= Span{l, f1 , ... , f7 }, real Cayley division algebra. Con-
sider a vector space U = JR8 E9 · · · EBIR8 , s/8 summands. Define 

ea: multiplication by ta,mfa on the mth summand JR8 9:! ({)), for 1 ~a~ 7, 
where each ta,m E IR with ta,m =f. 0. Here A = Span { e1, ... , e7}. 

REMARK 3.4 .. Note that in each of the examples in Section 3, the eigenspaces 
of the various ei are well aligned with each other. In general, of course, things will 
be more complicated. 

4.Examples Based On Clifford Algebras. 

An appropriate class [4] of representations of real Clifford algebras provides 
some more interesting examples of the phenomenon of Theorem 2.1 and Proposi-
tion 2.4. We recall the relevant definitions and properties of those algebras and 
representations. 

DEFINITION 4.1.. The Clifford algebra on !Rr is the associative algebra Cr 
with multiplicative unit 1, generators {!I, ... , fr }, and defining identities fdj + 
!Jfi = -2c5i,j· So fdj + !Jfi = 0 fori =f. j and Jf = -1. 
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FLAT HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS 307 

DEFINITION 4.2 .. Let¢: Cr ---+ JRsxs be an associative algebra homomorphism 
(to the algebra of real s x s matrices) with ¢(1) =I. Fix an orthogonal direct sum 
decomposition )RS = v EB vj_ where dim v = s/2. If 

(i) each ¢(fi) is in the orthogonal group O(s) and 
(ii) each ¢(fi)(V) = Vj_ 

then¢ is a translational representation of Cr on lR8 with basepoint V. 

The connection with Theorem 2.1 and Proposition 2.4 is 

LEMMA 4.3 .• Let ¢ be a translational representation of the real Clifford algebra 
Cr . Then each ¢(fi) is antisymmetric and nonsingular. Thus, in view of Proposi-
tion 2.4, every nonzero element of A = ¢(Span {It, ... , fr}) is antisymmetric and 
nonsingular. 

Proof. Let V be the basepoint of¢. Note that ¢(fi)V = Vj_ and ¢(fi) E O(n) 
imply ¢(/i)Vj_ = V. 

We have s = 2t, even, where t = dim V. Now there is an orthonormal basis 
v = {VI, ... , V2t} of lR s such that {VI, ... , vt} is a basis of V and { Vt+I, ... , v2t} 
is a basis of V j_. In this basis, ¢(fi) has matrix of the form ( ~ 0 ) in the basis 
v. Compute -I = ¢(fi)2 = ( xJ' yox ). So xy = -I. But x is orthogonal so 
y = -x-I = - tx. Now ¢(fi) has matrix of the form ( -~x ~) in the basis v. So 
¢(fi) has matrix that is antisymmetric in the basis v, thus antisymmetric in every 
orthonormal basis of lR8 • Also, ¢(fi) is nonsingular because it has nonsingular 
square -I. D 

Here are the basic facts on existence and uniqueness of translational represen-
tations. 

PROPOSITION 4.4.. [4] Any two translational representations of Cr on lR8 are 
orthogonally equivalent. 

PROPOSITION 4.5 .. [4] Lets= 24a+b+lu, u odd, 0 ~ b ~ 3. Then the following 
are equivalent. 

(1.) r ~ 8s + 2b. 
(2.) Cr-I has an associative algebra representation on JR8 12 . 

(3.) Cr has a translational representation on lR8 • 

EXAMPLE 4.6 .. Let s = 24a+b+lu, u odd, 0 :::; b :::; 3, and r :::; 8s + 2b. Let 
¢ be a translational representation of Cr on lR8 • Define ei = ¢(fi)· Here A = 
Span{ ei, ... , er }. One can also produce somewhat more general examples of this 
type by scaling on various summands, as in the division algebra examples of Section 
3. 

5.Isoclinic Spheres. 

Let IF be a real division algebra. Let IF8 be the space of s x 1 (column) vectors 
over IF, viewed as a right vector space so that linear transformations act on the 
left by matrix multiplication. Put the standard positive definite inner product 
(x, y) = I: Xifh on IF8 and let U(s; IF) be its unitary group. Two linear subspaces 
U, V c IF8 of the same dimension k are called isoclinic if the orthogonal projection 
of IF8 onto U multiplies the length of vectors in V by some constant I cos(O)I. Then 
of course k ~ s/2. Sets of mutually isoclinic k-planes in IF8 were studied, as subsets 
of the Grassmann manifold G k,s (IF) of all k-planes in JFS, in [4], [5] and [1]. An 

Licensed to Univ of Calif, Berkeley.  Prepared on Sat Aug 31 17:12:46 EDT 2013 for download from IP 169.229.32.136.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



308 JOSEPH A. WOLF 

isoclinic closure operation was defined, and the isoclinically closed sets S of mutually 
isoclinic k-planes in lF8 were shown to be closed totally geodesic submanifolds of 
Gk,s(lF). Further, it was shown that S is a riemannian symmetric space of rank 
1, hence a sphere or a real, complex, quaternionic projective space or the Cayley 
projective plane. In the first of these cases we refer to S as an isoclinic sphere. 

The starting point in the classification of isoclinic spheres is the following con-
struction of isoclinic spheres in G8 ; 2,8 (1F) where 8 is even and lF is associative. Let 
Cr (JF) denote the Clifford algebra on lFr, defined as in Definition 4.1, except that 
more generally it is an algebra over lF. Define translational representation of Cr(lF) 
on lF8 as in Definition 4.2 with U(8; JF) in place of 0(8). Now let¢ be a translational 
representation of Cr (JF) on lF8 , with base point V C JFS. Then 

(5.1) S = ¢(Span{1, !1, h, ... , fr} )(V) 

is an isoclinic sphere in G(~,8;lF). Compare this to 

(5.2) A= ¢(Span{!l, h, ... , fr} ). 

Now rephrase Example 4.6 as 

EXAMPLE 5.3 .. Let S be an isoclinic sphere in G8 ; 2 ,8 (!R) and realizeS in the 
form ¢(Span{1, !1, h, ... , fr} )(V) where ¢ is a translational representation of Cr 
on IR8 with basepoint V. Then A = Span{ e;, ... , er} satisfies the conditions of 
Theorem 2.1. 

Now there is a formal correspondence from the isoclinic spheres S C G8 ; 2,8 (!R) 
of (5.1) to the large family of complete flat homogeneous pseudo-riemannian man-
ifolds, determined by the space A of (5.2), of nonsingular antisymmetric real 8 x 8 

matrices. It would be very interesting to find the geometric basis for this algebraic 
correspondence. 

6.Parallel Structures. 

Finally, we look at parallel tangent structures on Mli = !Ep,q jr li . In the rie-
mannian setting, and in the context of homogeneous spaces of real semisimple 
Lie groups, the pseudo-kaehler and pseudo-hyperkahler structures have been (and 
continue to be) studied extensively. The Heisenberg structures and their general-
izations have been used extensively to study hypoellipticity of various systems of 
PDE. Here we give examples which show that those structures also occur in the 
setting of complete flat homogeneous pseudo-riemannian manifolds. 

Parallel tangent structures on Mli are sets of parallel fields of linear transforma-
tions on the tangent spaces of M!i , classically called parallel vector 1-forms. They 
are the structures obtained from sets S of linear transformations of JRP,q (viewed as 
its own tangent space at 0), parallel-translated to every point of JRP,q and pushed 
down from !Ep,q to M!i , for which the push-down is well defined. That push-down 
is well defined just when each element of S is centralized by the holonomy group of 
M8 . The holonomy group in question is 

(6.1) H!i ={A E )Rnxn I there is an element of the form (t, A) in rii} . 
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:; : ~g;(J ~ in~ bl~c)k :: ~~:: ::: ;~ew basffi of R'·'. 

0 0 I 

Then Ag = gA for 

(6.2) g has form (~ ! ~) with aa = af for every A E H& . 
0 0 f 

Now we look at a few examples of interesting structure. 

EXAMPLE 6.3.. Pseudo-Kahler Structure. Fix a translational representa-
tion ¢ of Cr+2 on R8 • Let 8 = 8(p, q, s, m, t, a) be any basic datum constructed 
as in Construction 2.3 with p + q even, from A = Span{ ¢(!1), ... , <PUr)}. Let 
j = <PUr+d<PUr+2)· Note that ¢(!£) commutes with j for 1 ~ £ ~ r. Let J be the 
block-diagonal matrix diag{j, j', j} where j' is any orthogonal (p+q- 2s) x (p+q- 2s) 
matrix with square -I. Then J E O(p, q), J2 = -I and, by (6.2), J commutes 
with every element of H&. Thus J defines an (obviously integrable) parallel almost-
complex structure on M& , and J together with the pseudo-riemannian metric forms 
a pseudo-kahler structure on M& . 

ExAMPLE 6.4 .. Pseudo-Hyperkahler Structure. Fix a translational repre-
sentation ¢of Cr+3 on R 8 • Let 8 = 8(p, q, s, m, t, a) be any basic datum constructed 
as in Construction 2.3 with p + q divisible by 4, from A= Span{ ¢(!1), ... , <PUr)}. 
Define 

i = <PUr+d<PUr+2), j = <PUr+2)<PUr+3), and k = <PUr+3)<PUr+d· 
Compute that each has square -I, that ij = k, and that <PUe) commutes with each 
of i, j, and k, for 1 ~ £ ~ r. Now define block-diagonal matrices 

I= diag{i,i',i}, J = diag{j,j',j}, and K = diag{k,k',k}, 
where i', j' and k' generate a quaternion algebra on RP+q-2s. (Here p + q - 2s 
is divisible by 4 since s is even and we assume that 4 divides p + q.) Now as 
above, each of I, J and K belongs to O(p, q) and defines an integrable parallel 
almost-complex structure on M& . Those structures anticommute and thus form a 
pseudo-hyperkahler structure. 

EXAMPLE 6.5 .• Heisenberg Structure. The criterion (6.2) is trivially sat-
isfied when a, d, and f are identity matrices. Thus each element of the "slightly 
generalized Heisenberg group" 

(6.6) 
Hs,p+q-2s(R) : all real ( I~ x~ ~z) where 

xis s x (p + q- 2s), y is (p + q- 2s) x s, z iss x s 
satisfies (6.2), and we have an elementwise-parallel Heisenberg group structure 
on M&. Note that its Lie group product rule can be written (x, y, z)(x', y', z') = 
( x + x', y + y', z + z' + xy'). 

The corresponding "slightly generalized Heisenberg algebra" 

IJs,p+q-2s(R) : all real (~ ~ ~) where 
(6.7) 0 0 0 

~iss x (p + q- 2s), ry is (p + q- 2s) x s, (iss x s 
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of course also satisfies (6.2), and gives an elementwise-parallel Heisenberg algebra 
structure on M8. Its Lie algebra product rule can be written [(~, ry, (), (e, ry', (')] = 
(0, 0, ~77 1 - 77~'). 

Examples 6.3 and 6.4 can be combined with the Heisenberg-type constructions 
(6.6) and (6.7), giving complex and quaternionic parallel Heisenberg structures on 
M8 . Compare with the constructions of semidirect product groups in [6] and [7]. 
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