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Abstract. We introduce a duality on complex flag manifolds that extends the usual point-hyperplane
duality of complex projective spaces. This has consequences for the structure of the linear cycle
spaces of flag domains, especially when those flag domains are not measurable.
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1. Introduction

If G is a complex semi-simple group,Q a parabolic subgroup andZ = G/Q the
associated flag manifold, then any real formG0 has only finitely many orbits inZ
(see [3] for this and other general results). In particularG0 has open orbits onZ.
Let D be one of those open orbits.

A maximal compact subgroupK0 of G0 has an essentially unique complex orbit
in D. Given the standard root theoretic set-up at the neutral pointz ∈ Z, there is a
canonical way of choosingK0 so thatK0(z) := Y0 is a complex submanifold ofZ.
The moduli space of linear cycles is then defined to be

MD := {g(Y0) : g ∈ G andg(Y0) ⊂ D}.
In the measurable case, i.e., that whereD possesses aG0-invariant pseudo-

Kählerian metric, a great deal is known about the complex geometry ofMD and
associatedG0-representations on spaces of holomorphic functions onMD (see,
e.g., [6]).

The goal of the present note is to set up a duality which should facilitate a
study of nonmeasurable flag domainsD = G0(z). This can be used at least in a
conceptual way to compare the cycle spaceMD to that of its measurable model̃D.
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Operating from this point of view we show in the case of the unique open orbit
D of G0 = Sln+1(R) acting in the usual way onZ = Pn(C) that the connected
component of the moduli spaceMD which containsY0 can be identified with that
of D̃.

2. Background and Notation

Fix a complex semisimple Lie groupG, a parabolic subgroupQ = Q8 where
8 is a subset of the simple root system relative to a root order and a choice of
Cartan subalgebrah ⊂ g. Expressq = q8 = qr + q−n where the nilradicalq−n =∑

8n g−α. Then theoppositeparabolic isq− = qr+q+n where the nilradicalq+n =∑
8n g+α. Thedual parabolicis the complex conjugate (ofg overg0) q∗ = q− of

the opposite.
Similarly the parabolic subgroupsQ− ⊂ G opposite toQ andQ∗ ⊂ G dual

to Q are the parabolic subgroups with respective Lie algebrasq− andq∗. Our flag
duality will be between

Z = G/Q and Z∗ = G/Q∗, (2.1)

whereQ∗ is the parabolic subgroup ofG dual toQ.
Fix a real formG0 ⊂ G and suppose thatQ = Qz whereD = G0(z) is an open

G0-orbit in Z. In other words,q + q = g. Sending each root to its negative, and
then applying complex conjugation, it follows thatq∗ + q∗ = g. Thusq∗ = q∗z∗ , the
isotropy subalgebra ofg at a pointz∗ ∈ Z∗ such thatD∗ = G0(z

∗) is an open orbit
in Z∗. D∗ is thedual of D.

Fix a Cartan involutionθ of G0 that preserves the Cartan subalgebrah = h used
here. Then the corresponding maximal compact subgroupK0 = Gθ

0 has complex
orbit Y = K0(z) in D, and similarly has complex orbitY ∗ = K0(z

∗) in D∗.
One also knows [5, lemma 2.2] thatp := q ∩ q∗ is a parabolic subalgebra ofg.

The reader should be careful here: ourq is ther of [5], and ourp is theq of [5].
Recall thatq andq∗ areG-conjugate if and only if the openG0-orbits onZ are
measurable.

P denotes the parabolic subgroup ofG corresponding top. Now we have three
complex flag manifolds,Z = G/Q, Z∗ = G/Q∗ and X = G/P . Note P =
Q ∩Q∗. We thus have aG-equivariant holomorphic double fibration

X = G/P

µ∗

''OOOOOOOOOOO

µ
wwppppppppppp

Z = G/Q Z∗ = G/Q∗

(2.2)

The G-equivariance of course impliesG0-equivariance. LetQ = Qz for the
open orbitD = G0(z) ⊂ Z. ThenQ∗ = Q∗z∗ for the open orbitD∗ = G0(z

∗) ⊂
Z∗, so we expect a correspondence of openG0-orbits onZ andZ∗. Before making
this precise let us fix the notation clearly.
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(2.3a) qz = q = qr + q−n is the ‘starting’ parabolic subalgebra ofg, Qz = Q =
QrQ−n is the corresponding parabolic subgroup ofG, andZ = G/Q is
the associated flag manifold.

(2.3b) D = G0(z) is an openG0-orbit onZ.
(2.3c) q∗z∗ = q∗ = qr + q+n is the ‘starting’ parabolic subalgebra ofg, Q∗z∗ =

Q∗ = QrQ+n is the corresponding parabolic subgroup ofG, andZ∗ =
G/Q∗ is the associated flag manifold.

(2.3d) D∗ = G0(z
∗) is the openG0-orbit onZ∗ given by the pointz∗ ∈ Z∗ whose

complex isotropy algebra isq∗.
(2.3e) p = q ∩ q∗ is the parabolic subalgebra,P = Q ∩ Q∗ parabolic sub-

group, X = G/P flag manifold, andµ and µ∗ are the projections of
the equivariant holomorphic double fibration above.E = µ−1(D) and
E∗ = (µ∗)−1(D∗).

(2.3f) x ∈ X is the base point, defined byp = px , andD̃ is the open (see Lemma
2.4 below) orbitG0(x).

LEMMA 2.4. D̃ = G0(x) is open inX, D = µ(D̃), andD∗ = µ∗(D̃).
Proof.The first statement is [5, lemma 2.3]. The second isµ(D̃) = µ(G0(x)) =

G0(µ(x)) = G0(z) = D. The third isµ∗(D̃) = µ∗(G0(x)) = G0(µ
∗(x)) =

G0(z
∗) = D∗. 2

LEMMA 2.5. Y := K0(z) ∈ MD, Y ∗ := K0(z
∗) ∈ MD∗ , andỸ := K0(x) ∈ MD̃.

Furthermoreµ(Ỹ ) = Y andµ∗(Ỹ ) = Y ∗.
Proof.The alignments that the variousK0(·) be complex submanifolds are con-

ditions on the Cartan involutionθ definingK0 = Gθ
0: that it preserveh0. That is

the same forq, for q∗, and forp. The further statements follow as in Lemma 2.3
with K0 in place ofG0. 2
LEMMA 2.6. µ : Ỹ → Y andµ∗ : Ỹ → Y ∗ are biholomorphic diffeomorphisms.

Proof.This is [5, lemma 2.5] forY , and the situation is symmetric forY ∗. 2

3. The Duality Automorphism

As beforegu is the compact real formk0+
√−1 s0 of g whereg0 = k0+ s0 under

its Cartan involutionθ , and of course we extendθ to g and restrict it togu. The
fundamental Cartan subalgebrah0 = t0+a0 of g0, the sum of its intersections with
k0 ands0, defines the Cartan subalgebrahu = t0+

√−1 a0 of gu.

PROPOSITION 3.1.There is an involutive automorphismν of gu that preserves
hu, sends every root to its negative, and commutes withθ .
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Proof.We may assume that the symmetric spaceGu/K0 is irreducible, for oth-
erwise everything decomposes as a product with that irreducibility. Now we run
through some cases.

Case 1: θ is inner onGu. By general symmetric space theory,θ = Ad(t) for
somet ∈ K0, soK0 contains a maximal torus ofGu. Thent is contained in every
maximal torus ofK0, in particular in the maximal torusT0 = exp(t0) of Gu. Note
here thatau = 0. Extend the mapξ 7→ −ξ from t0 to an automorphismν of order
2 of gu. Thenν preserveshu = t0 and sends every root to its negative, but also
νθ = ν Ad(t) = Ad(t−1)ν = θ−1ν = θν.

For the rest of the proofθ is an outer automorphism ongu. As in the inner
case we extend the map−1 from hu to an involutive automorphismν of gu, and
ν preserveshu and sends every root to its negative. Now we must show thatν

commutes withθ .
Case 2: θ is outer onGu, andGu is not simple. Thengu = mu ⊕ mu for some

compact simple Lie algebramu, hu = ru ⊕ ru for a Cartan subalgebraru of mu,
andθ is the interchange(ξ1, ξ2) 7→ (ξ2, ξ1). Also k0 = gθ

u is the diagonal, andν
has form(ξ1, ξ2) 7→ (φ(ξ1), φ(ξ2)) for an involutive automorphismφ of mu that
is −1 on ru and thus sends every root of(mu, ru) to its negative. Soνθ(ξ1, ξ2) =
ν(ξ2, ξ1) = (φ(ξ2), φ(ξ1)) = θ(φ(ξ1), φ(ξ2)) = θν(ξ1, ξ2).

Case 3: g0 = sl(n;R). Theng = sl(n;C) andgu is the Lie algebrasu(n), of
the special unitary groupU(n). We use the Cartan subalgebra

hu = {diag{ia1, . . . , ian} | aj real,
∑

aj = 0}.

Let A = A−1 denote the antidiagonal, 1’s from the upper right-hand corner to the

lower left and 0’s elsewhere, for exampleA = ( 0 1

1 0

)
for n = 2. Defineν(ξ) =

AξA−1 = AξA and note thatν sends a rootεi − εj to εj − εi. Now compute
θν(ξ) = θ(AξA) = − t(AξA) = tA(− tξ ) tA = A(− tξ )A = νθ(ξ), that is,
θν = νθ .

Case 4: θ is outer onGu, Gu is simple, and−1 is in the Weyl group ofK0.
Here we have a Weyl group elementw0 ∈ W(K0, T0) such thatw0(ξ) = −ξ for
all ξ ∈ t0. Representw0 = Ad(s)|t0 with, of course,s ∈ K0. Thenθ(s) = s, we
defineν = Ad(s)θ , and we haveν(ξ) = −ξ for all ξ ∈ t0. But we need

LEMMA 3.2. ν(ξ) = −ξ for all ξ ∈ hu.
Proof. Let w1 be the element of the Cartan group ofgu – the Weyl group ex-

tended by adjoining outer automorphisms – that sends everyξ ∈ h to its negative.
Thenw1 = ω|h whereω is an outer automorphism ofgu that normalizeshu and
whose square is inner. Now bothθ andω Ad(s) are outer automorphisms ofgu

whose squares are inner. A result of de Siebenthal [1] says that their fixed point sets
have the same rank. Forθ that is of course rankK0 = dimT0. But the fixed point
set ofω Ad(s) containsT0, so it cannot be larger, and this forces Ad(s)(ξ) = ξ for
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everyξ ∈ a. Now ν(ξ) = −ξ for all ξ ∈ a, and this completes the argument that
ν(ξ) = −ξ for all ξ ∈ hu. 2

Continuation of proof of Proposition 3.1.We haveθ(s) = s, so θ commutes
with w0 and thus commutes withν. It remains only to check thatν2 = 1, in other
words that Ad(s)2 = 1, i.e. thats2 is central inGu.

Note thatw2
0 = 1 in the Weyl groupW = W(K0, T0), sos2 ∈ T0 andw(s2) =

s2 for all w ∈ W . We may assumeG centerless; that only impinges on the center
of Gu. This assumption made,K0 is centerless becauseG0/K0 is irreducible andθ
is outer.

Expresss2 = exp(σ ) for someσ ∈ t0. Hereσ is unique up to a root lattice
translation. So we minimize||σ || by choosing it in a fundamental closed cellC. In
this regard, recall that every positive root system1+ = 1+(k0, t0) defines such a
cell from its simple root system{ψj} and its maximal rootµ by

C = {ξ ∈ t0 | µ(−iξ ) 5 1 and eachψj(−iξ ) = 0}.
The important property is that each element ofK0 is conjugate to some exp(ζ ), ζ ∈
C, andζ is unique modulo the root lattice and the action ofW = W(K0, T0).
Thusw(σ) = σ for all w ∈ W . But the action ofW on t0 is a sum of nontrivial
irreducible representations becausek0 is semisimple. It follows thatσ = 0. Now
s2 = 1, sos2 is central inGu as required.

Completion of proof of Proposition 3.1.By classification, ifθ is outer andgu is
simple theng0 is one of

(a) sl(n;R), Lie algebra of the real special linear group, which has maximal
compact subgroupK0

∼= SO(n),
(b) sl(m;H), Lie algebra of the quaternion special linear group, which has max-

imal compact subgroupK0
∼= Sp(m),

(c) so(2u + 1, 2v + 1), Lie algebra of the indefinite orthogonal group that has
maximal compact subgroupK0

∼= SO(2u+ 1)× SO(1+ 2v),
(d) e6,c4, Lie algebra of the real groupG0 of type E6 with maximal compact

subgroupK0 of typeC4,
(e) e6,f4, Lie algebra of the real groupG0 of type E6 with maximal compact

subgroupK0 of typeF4.

Here (a) is Case 3 above, and (b), (c), (d) and (e) are covered by Case 4 above. That
completes the proof of Proposition 3.1. 2
Now we use the mapν to start the duality theory.

PROPOSITION 3.3.Let ν be as in Proposition3.1. Thenα: G → G by α(g) =
ν(g), complex conjugation ofG overG0, has the properties
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(1) α2 is the identity,
(2) α(Q) = Q∗ andα(Q∗) = Q,
(3) the induced mapφ: Z → Z∗ given bygQ 7→ α(g)Q∗ and the other in-

duced mapφ−1: Z∗ → Z given bygQ∗ 7→ α(g)Q, are biholomorphic
diffeomorphisms,

(4) α(G0) = G0, andφ maps an arbitraryG0-orbit G0(z) ⊂ Z onto aG0-orbit
G0(φ(z)) ⊂ Z∗, and

(5) φ: D → D∗ defines a biholomorphic diffeomorphismMφ : MD → MD∗ of
linear cycle spaces.

Proof. The automorphismν : Gu → Gu of Proposition 3.1 extends toG
and commutes withθ , and thus preservesG0. Now evidentlyα(G0) = G0. In
fact, if g ∈ G0 thenα(g) = ν(g) so α2(g) = ν2(g) = g. As α2 is a holomorphic
automorphism ofG, α2 = 1.

Computedα(q) = dν(q) = q− = q∗, soα(Q) = Q∗, and alsoQ = α2(Q) =
α(Q∗). It follows immediately thatα induces the mapsφ: Z→ Z∗ andφ−1: Z∗ →
Z, as asserted, at the real analytic level. Sinceα(G0) = G0 it follows as well that
φ andφ−1 mapG0-orbits toG0-orbits.

The holomorphic tangent space toZ at the base pointz0, the one that corres-
ponds toq, is given byqn = ∑β∈8n gβ . The holomorphic tangent space toZ∗ at

the base pointz∗0, the one that corresponds toq∗, is given by(q∗)n = q−n = dα(qn).
Thusφ: Z→ Z∗ is holomorphic, and the same argument shows thatφ−1: Z∗ → Z

is holomorphic.
Let Y = K0(z0) be the base point inMD. Similarly Y ∗ = K0(z

∗
0) is the base

point in MD∗ . Noteα(K0) = K0 so φ(Y ) = Y ∗. Thus, ifg ∈ G thenφ(gY ) =
α(g)φ(Y ) = α(g)Y ∗. But φ(D) = D∗ sogY ⊂ D exactly whenα(g)Y ∗ ⊂ D∗. In
other words,gY ∈ MD if and only if φ(gY ) ∈ MD∗ . Thusφ defines a real analytic
diffeomorphismMφ :MD → MD∗ of linear cycle spaces. It is holomorphic because
φ is holomorphic. 2

4. The Case of Complex Projective Space

Here we discuss the cycle space of the unique open orbitD of G0 = Sln+1(R) in
the complex projective spacePn(C). Our goal is to proveMD = MD̃. We begin
with some notation.

The action ofG := Sln+1(C) on Z = Pn(C) is defined by its standard rep-
resentation onV := Cn+1. The dual representation onV ∗ defines its action on
Z∗ = P(V ∗). A point in Z (resp.Z∗) is a complex lineL in V (resp. a hyperplane
H ).

Let 〈e0, . . . , en〉 be the standard basis forV and chooseL0 = C.(e0+ ie1) as a
base point inZ = P(V ). It follows that the orbitD = G0(L0) is open. In fact, its
complement is the set of real pointsZ(R) = P(V (R)) which is also aG0-orbit. If
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the maximal compact subgroupK0 of G0 is chosen to beK0 := SOn+1(R), then
Y0 := K0(L0) is the unique complexK0-orbit in D. It is the quadric hypersurface
Y0 = {[z0 : . . . : zn] :∑ z2

j = 0}. The complex groupKC has two orbits inZ, the
above quadric and its complement.

Let H0 be the projective tangent hyperplane toY0 at the pointL0 regarded
as a hyperplane inV . Then H0 = {(z0, . . . , zn) : z0 + iz1 = 0} = ((e0 +
ie1, e2, . . . , en)). It follows thatK0(H0) = KC0 (H0) =: Y ∗0 ⊂ P(V ∗) is the dual
quadric of tangent hyperplanes toY0. It is likewise the unique complexK0-orbit in
the unique openG0-orbit D∗ in Z∗.

DefineQ (resp.Q∗) to be theG0-isotropy atL0 (resp.H0) and letP = Q∩Q∗.
ThenX = G/P is the flag manifold of linesL contained in hyperplanesH in V .
We let (L ⊂ H) denote a point inX. The projectionπ : X → Z (resp.π∗ : X →
Z∗) is defined by(L ⊂ H) 7→ L (resp.(L ⊂ H) 7→ H ). Note that theπ and
π∗-fibers are(n− 1)-dimensional projective spaces.

4.1. THE G0-ORBIT STRUCTURE

For the sake of completeness we outline the proof of the following elementary

PROPOSITION 4.1.The groupG0 has5 orbits inX. In ascending order of codi-
mension they are

(1) The unique open orbit

D̃ = {(L ⊂ H) : L 6= L̄, H 6= H̄ , L̄ 6⊂ H }.

(2) The top-dimensional boundary orbit

6 := {(L ⊂ H) : L 6= L̄, H 6= H̄ , L̄ ⊂ H }.

(3) Two intermediate orbits which are exchanged by flag duality:

M∗ := {(L ⊂ H) : L = L̄,H 6= H̄ }

and

M := {(L ⊂ H) : L 6= L̄,H = H̄ }.

(4) The minimal orbit

X(R) := {(L ⊂ H) : L = L̄,H = H̄ }.
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Remark.We do not consider the case ofZ := P1(C). ForZ = P2(C) the orbits
6, M∗ andM coincide.

Proof. For (1) note that given(L1 ⊂ H1) and(L2 ⊂ H2) in D̃, sinceG0 acts
transitively on the complement of the real points inZ, we may assume thatL1 =
L2 =: L.

Let E := L⊕ L̄ andEj := Hj ∩ H̄j , j = 1, 2. It follows thatV = E ⊕ E1 =
E ⊕E2 and, since all of these spaces are defined overR, there existsT ∈ G0 such
thatT |E = idE andT (E1) = E2. SinceHj = L⊕ Ej , j = 1, 2, it follows thatT
maps(L1 ⊂ H1) to (L2 ⊂ H2). ConsequentlỹD is aG0-orbit.

For (2) letE = L ⊕ L̄ as above and let̃E be a complementary subspace inV

which is defined overR. To prove that6 is a G0-orbit it suffices to remark that
there exitsT ∈ G0 which fixesE pointwise, stabilizes̃E and interchanges the
hyperplanesH1 ∩ Ẽ andH2 ∩ Ẽ which are not defined overR in Ẽ.

If L1 = L2 = L andL = L̄, then we letE = L and argue as in (2) to show that
M∗ is aG0-orbit. The dual argument handlesM.

The transitivity of theG0-action onX(R) can be proved in a similar way. 2
Remark.It is a simple matter to compute the dimensions of all orbits. For this we

first note that, since theπ -fibers are(n−1)-dimensional, it follows that dimCX =
dimC D̃ = 2n− 1.

Now π |6 andπ∗|6 map6 onto the openG0-orbits inZ andZ∗ respectively.
For example, theπ |6-fiber overL can be identified with the complement of the
real points in the(n − 2)-dimensional projective space of hyperplanesH which
contain bothL andL̄. Thus6 is 2-codimensional (overR) in X.

Analogously, sinceπ |M∗ mapsM∗ surjectively onto the real points inZ and
its fiber over a pointL is the set of hyperplanesH containingL with H 6= H̄ , it
follows that dimRM = dimRM∗ = n+ 2(n− 1) = 3n− 2.

Finally, dimRX(R) = dimCX = 2n − 1. 2

4.2. TRANSVERSALITY OF CYCLE INTERSECTION WITH INTERMEDIATE

ORBITS

Let Ỹ0 be the base cycle iñD, g ∈ G an arbitrary element of the complex group
andỸ := g(Ỹ0). Now Ỹ0 maps toY0 andY ∗0 respectively and, sinceY ∗0 is the dual
quadric of tangent hyperplanes toY0, it follows that a point(L ⊂ H) ∈ Ỹ0 consists
of L ∈ Y0 and the hyperplaneH which corresponds to the projective tangent plane
of Y0 at L. SinceG acts by linear transformations, this holds for(L ⊂ H) ∈ Ỹ as
well, i.e.,L ∈ Y andH corresponds to the tangent hyperplane ofY at L. We use
this fact to prove the following transversality statement.

PROPOSITION 4.2.At any pointp of Ỹ ∩M (resp.Ỹ ∩M∗) the tangent spaces
TpỸ andTpM (resp.TpỸ andTpM∗) are transversal inTpX.
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Proof.We give the proof forp ∈ Ỹ ∩M.
Let Y := π(Ỹ ) be the associated cycle inZ and defineB := π−1(Y ). SinceM

is aG0-orbit which is mapped surjectively to the openG0-orbit in Z andB is π -
saturated, it follows thatB intersectsM transversally atp. Thus dimR Tp(B∩M) =
3n− 4.

If p is the flag(L ⊂ H), then, recalling thatP(H) is the projective tangent space
of Y at π(p) = P(L), it follows that the pre-image(π∗|B)−1(H) can be identified
with P(H) ∩ Y . This in an(n − 2)-dimensional quadric cone with vertex atp. Its
tangent space atp generates the full tangent spaceTpF ∗ of the fiber(π∗)−1(H).
SinceF ∗ ⊂ M, it follows thatTpF ∗ ⊂ Tp(B ∩M).

Now suppose that̃Y is not transversal toM atp. In this case

dim(TpỸ ∩ TpM) > dimR Ỹ + (3n − 4)− dimR B = n− 2.

But, since the cyclẽY intersects theπ∗-fibers transversally, it follows that

TpF ∗ ⊕ (TpỸ ∩ TpM) ⊂ Tp(B ∩M)

which, contrary to the transversality of the intersectionB ∩M, implies that

dimR Tp(B ∩M) > 2(n− 1)+ (n− 2) = 3n− 4.

2

4.3. CYCLE INTERSECTION WITH THE TOP-DIMENSIONAL BOUNDARY ORBIT

Our goal here is to prove the following

PROPOSITION 4.3.Let Ỹt , 0≤ t ≤ 1, be a continuous curve of cycles inX with
Ỹ0 the base cycle iñD and letYt = π(Ỹt) be the associated curve of cycles inZ. If
Ỹ1 ∩6 6= ∅, then there existst ∈ (0, 1) with Yt ∩ Z(R) 6= ∅.
For the proof it is convenient to introduce some notation. Here we deal with pro-
jective linesE which are defined overR, i.e., one-dimensional linear subspaces of
Z = Pn(C) which are invariant with respect to the anti-holomorphic involutionτ

which is induced from complex conjugation onCn+1.
If E is such a line, thenE(R) := Fix(τ |E) divides E into two components

which are interchanged byτ , i.e.,E \ E(R) = E1∪̇E2 andτ(E1) = E2.
The basic cycleY0 is also defined overR, but Fix(τ |Y0) = ∅. ThusY0 ∩ E

consists of two distinct pointszj ∈ Ej , j = 1, 2.
Proof of Proposition 4.3.An intersection pointx1 ∈ Ỹ1 ∩ 6 is a flag(L ⊂ H)

with L 6= L̄ andL̄ ⊂ H . Recall thatπ(x1) =: z1 is a point in the quadricY1 with
projective tangent planeP(H). Thus the projective lineE := P(L⊕ L̄), which is
defined overR, is tangent toY1 at z1.

SinceE.Y1 = 2, it follows thatE ∩ Y1 = {z1}. Without loss of generality we
may assume thatz1 ∈ E1 and thereforeE2 ∩ Y1 = ∅.
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On the other hand, fort sufficiently small,Yt ∩Ej 6= ∅, j = 1, 2. By continuity
it therefore follows thatYt ∩ E(R) 6= ∅ for some intermediatet ∈ (0, 1). 2

4.4. THE EQUALITY OF CYCLES SPACES

As was indicated above, we may regardMD and MD∗ as being identified with
subspaces of the full space of linear cycles inX, e.g.,MD

∼= {Ỹ = g(Ỹ0) : π(Ỹ ) ⊂
D}.

Sinceπ(D̃) = D, it is clear that in this senseMD̃ ⊂ MD. Of course both moduli
spaces contain the orbitG0(Y0) of the base cycle which is connected. LetM◦D, M◦

D̃
andM◦D∗ denote the connected components of the respective cycle spaces which
contain this orbit.

THEOREM 4.4. M◦D = M ◦̃
D
= M◦D∗ .

Proof. It is sufficient to show that∂M ◦̃
D
∩ M◦D = ∅. For this note first of all

that the boundary∂MD̃ in the full space of linear cycles inX is defined by the
conditionỸ ∩∂D̃ 6= ∅. Since∂D̃ is semi-algebraic, it follows that∂MD̃ is likewise
semi-algebraic. Therefore, at least generically, forỸ1 ∈ ∂M ◦̃

D
it is possible to find

a curveỸt , 0≤ t ≤ 1, beginning at the neutral cyclẽY0 with Ỹy ⊂ D̃ for 0≤ t < 1
andỸ1 ∩ ∂D̃ 6= ∅.

Now Ỹ1∩M∗ = Ỹ1∩M = ∅, because it is only possible for̃Y1 to intersect these
orbits transversally (Proposition 4.2). Furthermore,Ỹ1∩6 = ∅, because otherwise
Yt ∩ Z(R) 6= ∅ for somet ∈ (0, 1)

Thus the only possible nonempty intersection isỸ1 ∩ X(R) which implies that
Y1 andY ∗1 are boundary points ofMD andMD∗ as well. Since this holds at generic
boundary points, the result follows. 2
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