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Abstract. We introduce a duality on complex flag manifolds that extends the usual point-hyperplane
duality of complex projective spaces. This has consequences for the structure of the linear cycle
spaces of flag domains, especially when those flag domains are not measurable.
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1. Introduction

If G is a complex semi-simple groug a parabolic subgroup ard = G/Q the
associated flag manifold, then any real foffg has only finitely many orbits itx
(see [3] for this and other general results). In particafgrhas open orbits o .
Let D be one of those open orbits.

A maximal compact subgrouky of G has an essentially unique complex orbit
in D. Given the standard root theoretic set-up at the neutral painZ, there is a
canonical way of choosing g so thatKy(z) := Yy is a complex submanifold df.
The moduli space of linear cycles is then defined to be

Mp = {g(Yp) : g € G andg(Yp) C D}.

In the measurable case, i.e., that whé&repossesses &g-invariant pseudo-
Kéahlerian metric, a great deal is known about the complex geomettf pind
associatedsg-representations on spaces of holomorphic functionsvign (see,
e.g., [6]).

The goal of the present note is to set up a duality which should facilitate a
study of nonmeasurable flag domaibs= Gq(z). This can be used at least in a
conceptual way to compare the cycle spafg to that of its measurable modBl.
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Operating from this point of view we show in the case of the unique open orbit
D of Gog = SI,,1(R) acting in the usual way oZ = P,(C) that the connected
component of the moduli spadé, which containst, can be identified with that
of D.

2. Background and Notation

Fix a complex semisimple Lie grou@, a parabolic subgrou®@ = Qs where
® is a subset of the simple root system relative to a root order and a choice of
Cartan subalgebra C g. Expressy = q¢ = q" + q~" where the nilradicay™ =
Y on 9—- Then theoppositeparabolic isg~ = q" + q*" where the nilradica " =
> o 8+e- Thedual parabolicis the complex conjugate (@f over go) q* = q- of
the opposite.
Similarly the parabolic subgroup@~ C G opposite toQ and 0* C G dual
to Q are the parabolic subgroups with respective Lie algeprasndq*. Our flag
duality will be between

Z=G/Q and Z*=G/0Q*, (2.1)

whereQ* is the parabolic subgroup @f dual to Q.

Fix areal formGy C G and suppose th@ = Q, whereD = G(z) is an open
Go-orbit in Z. In other wordsg + q = g. Sending each root to its negative, and
then applying complex conjugation, it follows thgit+ g* = g. Thusq* = g%, the
isotropy subalgebra gf at a pointz* € Z* such thatD* = Gy(z*) is an open orbit
in Z*. D* is thedual of D.

Fix a Cartan involutior of G, that preserves the Cartan subalgelpea h used
here. Then the corresponding maximal compact subgklg= G has complex
orbitY = Ko(z) in D, and similarly has complex orbit* = Ky(z*) in D*.

One also knows [5, lemma 2.2] that= q N gq* is a parabolic subalgebra gf
The reader should be careful here: qus thet of [5], and ourp is theq of [5].
Recall thatq andg* are G-conjugate if and only if the ope6y-orbits onZ are
measurable.

P denotes the parabolic subgroup®@fcorresponding tg. Now we have three
complex flag manifoldsZ = G/Q, Z* = G/Q* andX = G/P. Note P =
0 N Q*. We thus have &-equivariant holomorphic double fibration

X=G/P (2.2)

Z=G/Q Z*=G/Q*

The G-equivariance of course implieSg-equivariance. LeD = Q. for the
open orbitD = Go(z) C Z. ThenQ* = Q. for the open orbitD* = Go(z*) C
Z*, s0 we expect a correspondence of opgrorbits onZ andZ*. Before making
this precise let us fix the notation clearly.
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(2.38)q, = q = q" + q~" is the ‘starting’ parabolic subalgebra@fQ, = QO =
Q" Q7" is the corresponding parabolic subgroupfandZ = G/Q is
the associated flag manifold.

(2.3b) D = Go(z) is an openGo-orbit on Z.

(2.3c) gl = q* = q" + q* is the ‘starting’ parabolic subalgebra gf Q7. =
0* = QrQ*" is the corresponding parabolic subgroupfand Zz* =
G/Q* is the associated flag manifold.

(2.3d) D* = Go(z*) is the opernG-orbit on Z* given by the point* € Z* whose
complex isotropy algebra ig".

(2.3e)p = q N q* is the parabolic subalgebr&® = Q N Q* parabolic sub-
group, X = G/P flag manifold, andu and u* are the projections of
the equivariant holomorphic double fibration abo¥e.= p~1(D) and
E* = (u*)"H(D"). _

(2.3f) x € X is the base point, defined Ipy= p,, andD is the open (see Lemma
2.4 below) orbitGo(x).

LEMMA 2.4. D = Go(x) is openinX, D = (D), andD* = u*(D).

Proof. The first statement is [5, lemma 2.3]. The second(iB) = n(Go(x))
Go(u(x)) = Go(z) = D. The third isu*(D) = p*(Go(x)) = Go(u*(x))
Go(z*) = D*. O

LEMMA 2.5. Y := Ko(z) € Mp, Y* := Ko(z*) € Mp-, andY := Ko(x) € M.
Furthermorew(Y) = Y and u*(Y) = Y*.

Proof. The alignments that the variou&(-) be complex submanifolds are con-
ditions on the Cartan involutios defining Ko = G§: that it preserveo. That is
the same for, for g*, and forp. The further statements follow as in Lemma 2.3
with K in place ofG. O

LEMMA2.6. w:Y — Yandu*:Y — Y*are biholomorphic diffeomorphisms.
Proof. This is [5, lemma 2.5] fo, and the situation is symmetric for. O

3. The Duality Automorphism

As beforeg, is the compact real forrty + /—1 s of g wheregg = £ + so under
its Cartan involutiord, and of course we exter#ito g and restrict it tog,. The
fundamental Cartan subalgebya= to + ag of go, the sum of its intersections with
to andsg, defines the Cartan subalgeliya= to + +/—1 ag of g,,.

PROPOSITION 3.1.There is an involutive automorphismof g, that preserves
h., sends every root to its negative, and commutes @vith
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Proof. We may assume that the symmetric sp&Gé¢ Ky is irreducible, for oth-
erwise everything decomposes as a product with that irreducibility. Now we run
through some cases.

Case 196 is inner onG,. By general symmetric space theofy= Ad(z) for
somer € Ko, S0 Kp contains a maximal torus @f,. Thenr is contained in every
maximal torus ofKy, in particular in the maximal torug = exp(to) of G,. Note
here thaty, = 0. Extend the map — —& from tq to an automorphism of order
2 of g,. Thenv preserved), = tg and sends every root to its negative, but also
v = vAd(r) = Ad(t Yy =671y = 6v.

For the rest of the proof is an outer automorphism a®,. As in the inner
case we extend the mapl from b, to an involutive automorphism of g,, and
v preservedy, and sends every root to its negative. Now we must show ithat
commutes witp.

Case 26 is outer onG,, andG,, is not simple. Thery, = m, & m, for some
compact simple Lie algebma,, b, = ¢, ® ¢, for a Cartan subalgebng of m,,
andé is the interchangets, &) +— (&2, &1). Also &y = g’ is the diagonal, and
has form(&y, &) — (¢ (£1), ¢(&2)) for an involutive automorphism of m, that
is —1 ont, and thus sends every root @fi,, t,) to its negative. Se6 (&1, &) =
V(€2, §1) = (9(862), #(81)) = O(¢(51), 9 (82)) = Ov(81, 62).

Case 3go = sl(n; R). Theng = sl(n; C) andg, is the Lie algebrau(n), of
the special unitary group/ (n). We use the Cartan subalgebra

b, = (diagias, ....ia,} | a; real, Y "a; = 0}.

Let A = A~ denote the antidiagonal, 1's from the upper right-hand corner to the
lower left and O’s elsewhere, for example= (2 (l)) for n = 2. Definev(¢) =

A§A™1 = A£A and note thav sends a root; — ¢; to €; — ¢;. Now compute
Ov(E) = 0(AEA) = —(A§A) = "A(=%)'A = A(=6)A = vo(§), that is,
Ov = vo.

Case 40 is outer onG,, G, is simple, and-1 is in the Weyl group oK.
Here we have a Weyl group elemany € W(Kg, Tp) such thatwq(§) = —& for
all & € to. Representvg = Ad(s)|¢, with, of courses € Ko. Thené(s) = s, we
definev = Ad(s)0, and we have(¢§) = —£ for all £ € t5. But we need

LEMMA 3.2. v(¢) = —¢ forall £ € b,.

Proof. Let w; be the element of the Cartan groupgf— the Weyl group ex-
tended by adjoining outer automorphisms — that sends évery to its negative.
Thenw, = w|, Wherew is an outer automorphism @f, that normalized), and
whose square is inner. Now bothand w Ad(s) are outer automorphisms gf,
whose squares are inner. A result of de Siebenthal [1] says that their fixed point sets
have the same rank. Férthat is of course ranKy = dim Ty. But the fixed point
set ofw Ad(s) containsTy, so it cannot be larger, and this forces (&d&) = £ for
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everyé € a. Nowv(§) = —£ for all £ € q, and this completes the argument that
v(E)=—&forallé €p,. O

Continuation of proof of Proposition 3.1Me havef(s) = s, S0 commutes
with wg and thus commutes with. It remains only to check thaf = 1, in other
words that Ads)? = 1, i.e. thats? is central inG,,.

Note thatw3 = 1 in the Weyl groupW = W (Ko, Tp), S0s? € Tp andw(s?) =
s? for all w € W. We may assum& centerless; that only impinges on the center
of G,. This assumption mad& is centerless becausgk/ K is irreducible and
is outer.

Expresss? = exp(o) for somes € to. Hereo is unique up to a root lattice
translation. So we minimizgo || by choosing it in a fundamental closed céllIn
this regard, recall that every positive root systarh = A* (&, to) defines such a
cell from its simple root systerfys;} and its maximal roof. by

€ = {£ € to | u(~i&) < 1 and eachy;(—i&) > 0}.

The important property is that each elemenKgfis conjugate to some exp), ¢ <

C, and¢ is unigue modulo the root lattice and the actionWsf = W (K, Tp).

Thusw(o) = o for all w € W. But the action ofW on ty is a sum of nontrivial
irreducible representations becaugds semisimple. It follows that = 0. Now
s? =1, sos? is central inG, as required.

Completion of proof of Proposition 3.By classification, i is outer andy, is
simple theryg is one of

(a) sl(n; R), Lie algebra of the real special linear group, which has maximal
compact subgrouio = SO (n),

(b) sl(m; H), Lie algebra of the quaternion special linear group, which has max-
imal compact subgrouffy = Sp(m),

(c) so(2u + 1, 2v 4+ 1), Lie algebra of the indefinite orthogonal group that has
maximal compact subgroufip = SO (2u + 1) x SO(1+ 2v),

(d) es.,, Lie algebra of the real group of type Eg with maximal compact
subgroupKg of type Cy,

(e) ey, Lie algebra of the real grougg of type Es with maximal compact
subgroupKy of type Fj.

Here (a) is Case 3 above, and (b), (c), (d) and (e) are covered by Case 4 above. That
completes the proof of Proposition 3.1. O

Now we use the map to start the duality theory.

PROPOSITION 3.3.Letv be as in Propositior8.1. Thena: G — G by a(g) =
v(g), complex conjugation af over Gy, has the properties
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(1) o? is the identity,

(2) a(Q) = Q*anda(Q") = 0,

(3) the induced map: Z — Z* given bygQ — «(g)Q* and the other in-
duced mapp~': Z* — Z given bygQ* — «(g)Q, are biholomorphic
diffeomorphisms,

(4) a(Go) = Go, and¢ maps an arbitraryGq-orbit Go(z) C Z onto aGg-orbit
Go(¢(2)) C Z*, and

(5) ¢: D — D* defines a biholomorphic diffeomorphishfi,: Mp, — Mp- of
linear cycle spaces.

Proof. The automorphismv : G, — G, of Proposition 3.1 extends t6¢
and commutes witl®, and thus preserveS,. Now evidentlya(Gg) = Gg. In
fact, if g € Go thena(g) = v(g) soa?(g) = v2(g) = g. As ? is a holomorphic
automorphism oz, o? = 1.

Computeda(q) = dv(q) = g~ = q*, soa(Q) = Q*, and alsoQ = «?(Q) =
a(Q*). It follows immediately thatr induces the maps: Z — Z* andg—': Z* —
Z, as asserted, at the real analytic level. Sint€,) = Gy it follows as well that
¢ and¢ ! mapG-orbits toGo-orbits.

The holomorphic tangent space Zoat the base poingy, the one that corres-
ponds toq, is given byq" = } ;4. 8. The holomorphic tangent spaceZ6 at
the base point}, the one that correspondsdt is given by(q*)" = ¢~ = da(q").
Thus¢: Z — Z* is holomorphic, and the same argument showsghéat Z* — Z
is holomorphic.

LetY = Ko(zo) be the base point iMp. Similarly Y* = Ko(z) is the base
point in Mp«. Notea(Kg) = Ko S0¢(Y) = Y*. Thus, ifg € G theng(gY) =
a(g)op(Y) =a(g)Y*. Butg(D) = D*sogY C D exactly wherw(g)Y* C D*.In
other wordsgY € Mp ifand only if ¢ (gY) € Mp+. Thus¢ defines a real analytic
diffeomorphismM: M, — Mp- of linear cycle spaces. It is holomorphic because
¢ is holomorphic. O

4. The Case of Complex Projective Space

Here we discuss the cycle space of the unique open brioit Go = SI,.1(R) in
the complex projective spadg, (C). Our goal is to proveM, = M. We begin
with some notation.

The action ofG := SI,.1(C) on Z = P,(C) is defined by its standard rep-
resentation o/ := C"*'. The dual representation di* defines its action on
Z* =P(V*). Apointin Z (resp.Z*) is a complex lineL in V (resp. a hyperplane
H).

Let (e, ... , e,) be the standard basis f&rand choosd.g = C.(eg +ie1) as a
base point inZ = P(V). It follows that the orbitD = Go(Lg) is open. In fact, its
complement is the set of real poif#gR) = P(V (R)) which is also aGq-orbit. If
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the maximal compact subgrougy of G is chosen to b&, := S0O,,1(R), then
Yy := Ko(Lo) is the unique compleXy-orbit in D. It is the quadric hypersurface
Yo={lzo:...:z4]: sz = 0}. The complex grouk © has two orbits inz, the
above quadric and its complement.

Let Hy be the projective tangent hyperplane Xg at the pointLg regarded
as a hyperplane itv. Then Hy = {(zo,...,2,) : 20 +iz1 = 0} = ((eo +
ie1, e2,... ,e,)). It follows that Ko(Ho) = K§(Ho) =: Y§ C P(V*) is the dual
guadric of tangent hyperplanesig. It is likewise the unique compleKg-orbit in
the unique opeld;q-orbit D* in Z*.

DefineQ (resp.Q*) to be theGg-isotropy atLq (resp.Hp) and letP = QN Q*.
ThenX = G/ P is the flag manifold of lined. contained in hyperplaned in V.
We let (L c H) denote a point irK. The projectionr: X — Z (resp.7*: X —
Z*) is defined by(L ¢ H) + L (resp.(L C H) — H). Note that ther and
*-fibers arg(n — 1)-dimensional projective spaces.

4.1. THE Go-ORBIT STRUCTURE

For the sake of completeness we outline the proof of the following elementary

PROPOSITION 4.1.The groupG, has5 orbits in X. In ascending order of codi-
mension they are

(1) The unique open orbit
D={(LCH):L#L, H#H,L¢ H}.

(2) The top-dimensional boundary orbit
Y:={(LCcH):L#L, H#H, LCH)}.

(3) Two intermediate orbits which are exchanged by flag duality:
M*:={(LcH):L=L,H +# H)

and

M:={(LCcH):L+#L,H=H).

(4) The minimal orbit

XR):={(LcH):L=L,H=H).
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RemarkWe do not consider the case Bf:= [P1(C). For Z = P,(C) the orbits
¥, M* and M coincide.

Proof. For (1) note that giveL, C H,) and(L, C H>) in D, sinceGy acts
transitively on the complement of the real pointsanwe may assume thdt, =
L2 =: L.

LetE := L@ LandE; := H; N H;, j = 1,2. Itfollows thatV = E @ E; =
E ® E, and, since all of these spaces are defined Byéhere existd € Gq such
thatT|g = idg andT (E;) = E,. SinceH; = L ® E;, j = 1, 2, it follows thatT
maps(Ly C Hi) to (L2 C Hy). ConsequenthyD is aGo-orbit.

For (2) letE = L & L as above and leE be a complementary subspaceVin
which is defined oveR. To prove that¥ is a Go-orbit it suffices to remark that
there exitsT € G, which fixes E pointwise, stabilizes and interchanges the
hyperplanesdi; N E and H, N E which are not defined ovét in E.

If Lo =L, =L andL = L, then we letE = L and argue as in (2) to show that
M* is aGo-orbit. The dual argument handlas.

The transitivity of theGy-action onX (R) can be proved in a similar way. O

Remarkltis a simple matter to compute the dimensions of all orbits. For this we
first note that, since the-fibers argn — 1)-dimensional, it follows that digX =
dime D =21 — 1.

Now 7|z andz*|y map X onto the operGo-orbits in Z and Z* respectively.
For example, ther|x-fiber over L can be identified with the complement of the
real points in theln — 2)-dimensional projective space of hyperplarfésvhich
contain bothZ andL. ThusX is 2-codimensional (oveR) in X.

Analogously, sincer |« mapsM* surjectively onto the real points i@ and
its fiber over a point_ is the set of hyperplanedl containingL with H # H, it
follows thatdimk M =dimpgM* =n+2n—-1) =3n—-2

Finally, dimg X (R) = dim¢ X = 2n — 1. O

4.2. TRANSVERSALITY OF CYCLE INTERSECTION WITH INTERMEDIATE
ORBITS

Let Yo be the base cycle iD, g € G an arbitrary element of the complex group
andY = g(Yo) Now Y, maps toYo and Yy respectively and, sinckj is the dual
quadric of tangent hyperplanesXg, it follows that a point( L C H) € Y, consists

of L € Y and the hyperplan& which corresponds to the projective tangent plane
of Yo at L. SinceG acts by linear transformations, this holds {ér Cc H) € Y as
well, i.e., L € Y and H corresponds to the tangent hyperplan& ait L. We use
this fact to prove the following transversality statement.

PROPOSITION 4.2.At any pointp of Y N M (resp.Y N M*) the tangent spaces
T, Y andT,M (resp.T, YandT »M*) are transversal inf, X .
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Proof. We give the proof folp € Ynm.

LetY := n(Y) be the associated cycle ihand defineB := 7 ~1(Y). SinceM
is a Go-orbit which is mapped surjectively to the opéfy-orbit in Z and B is 7-
saturated, it follows thak intersects\/ transversally ap. Thus dink 7,,(BNM) =
3n — 4.

If pistheflag(L c H), then, recalling thaP(H) is the projective tangent space
of Y atm(p) = IP(L), it follows that the pre-imagér*|z)~*(H) can be identified
with P(H) N Y. This in an(n — 2)-dimensional quadric cone with vertex atIts
tangent space at generates the full tangent spafgF* of the fiber(z*)~1(H).
SinceF* C M, it follows thatT, F* C T,(B N M).

Now suppose tha is not transversal td/ at p. In this case

dim(T,Y N T,M) > dimg ¥ 4+ (3n — 4) —dimg B =n — 2.
But, since the cyclé7 intersects ther *-fibers transversally, it follows that
T,F* & (T,Y N T,M) C T,(B N M)
which, contrary to the transversality of the intersectibm M, implies that
dimg T,(BNM) >2n -1+ (n—-2)=3n—-4

4.3. CYCLE INTERSECTION WITH THE TOPDIMENSIONAL BOUNDARY ORBIT

Our goal here is to prove the following

PROPOSITION 4.3.Let Y,,0<1< 1, be a continuous curve of cycles ihwith
Yo the base cycle i) and letY;, = 7 (Y;) be the associated curve of cyclesnlf
Y1 N X # @, then there exists € (0, 1) with Y; N Z(R) # @.

For the proof it is convenient to introduce some notation. Here we deal with pro-
jective linesk which are defined oveR, i.e., one-dimensional linear subspaces of
Z = P,(C) which are invariant with respect to the anti-holomorphic involution
which is induced from complex conjugation ¥+,

If E is such a line, therE(R) := Fix(t|g) divides E into two components
which are interchanged by, i.e.,E \ E(R) = E;UE, andt(E;) = E».

The basic cycley, is also defined oveR, but Fix(t|y,) = @. ThusYy N E
consists of two distinct points; € E;, j =1, 2. N

Proof of Proposition 4.3An intersection poink; € Y, N X isaflag(L C H)
with L # L andL c H. Recall thatr (x;) =: z; is a point in the quadri@; with
projective tangent planB(H). Thus the projective lin& := P(L @ L), which is
defined oveR, is tangent td/; atz;.

SinceE.Y, = 2, it follows thatE N Y; = {z1}. Without loss of generality we
may assume that € E; and thereforeE, N Y, = .
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On the other hand, farsufficiently small,Y, N E; # ¢, j = 1, 2. By continuity
it therefore follows thal’;, N E(R) # @ for some intermediate € (0, 1). a

4.4, THE EQUALITY OF CYCLES SPACES

As was indicated above, we may regavth, and Mp- as being identified with
subspaces of the full space of linear cycleXire.g..Mp = {Y = g(Yy) : n(Y) C
D).

Sincerr (D) = D, itis clear that in this sensd C Mp. Of course both moduli
spaces contain the orlaity(Yo) of the base cycle which is connected. 3}, M3
and Mj,. denote the connected components of the respective cycle spaces which
contain this orbit.

THEOREM 4.4. M}, = M% = Mj,..

Proof. It is sufficient to show thab M3 N M;, = ¢. For this note first of all
that the boundary Mj in the full space of Imear cycles iX is defined by the
condition¥ Na D #= 0. Sinced D is semi- algebraic, it follows thakM  is likewise
semi- algebralc Therefore, at least generlcally,lee 8MZz it is pOSSIble to find

a curveYt, 0 <t < 1, beginning at the neutral cycl with Y, C DforO<t<1
andY; N 9D #0.

Now Y;NM* = YN M = @, because it is only possible f& to intersect these
orbits transversally (Proposition 4.2). Furthermdfe) = = ¢, because otherwise
Y, N Z(R) # ¢ for somer € (0, 1) N

Thus the only possible nonempty intersectio’4$) X (R) which implies that
Y; andY; are boundary points a¥/, and M+ as well. Since this holds at generic
boundary points, the result follows. O
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