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Linear cycle spaces in flag domains

Joseph A. Wolf. Roger Zierau
19 March 1999

Abstract. LetZ = G/Q, a complex flag manifold, whei@ is a complex semisimple Lie group
andQ is a parabolic subgroup. Fix a real foy C G and consider the linear cycle spadég ,
spaces of maximal compact linear subvarieties of open ofbis Go(z) C Z. In generalMp

is a Stein manifold. Here the exact structureMf, is worked out wherGg is a classical group
that corresponds to a bounded symmetric don&aiin that caseM p is biholomorphic toB if a
certain double fibration is holomorphic, is biholomorphicRox B otherwise. There are also a
number of structural results that do not requifg to be classical.

1. Introduction

Fix a connected simply connected complex simple Lie gréugnd a parabolic
subgroupQ. That defines a connected irreducible complex flag manifole
G/Q. Let Go C G be a real form and&, a maximal compact subgroup with
complexificationk .

If D = Go(z)isanoperGgy—orbitonZ, then for an appropriate choice of base
pointz € D, Y = Ko(z) = K(z) is a maximal compact complex submanifold
of D [11]. Thelinear cycle spacés

11 Mp: componentol in {gY | ¢ € G andgY C D}.
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1 see [11] for a geometric proof and [8] for an analytic proof.
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M) is an open submanifold of the complex flag manifodg = {gY | g €
G} = G/J wher¢ J = {g € G | g¥ = Y}, thus also is a complex manifold. It
is also known ([13], [14]) thadp is a Stein manifold. We are going to sharpen
that result wherGy is of hermitian type.

There are two structurally distinct types of open orlitsas follows.

1.2. Definition. Consider the double fibration
Go/(Lo N Ko)

D = Go/Lo Go/Ko
The open orbitD C Z is said to be otholomorphic type if there are Go—
invariant complex structures aflg/ (Lo N Ko) and G/ K such thatr, andrp

are simultaneously holomorphic, abnholomorphic type if there is no such
choice.

Now we can state our main result. It is an immediate consequence of Propo-
sition 3.9 and Theorems 3.8 and 5.1 below. Bgrof hermitian type we write
B andB for Go/ K with the twoGo—invariant complex structures.

1.3. Theorem. Let G be a classical simple Lie group of hermitian type. Let
D = Go(z) C Z = G/Q be an operGy—orbit. If D is of holomorphic type then
the linear cycle spaca/), is biholomorphic either taB or to B. If D is not of
holomorphic type the, is biholomorphic toB x B.

Theorem 1.3 extends a number of earlier results. In his work on periods of
integrals on algebraic manifolds ([3], [4]), Griffiths set up moduli spadggor
certain classes of compact Kaehler manifolds. Wells [9] worked out an explicit
parameterization of th&, whenD = SO (2r,5)/U(r) x SO(s). He used that
parameterization to verify that the correspondig are Stein, but he drew no
connections between the structuref and the structure a¥/, . Then Wells
and Wolf [10] proved thatMp is a Stein manifold whenever the open orbit
D = Go(z) C Z is of the formGo/Lo with Ly compact. This was done in
order to prove Fethet convergence of certain Poireagries for construction
of automorphic cohomology related to Griffiths’ period domains, and here some
tentative connections were drawn between the structute,@nd M . Patton
and Rossi [7] looked at the cagk = SU (p, g) whereZ is the Grassmannian
of (r + s)—planes inC?* and D is the open orbit consisting of the + s)—
planes of a fixed indefinite signatuge s). ThusGy is of hermitian type and
is not of holomorphic type. This is the first instance in which close connections
are indicated between the structure@f and the structure oM. Recently

2 In earlier work on this topic ([13], [14]) we usedto denote the5—stabilizer ofY. Here we
useJ for that stabilizer, reserving for the reductive part 0©.
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Wolf proved thatMp is Stein wheneveD is an openGg—orbit onZ; see [13]
for the measurable case and [14] for the general case. Also recently, Dunne and
Zierau [2] worked out the casesy, = SO(2r, 1) with D indefinite hermitian
symmetric, and also the cas@s = SU (p, g) with D arbitrary. IntheSU (p, q)
case they found tha/, = B x B. And very recently Novak ([5], [6]) studied
the cases wher@y = Sp(n; R) andD = Sp(n; R)/U (r, s) withn = r + s and
rs # 0. (Herers # 0 is the condition thaD is not of holomorphic type.) She
provedMp, = B x B in those cases. In the case whetgis classical and of
hermitian type, Theorem 1.3 confirms a conjecture of Akhieser and Gindikin [1]
that a certain extension @fy/ Ko is a Stein manifold. See [16] for a discussion
of applications of Theorem 1.3 to representation theory.

The remainder of the introduction is devoted to some preliminary notation and
facts. The Lie algebra af is denoted by and we lefgy C g be the real form of
g corresponding t@7o. We consider the Cartan involutiérof G corresponding
to Ko. We extend to a holomorphic automorphism 6f and a complex linear
automorphism ofj, thus decomposing

(1.4) g=t+sandgo = & + 50, decomposition intot 1 eigenspaces &f.

The Lie algebra ofKy is &, andK = G is the complexification oK. Ko
is connected and is th@g—normalizer ofty, andK is connected because is
connected and simply connected.

From this point on we assume th@g is of hermitian symmetric type, that
is,
(15 s=s, ®&s_ whereKjacts irreducibly on each ef. ands_ =5,
where§ — & denotes complex conjugation gbvergg. SetS.. = exp(s.) . SO
S_ = S, whereg — g also denotes complex conjugation@fover Go. Then

thep, = ¢ + s, are parabolic subalgebrasgivithp_ =p, ,

(1.6) the Py = K S, are parabolic subgroups 6fwith P = P, , and
the X1 = G/ Py are hermitian symmetric flag manifolds.

Note thatX_ = X inthe sense of conjugate complex structuresforepresents
the holomorphic tangent space ¥f ands_ = s represents the holomorphic
tangentspace of . Letxy =1- PL € X4,S0Go/Ko = Go(xy) C X4. We
denote
B = Go/Kp : symmetric spac€q/ Ko

with the complex structure afg(x_),
B = Go/Kq : spaceGo/Ko

with the (conjugate) complex structure G (x,.).

(1.7)
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The distinction betwees ands, in (1.5) is made by a choice of positive root
systemA™ = At (g, h) for g relative to a Cartan subalgetya= h c ¢ of g. The
choice is made so that_ is spanned by positive root spaces and consequently
s_ is spanned by negative root spaces.

We can view the complex flag manifotl= G/ Q as the set ofi—conjugates
of . ThengQ =z € Z = G/Q corresponds t@, = Ad(g)Q = {g € G |
g(x) = z} as well as its Lie algebrga, = Ad(g)q. Sincehg = hNgg C &
is a Cartan subalgebra @f, complex conjugation acts on the root spaces by
8« = 9—o- Thus aGo—orbitin Z = G/Q is open if and only if it is of the form
Go(z) in such a way thab C q,. This choice ofz in the open orbit amounts
to a choice ofGo—conjugate ofj,, and some such conjugate must contan
because all compact Cartan subalgebrag afe Gy—conjugate. In other words,
our standing assumption (1.5) th@g be of hermitian type, implies that all open
Go—orbits onZ are measurable. It also follows that we may choose a base point
z € D so thatKy(z) = K (z), a maximal compact complex submanifold of
We fix such a base point and $ét= K (z). See [11].

Fix an open orbitD = Go(z) C Z as above. We may supposec q = q;
andQ = Q.. SinceD is measurable we decompase= [ 4+ t_ whereh C I,
wherer_ is the nilradical ofq, and wherd = q N q is a reductive complement
(Levi component). Herd.o = Go N Q is connected and is a real form of the
analytic subgroud. ¢ G with Lie algebral. Its Lie algebra is the real form
lo=goNlofl

The orbits of holomorphic type are further characterized by [15, Prop. 1.11],
which is an extension of [13, Prop. 1.3]. It says

1.8. Proposition. The following conditions are equivalerfa) the open orbitD

is of holomorphic type(b) eithersNt, = s, Nt orsNty, =s_Nrt,, (C)
eithers_ Nty =0o0rs_Nt_ =0, (d) one ofgNp andq Np is a parabolic
subalgebra ofy, (e) there is a positive root systemi’ (g, h) such that both,.
ands, or botht, ands_, are sums of positive root spacéB,there is a positive
root systemA™ (g, h) such thatq is defined by a subset of the corresponding
simple root systen#, and¥ contains just ongge—noncompact root.

2. An embedding for the linear cycle space

The linear cycle spac&fp is the component of = Ko(z) = K(2) in {gY |

g € GandgY c D} asin (1.1). Herer is a maximal compact subvariety of
the open orbitD = Gy(z). As before,J = {gY | g € G} so Mp is an open
submanifold of the complex homogeneous spge= G/J. By [13], Prop. 1.3
we know that if D is of holomorphic type thed is one ofK P, and if D is of
nonholomorphic type thes is a finite extension ok .
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Recall the notation (1.6X _ x X, is acomplex flag manifoldG x G)/(P_ x
P,). Both the diagonal subgrodg: C G x G and the produatg x G are real
forms of G x G, so each of them acts on the complex flag manifoldx X
with only finitely many orbits [11]. Le{x_, x;) € X_ x X, denote the base
point (1P_, 1P,). ThusB x B = (Go x Go)(x_, x4). Our goal is to identify
this with M in the nonholomorphic case. We start with

2.1.Lemma. (Go x Gg)(x_,xy) C 8G(x_,x.) C X_ x X, and both of these
orbits are open inX_ x X, .

Remark.Novak [6] was the first to see the key role of this sort of embedding.

Proof. Letg; , g2 € Go. UseGo C S, K S_ towrite g, *g1 = exp(&, )k exp(E_)
withk € K andéy € 54 . Then

(81x-., g2x1) = 8g2(g5 g1, x1) = Og2(€XP(E )x_, x;)
= dga(exp(§4)x—, expi&s)x)
= g2 8 expi§s)(x—, x4) € 8G(x—, xy)
shows that(Gg x Go)(x_,x;) C 6G(x_,x;) C X_ x X, . They are open

because5o(x_) = B is open inX_ andGo(x,) = B is openinX_, so they all
have full dimension. O

The isotropy subgroup ofG at (x_,x,) is{(g,g) € G x G | gx_ =
x_andgx, = x,},inotherwordq(g,g) e GxG|ge P. NP, =K}. Thus

(2.2) G has isotropy subgroupk at(x_, x;),i.e.8G(x_, xy) = G/K.

We combine (2.2) with Lemma 2.1. That gives us the first part of

2.3. Proposition. There is a natural holomorphic embeddingsk B into G /K .
Letr : G/K — G/J = Mz be the natural projection. If the ope@o—orbit
D c Z is not of holomorphic type, then s injective onB x B.

Proof. Suppose thab is not of holomorphic type. Leg1, g7. g2, 85 € Go and
supposer(gix_, g2x+) = m(gix_, gox4). As in the argument of Lemma 2.1,
write

82_181 = exp()k exp(§-) SO (gix—, g2xy) = 882 & €XP(&4) (x—, x4).

Similarly, this time reversing roles of the two factors,

g1 g5 = expE K’ exp(E]) SO(gix_, ghxy) = 8g; 8 EXp(EL) (x_, x4).

The hypothesisr(g1x_, gox;) = m(g1x—, g5x4) now providesj € J such that
g26Xp(EL) = gjexplé_)j. In other words(g)) g2 € S_jS, .
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Let {w;} be a set of representatives of the double coset spaceVs/ Wi
for the Weyl groups ofG and K. The Bruhat decomposition af for X, is
G =, P-w; P4, the real grougs, is contained in the celP_ P, for w; = 1,
andG, does not meet any other cétL w; P, .

Since D is of nonholomorphic type/ C Ng,(Ko)K, SO we may write
J = nk with n € Ng,(Ko) andk € K. Expressn = wko with w € {w;}
andko € Ko. Thenj = k"wk” € KwK with k”, k" € K, so (g’l)‘lgz =
expE )K" wk" exp(—&,) € P_wP,. In particularGo meetsP_wP, , SOw =
1 e Wx andj € K. This showsg, expé)K = g7 expé”)K. Now

(81x—, gox4) = 6g2 6 €xXp(&L) (x—, x)
=8g1 8expEl)(x_, x3) = (81X, grx1)

as asserted. That completes the proof. |

3.BX§DMD

In this Section we prove: (@), C B x B when the open orbib = Go(z) C Z

is not of holomorphic type and (b}, = B or B when D is of holomorphic
type. HereGg is of hermitian symmetric type. That is the standing hypothesis in
this paper.

3.1. Lemma. One or both ofA(x, N5y , h) contains a long root of.

Proof. If all the roots ofg are of the same length there is nothing to prove. Now
assume that there are two root lengths. The only cases a@rg €) Sp(n; R) up
to a covering and (iilGo = SO(2, 2k + 1) up to a covering.

Consider case (i)D = Go(z) C Z is open andy = q,. The positive root
system is adapted tp= [+ t_, sor_ is spanned by negative root spaces. et
be the maximal root. Thep € A(x,, h) andy is long. Every compact root of
go = sp(n; R) is short. Sor is noncompact, hence contained in one_of Now
Lemma 3.1 is proved in case (i).

Consider case (ii). Thephas a simple root system of the fofm, . . . , ax 11}
with @; noncompact and the othercompact. Here; = ¢, —¢;,.1for1 < i < k
andoy,1 = €41 With the ¢; mutually orthogonal and of the same length. The
noncompact positive roots are the+ - - - + a,, with 1 < m < k + 1 and the
(o1t - 4o +2(a 1+ - ~+ap1). Allare long except fow, +- - -+ag1 = €1,
which is short. Now at least one df(r, Ns.. , h) contains a long root unless both
ty Nsp = g, andry Ns_ = g_, . That is impossible becausg is nilpotent.
Now Lemma 3.1 is proved in case (ii), and that completes the proof. O

Interchange; ands_ if necessary so that(r; N s, , h) contains at least
one long root. Th& (—orbit structure oX 4 is given in [12]. This is summarized
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as follows. Construct

U8 ={y,...,v}:

(3.2 . "
maximal set of strongly orthogonal noncompact positive roogs of

asin[15, (3.2)]y1 is the maximal root and, at each stage, the pexta maximal
root in A* (s, , h) that is orthogonal t¢yx, ..., y;}. Then¥ @ consists of long
roots, and any maximal set of strongly orthogonal long root\in(s, , b)

is W(Ko, Hp)—conjugate taF 9. In fact, any two subsets af? with the same
cardinality areW (Ko, Ho)—conjugate. In particular, by modifying the choice of
z within K (z) we may assume that

(3.3) w9 meetsA(r, , b).
Using the notation and normalizations of [15], Sect. 3 we have

e_, : root vector fory € A(h)
Xy, Yy, by o spanningg[y] > sl
¢y.cr =[] e, : Cayley transforms
yel’
GIrl =[] Gyl
yell
G[y] = three dimensional subgroup corresponding[to].

The G orbits onX_ are all of the form
(3.4) Gocre(x_), I', X disjoint subsets o#?.

The boundary oB = Go(x_) C X_ consists of the orbits in (3.4) witlh = @.
The boundary orbits are described further by

(3.5 Go(crx-) = KoGol¥?\ I'l(crx-).

One may use the Cayley transforms to gain some information about the the
Go—orbit structure oZ = G/ Q. In particular we use the following fact.

3.6. Lemma. Supposd™ C ¥¥NA(ry, b). If N A(r, , b) is non—empty, then
cr(z) is not contained in any opefig—orbit on Z.

Proof. The isotropy subgroup ofig at c-(z) has Lie algebrayy N q' where
q = Ad(cr)g. If y € I' N A(xy , b) then, by [15, (3.5)], Adcr)(e—,) =
Ad (cr)(3(x, + ~/—1y,)) = 3(x, — ~/—1h,). Butx,, ~/—1h, € go, SO NOW
Ad (cr)(e—,) € goNq'. Evidently Ad(cr)(e,) ¢ goNg'. ConclusiongoNgq’is
not reductive. As th& ¢—orbits onZ are measurable, no@q(cr(z)) cannot be
open inZ ([11], Theorem 6.3). ]
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We’'ll also need a topological lemma:

3.7.Lemma. Let X; and X, be topological spaces, |&; C X; be open subsets,
and letM C (X1 x X») be a connected open subset such (Ha¥ meetsB; x B,
and(ii) M N (bd(B1) x By) = ¥ = M N (B1 x bd(By)). ThenM C (B1 x By).

Proof. (X1 x X,) \ M is closed in(X; x X,) becauseM is open, contains
(bd(B1) x B2)U(B1 x bd(B>)) by (ii), and thus contains the closure(bfl(B1) x
B>)U(By x bd(B53)). That closure contains the boundary of the opeBset B, .
Thus

M= (M0 By x Bp) U (M0 ((Xa x X2) \ closure(By x B2)) ).

As M is connected and meeBs x B>, nowM C (B1 x B»). O
Now we come to the main result of this Section:

3.8. Theorem. Let G be of hermitian type, leZ = G/Q be a complex flag
manifold, and letD = Go(z) C Z = G/Q be an openGy—orbit that is not of
holomorphic type. ViewB x B C M  as inProposition 2.3and M, C M as

usual. ThenM, C B x B.

Proof. Retain the notation of Sect. 2. Suppose ffgak_, gox, ) belongs to the
boundary ofB x B in X_ x X, . The closure olGoK S_ in G is contained in
S, KS_, and similarly the closure afioK S, in G is contained inS_K S, . So
the boundary oB x B in X_ x X is contained irG/K . That allows us to write
gz_lgl = expé )k expE_) with &L € s, andk € K, as before. We will prove
thatg, exp(é)Y ¢ D, thatis,g,expéL)Y ¢ Mp. The Theorem will follow.
The proof breaks into three cases, according to the(way_, gox.) sits in the
boundary ofB x B.

Case 1Heregix_ € bd(B) andgox, € B with g1, g» € G. We may sup-
poseg, € Gop. Thengglglx_ also belongs to the boundary &fin X_, so
g, g1x_ € koGolW9 \ I'(cr(x_)) for someky € Ko andI” C ¥? by (3.5).
Thusg; "1(x) = kogocr(x_), go € Go[¥?\ I']. Using [15, (3.4)], [15, (3.5)],
and strong orthogonality a¥ ¢, decompose

8o = 1_[ <exq€+,1//)k1// eXp(S_,¢)> and
wo\r
cr = l_[(exp(«/—_ley) exp(v/2h,) exp(\/—_le_},)>

r

with &y y € guy . Setéy , = /—1ley, fory e I'. Now

(815, g2x+) = 82 8 eXpIA (ko)€}) (v, x;) whereg, =3 &, .
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At the cost of changingg within Kg, and in view of (3.3), we may assume
I' N A(ry, ) # 0. Thencr(z) = crnac,.p)(2) is not contained in any open
Go—orbit onZ, by Lemma 3.6. In particulas(z) ¢ D. Now expé,)(koz) =
exp(Ad (ko) (§)) (koz) = koexp(§})(z) = kogocr(z) ¢ D, thusgexpé,)Y ¢
D.

Case 2Heregix_ € B andg,x, € bd(B). The argument is exactly as in Case
1, but with the oles of B and B reversed. Here note that this reversal @es
replacesl? by —w8 andcr byc_r.

Case 3Heregix_ € bd(B) andgox, € bd(B). ThenM is connectedM,
meetsB x B becaus&’ € Mp N (B x B), andMp N (bd(B) x B ) =¥ =
Mp N (B x bd(B)) by Cases 1 and 2. Case 3 now follows from Lemma 3.

The same type of argument applies to prove the following.

Proposition 3.9. Suppose) is of holomorphic type. TheM  is biholomorphic
to eitherB or B

Proof. We may assume thaf, = X_ = G/K S_ by switchings.. if necessary.
It is clear thatgY < D for g € Go, SOB C Mp. Now suppose thagx_
(for someg € G) is in the boundary ofB € X_. Thengx_ = gocr(x_)
for somegy € Go and somel” # (J. Conjugating by an element &, we
may assumd™ N A(ty, h) # 0. Now, for I’ = I' N A(r,, b), g¥Y contains
gocr(z) = gocr(z). By Lemma 3.6 that is not in an open orbit. O

4. A reduction for the inclusion B x B ¢ M,

We reduce to the case whegkis a Borel subgroup of:

4.1. Proposition. Suppose that, if) is a Borel subgroup o, thenB x B ¢ M,
wheneveD is an openGo—orbit on G/ Q that is not of holomorphic type. Then
the same is true whe@ is any parabolic subgroup af.

Proof. The maximal compact subvariety in the open obit= G(z) C Z is
Y = K(z) = Ko(z). We may, and do, tak@ to be theG—stabilizer ofz; in
other words we assume that= q,. Let 9’ C Q be any parabolic subgroup
of G contained inQ such thatGy, N Q' contains a compact Cartan subgroup
Hy C Ko of Gy, let Z' = G/Q’ be the corresponding flag manifold, and let
n : Z' — Z denote the associata@d—equivariant projectior Q' +— gQ.
Write 7 € Z’ for the base point @'. ThenD’ = Gy(Z) is open inZ’ because
go N ¢’ contains a compact Cartan subalgebrggnfWe have set things up so
thatY’ = K (z') = Ko(z") is a maximal compact subvariety ¥ .

SinceD is not of holomorphic type, both intersectionsn s, are nonzero.
Butt_ is contained in the nilradical of q’. Now both intersections_ N s.. are
nonzero, s’ is not of holomorphic type.
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If ¢ € G with gY' ¢ D' thengKo C GoQ’, S0gKo C GoQ and thus
gY C D.Inotherwordsg mapsMp to Mp . This mapis aninjection equivariant
for the correspondence of Proposition 2.3. If the inclusion holdsZfothen
B x B C Mp C Mp, so it holds forZ. The assertion of the Proposition is the
case wherg’ is a Borel subgroup. O

5. B x B c M, whenG is classical

In this section we prove a partial counterpart of Theorem 3.8:

5.1. Theorem. Suppose tha6 is a classical group and that its real foridg
is of hermitian type. LeZ = G/Q be a complex flag manifold, and 1& =
Go(z) C Z = G/Q be an operGo—orbit that is not of holomorphic type. View
B x B C My asinProposition 2.2andMp, c M asusual. The® x B C M),.

We run through the classical cases. By Proposition 4.1 we may assume that
Q is a Borel subgroup so tha is the full flag. In each case, the standard
basis ofC™ will be denoted{ey, ..., e,}. Without further comment we will
decompose vectors as= ) v;e; . We will have symmetric bilinear forms, -)
or antisymmetric bilinear forms (-, -) on C™ and the ternisotropic will refer
only to those bilinear forms. We will also have hermitian forfns) onC™, and
the termsignaturewill refer only to those hermitian forms. In each case the flag
manifold Z is described as a flag of subspages (z; C --- C z,,) in some
C™ with dimz; = j, usually withm = 2n orm = n. As we run through the
casesB and B are described in terms of such flags, as in [12]. Then we give
explicit descriptions of (i) the embeddings of Sect. 2, (ii) the full flag and its
openG—orbits, and (iii) we describe th@-action onM;, in such a way that
the result of Theorem 5.1 is easily visible.

If {f1,..., f¢} is a linearly independent subset in a vector specthen
[fiA---A fe¢] denotes its span.

Type I: B = {Z € CP1 | | — Z*Z >> 0}. HereG = SL(n;C) and
Go = SU(p, q), indefinite unitary group defined by the hermitian fofum v) =
21 ViWj = Dy Vpy Wy With p 4 g =n.

The hermitian symmetric fla§ - = G/K S_ is identified with the Grassman-
nian ofg—planesirC", the base point_ = [e, 1A+ - Aepig], aNdB = Go(x-)
consists of the negative defingeplanes. SimilarlyX ; = G/K S, is identified
with the Grassmannian gf-planesirC", x;. = [e1 A - - Aep], andB = Go(x3)
consists of the positive definife-planes. The embedding

BxBCG/K=Gx_,x;) CX_xX,
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of Sect. 2 is given by

B x B={(V,W)cC (X_ x X,)| V negative definite and
W positive definité
(5.2) and
G/K =G(x_,x})
={(V,W) e (X_x X,) |V andW transverse irfC"}.

The full flag manifold isZ = {z = (z1 C --- C z,-1) | dimz; = j}.
By Witt's Theorem, if two subspacd$, U’ ¢ C" have the same signature and
nullity (relative to the hermitian forng., -)) then there existg € U (p, g) with
gU = U’, and of course we can scale and chogse Gy, = SU(p,q). It
follows that theG—orbits on the full flagZz = G/ Q are determined by the rank
and signature sequences of the subspaces in the flag+¢&t,, ..., r,_1) and
s = (s1,...,5,_1) consist of integers such that® r; < --- < r,_1 < p,
0Ss1=---<s,.1=¢q,andr; +s; = j forall j. Thenr ands define a point
z,.s € Z and an operGo—orbit D, ; C Z by

Zrs = (Zr,s,lv ey Zr,s,n—l) Where

5.3) Zrsj=leax A ANey Nepra Ao Aegland
Dr,s = GO(Zr,s) = {Z = (le ey Zn—l) | Zj

has signaturér;, s;) for all j}.

Each pairr, s is obtained by choosing of the numbers from 1 tp + ¢, the
indices at whichr; > r;_1, so the number of pairssis () = p’:—;, which is the
quotient|Ws|/|Wk | of the orders of the Weyl groups. As theBg, are distinct
open orbits, it follows from [11, Corollary 4.7] that they are exactly the open
Go—orbits onZ.

Fix » ands. Let(V, W) e G/K C (X_ x X,). Define

5.4) Yyw={zeZ|dimz;NV =s;and dimz; "N W = r; for all j}.

We setD = D, S0Y = K(z,5) = Y, . If g € GthengY = Y, . . If
(V,W) € Bx BthenYyy C D,,,s0Yyw € Mp,_.. Thus(V, W) > Yy w
definesamapg : B x B — Mp,, . Ifry = --- =r, = 0 thenr,,; = j for
1= j < pandn(V, W)dependsonlyoW;if sy =--- =5, =0thens,,; = j
for1< j < g andn(V, W) depends only of; those are the cases whdbg,
is of holomorphic type. In the nonholomorphic casesjectsB x B into Mp,,
and we haveB x B C Mp, . Theorem 5.1 is verified whea is of type I.
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Typell: B={ZeC™" | Z="Zandl—Z-Z* >> 0}. HereG = Sp(n; C)
andGo = Sp(n; R). These are the complex and real symplectic groups, defined
by the antisymmetric bilinear forma (v, w) = Z;:l(vjw,,ﬂ — Uyqjwj) ONC?
andR?*, respectively. Here it is more convenient to realizgasG N U (n, n)
whereU (n, n) is the unitary group of the hermitian fortn, w) = Z;’:l vjw; —

> i1 Untj Wy, , @and we do that.

The hermitian symmetric fla_ = G/K S_ is identified with the Grassman-
nian of w—isotropicn—planes inC%, the base point_ = [e,11 A - - - A e2,], and
B = Go(x_) consists of the negative definite-isotropicn—planes. Similarly,
X, = G/K S, is identified with the Grassmannian @fisotropicn—planes in
C? x; =[er A --- Aey],andB = Go(x,) consists of the positive definite
w—isotropicn—planes. The embedding

BxBCG/K=Gx_,xy) CX_xX,
of Sect. 2 is given by

B x B={(V,W)C (X_x X,) |V negative definite and
W positive definité
(5.5) and
G/K =G(x_,xy)
={(V,W) e (X_ x X,) | VandW transverse itC?'}.

ThefullflagisZ = {z = (z1 C - -- C z,—1) | eachg; is isotropic with din;
= j}. One extends Witt's Theorem fro?”, (-, -)) to prove

5.6. Lemma. Let Uy, U, C C?" be w—isotropic subspaces of the same nonde-
generate signature fof, -). Then there existg € Go with gU; = U,.

Somewhat as in the Type | case it will follow that theenG,—orbits on the
full flag Z = G/Q are determined by the signature sequences of the subspaces
in the flag. Letr = (r1,...,r,) ands = (s1, ..., s,) consist of integers such
that0sr =---=r, <n, 0515 --- <5, Sn,andr; +5; = jforall j.

Thenr ands define a point,; € Z and aGo—orbit D, C Z by

Zrs = (2751 C - -+ C Zp.5.0) Where
Zrsj =lea A Aey Aeggr1 A - Aeg] and
D, s = Go(zrs)
={z=1(21 C--- C z,) | z; has signaturér;, s;) for all j}.

(5.7

The last equality uses Lemma 5.6.

5.8. Proposition. The D, ; are exactly the opef—orbits onZ, and they are
distinct.
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Proof. The Go—stabilizer ofz, ; is the maximal torus consisting of diagonal
unitary matrices, s®, ; is open inZ by dimension. IfD, ; = D, ¢ then (5.7)
forcesr = r’ ands = s’. Now the open orbit®, ; are distinct. Each paif, s is
obtained by choosing a set of numbers from i tthe indices at which; > r;_1,

so the number of pairs s is 2, which is the quotientWg|/|Wx | of the orders
of the Weyl groups. As thesB, ; are distinct open orbits, it follows from [11,
Corollary 4.7] that they are exactly the opég—orbits onZ. |

Fix » ands. Let(V, W) e G/K C (X_ x X,). Define
59 Yyw={zeZ|dimz;NV =s; and dimz; " W = r; for all j}.

We setD = D, sOY = K(z,5) = Yy, . If g € GthengY = Y, .. If
(V,W) € B x BthenYyy C D,,,s0Yyw € Mp,,. Thus(V, W) — Yy y
definesamap : B x B — Mp, M ry=---=r, =0thenp(V, W) depends
onlyonV;if s; =-.. =5, = 0thenp(V, W) depends only of; those are the
cases wher®, ; is of holomorphic type. In the nonholomorphic casesjects
B x Binto Mp,, and we haveB x B C Mp,, . Theorem 5.1 is verified wheh
is of type II.

Type lll: B ={Z e C™ | Z = —-"Zandl — Z - Z* >> 0}. HereG =

S0 (2n; C), special orthogonal group defined by the symmetric bilinear form
(v, w) = Z;l:l(vjwnﬂJrvnij)onCZ",andGo = SO*(2n), the real formwith
maximal compact subgroup(n). We realizeGoasGNU (n, n) whereU (n, n) is

the unitary group of the hermitian fortw, w) = 3 7_; v;w; — 371 Vut Wy, -

The hermitian symmetric flag&,. = G/K S+ are identified with the two
choices of connected component in the Grassmannian of isotropic (relative to
(-, -)) n—planes inC?'. The components in question are specified by orientation.
X_ has base point_ = [e;y1 A -+ Aeg], Xo = G(x_),andB = Go(x_)
consists of the negative definite isotropieplanes inX _ . Similarly, X, has base
pointx, = [e1 A --- Ae,], andX . = G(x,), andB = Go(x,) consists of the
positive definite isotropia—planes inX , . The embedding

BxBCG/K=G(x_,xy) CX_xX,
of Sect. 2 is given by
B x B ={(V,W) C (X_x X,) | V negative definite and
W positive definité
(5.10 and
G/K =G(x_,xy)
={(V,W) e (X_ x X4) | VandW transverse itC?"}.

Z ={z=(z1C--- Cz,) | eachg; is isotropic withz, € X_ and dimz; =
j} is the full flag. Here of course thg are linear subspaces 6f". One could
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requirez, € X, instead, with the same results, but it is necessary to make a
choice. Witt’'s Theorem extends fro(@?, (-, -)) as follows.

5.11. Lemma. Let Uy, U, C C?" be (-, -)—isotropic subspaces of the same
nondegenerate signature for, -). If dimU; = n then assume also that tfié
are contained in the samg.. . Then there existg € Go with gU; = U,.

As in the Type Il case it will follow that thepenGy—orbits on the full flag
Z = G/Q are determined by the signature sequences of the subspaces in the
flag. Letr = (r1,...,r,—1) ands = (s1, ..., s,_1) consist of integers such that
Osn<--=ra1s<n-1,0=s1<---Ss,.1Sn—1L1andr+s; =j
for all j. Thenr ands specify integers, ands, such that (iy,_1 < r, < n, (ii)
Sn—1 = sy S m, (i) ry+s, = n,and (iV)[er A - -Aep, A€y, 41N - Aez] € X
In effect, (iv) is a parity condition on, . Nowr ands define a point, ; € Z and
aGo—orbitD,; C Z by

Zrs = (2p51 C -+ - C Zr.5.0) Where
Zrs,j =ler Ao ANey ANeggpa A Nel(j < n),
(5.12) Zrsn € X_,and
D, s = Go(zrs)
={z = (21 C --- C zy) | z; has signaturér;, s;) for all j}.

The last equality uses Lemma 5.11.

5.13. Proposition. The D, ; are exactly the opefyo—orbits onZ, and they are
distinct.

Proof. The Go—stabilizer ofz, ; is the maximal torus consisting of diagonal
unitary matrices, s®,  is open inZ by dimension. IfD, ; = D, ¢ then (5.12)
forcesr = r’ ands = s’. Now the open orbitd, ; are distinct. Each pair, s

is obtained by choosing a set of numbers from 4 te 1, the indices at which
rj > rj_1, SO the number of pairs s is 2'~%, which is the quotientWs|/| Wk |

of the orders of the Weyl groups. As theBg; are distinct open orbits, it follows
from [11, Corollary 4.7] that they are exactly the op@g-orbits onZ. |

Fix » ands. Let(V, W) e G/K C (X_ x X,). Define
(5.14 Yyw={zeZ|dimz;NV =s; and dimg; " W =r; for all j}.

We setD = D, S0Y = K(z,5) = Yy ., . If g € GthengYy = Yy, .. If
(V,W) € B x BthenYyy C D,,,s0Yyw € Mp,,. Thus(V, W) — Yy y
definesamap : B x B — Mp, N ri=-.-=r,=0thenp(V, W) depends
onlyonV;if s; = --. =5, = 0thenp(V, W) depends only of; those are the
cases wher®, ; is of holomorphic type. In the nonholomorphic casgsjects
B x Binto Mp,, and we have8 x B C Mp,, . Theorem 5.1 is verified wheh
is of type III. '
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TypelV: B={Z e C"|14+'Z-Z?-2Z*-Z > 0andl — Z*-Z > 0}.
HereG = SO (2 + n; C), special orthogonal group defined by the symmetric
bilinear form(v, w) = Y2 ; vyw; — Y213 v;w; onC2+", andG is the identity
component o8 0 (2, n). We viewGy as the identity component &f N U (2, n)
whereU (2, n) is defined by the hermitian forqv, w) = (v, w).

The hermitian symmetric flag§. = G/K S+ are each identified with the
space of(-, -) isotropic lines inC>*". X, has base point. = [e1 £ ies].
B = Go(x_) andB = Go(x,), and each consists of the -) positive definite
(-, -) isotropic lines. The embedding

BxBCG/K=Gx_,xy) CX_xX,
of Sect. 2 is given by

(5.15 BxB={(V,W)e (X_xX,)|VandW positive definité

' andG/K = G(x_,x;) ={(V,W)e (X_x X,) |V L W}.
Here “positive definite” refers to the hermitian forqm -) and “L” refers to the
symmetric bilinear form, -). ~

The full flag manifoldZ is a connected component®f={z = (z1 C --- C

Zm) | z; isotropic subspace @t and dimz; = j}. Herem = [5] + 1. If n
is odd thenZ = Z, in other wordsZ is connected. If: is even therZ has two
topological components. In any case

Z, =G([(e1+ied) A(ez+ieg) A A (ean_1+iexn)])

is a connected component in the variety of all maximal isotropic subspaces of
C2%t and

Z={z=1(21C--- Czn) |z isotropic inC>™, dimz; = j,
(5.16) andz, € Z.}.

Witt's Theorem extends frorC>*", (-, -)) as follows.

5.17. Lemma. Let Uy, U, C C?*" be (-, -)—isotropic subspaces of the same
nondegenerate signature f¢t, -). Then there existg € 0(2+n; C) N U (2, n)
with gUl =U,.

As in the earlier cases it will follow that thepenGy—orbits on the full flag
Z = G/Q are determined by the signature sequences of the subspaces in the
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flag. Let 1< k < m, and define points;” € Z andGo—orbits D" C Z, by
7=, C -+ C2E,,) Where
Z]::j =[(ezs+iex)) N--- A (€2j+1 + i€2j+2]
for j <k,
z,fj =[(e1tiex) A(es+ies) A--- A (ezj_1+iey;]
(5.19 forj >k
andD;" = Go(z7)
= {z € Z | z; has signatur€0, ;)
forj <k, (1, j—1forj =k,
andz; meetsGo(xy) for j = k}.
The last equality uses Lemma 5.17.
5.19. Proposition. TheD,f are exactly the opetro—orbits onZ, and they are
distinct. TheDk+ U D, are the open O (2 + n; C) N U (2, n))—orbits onZ.

Proof. The Go—stabilizer ofz,f is the maximal torus consisting of indepen-
dent rotations of the plands; A e2] through[ez,_1 A e,]1, SO Dy is open in
Z by dimension. IfD; = D,if (e, ¢/ = =) then (5.18) shows thak, ¢) =
(k', €"). Now the openGo—orbits Dif are distinct, and thé®;” U D, are open
(02 +n; C)yNU(2, n))—orbits onZ.

There are & pairsk, €. Whethem is even or odd, the quotiefiW|/|Wg | of
the orders of the Weyl groups igi2As theDki are distinct open orbits, it follows
from [11, Corollary 4.7] that they are exactly the op@g-orbits onZ. O

Fix k ande. Let (V, W) € G/K = (X_ x X,). SoV = [v]andW = [w]
wherev, w € C?*" are isotropic vectors witkw, w) # 0. Define

YV,W :{zeZ|dimzjﬂ[v/\w]=0and diranm[U/\U)]J':j

for j <k,
(5.20) dimz; N[v Aw]=1land dimg;; N[v Awlt = —1
for j > k,
vezgjife=+4+andj2k; wegzife=—andj =k}

Here_L refers to the symmetric bilinear form. Also, note that the only isotropic
vectors in[v A w] are the multiples of and the multiples ofv.
We setD = D soY = K(zf) =Y, .. .If g € GthengY =Y, ...

5.21. Lemma. If (V, W) € B x B thenYy w C D, soYy y € M.

Proof. First consideD, . Letz’ € Yy . Forj = k we havev € Z;.AsV e Bit

is positive definite fox-, -), so we need only check th@tﬂ [v A w]* is negative
definite for(-, -).
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Letu e z} N[v A w]*. HereL refers to the symmetric bilinear fortn -). If

(u,u) = 0thenU = [u] is in the closure oB or in the closure oB. In the first
case the paifU, W) sits inG/K by the remarks at the beginning of the proof
of Theorem 3.8. Thexw, w) # 0, contradicting: € [v, w]*. Similarly, in the
second case the paiV, U) € G/K, so(v, u) # 0, contradicting: € [v A w]*

We have verified thazt/- N [v A w]* is negative definite fot., -). O

Now (V, W) > Yy definesamap : B x B — MDi If x =1 and
= + thenn(V, W) depends only otV; if k = 1 ande = — thenn(V, W)
depends only ofi; those are the cases whdﬁé is of holomorphic type. In the
nonholomorphic cases,injects B x B into M . and we haveB x BC Mpe .
Theorem 5.1 is verified whea is of type IV, and that completes its proof ]
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