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Linear cycle spaces in flag domains

Joseph A. Wolf · Roger Zierau
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Abstract. LetZ = G/Q, a complex flag manifold, whereG is a complex semisimple Lie group
andQ is a parabolic subgroup. Fix a real formG0 ⊂ G and consider the linear cycle spacesMD ,
spaces of maximal compact linear subvarieties of open orbitsD = G0(z) ⊂ Z. In generalMD
is a Stein manifold. Here the exact structure ofMD is worked out whenG0 is a classical group
that corresponds to a bounded symmetric domainB. In that caseMD is biholomorphic toB if a
certain double fibration is holomorphic, is biholomorphic toB × B otherwise. There are also a
number of structural results that do not requireG0 to be classical.

1. Introduction

Fix a connected simply connected complex simple Lie groupG and a parabolic
subgroupQ. That defines a connected irreducible complex flag manifoldZ =
G/Q. LetG0 ⊂ G be a real form andK0 a maximal compact subgroup with
complexificationK.

If D = G0(z) is an openG0–orbit onZ, then for an appropriate choice of base
point z ∈ D, Y = K0(z) = K(z) is a maximal1 compact complex submanifold
of D [11]. Thelinear cycle spaceis

(1.1) MD : component ofY in {gY | g ∈ G andgY ⊂ D}.
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1 See [11] for a geometric proof and [8] for an analytic proof.
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MD is an open submanifold of the complex flag manifoldMZ = {gY | g ∈
G} ∼= G/J where2 J = {g ∈ G | gY = Y }, thus also is a complex manifold. It
is also known ([13], [14]) thatMD is a Stein manifold. We are going to sharpen
that result whenG0 is of hermitian type.

There are two structurally distinct types of open orbitsD, as follows.

1.2. Definition. Consider the double fibration

G0/(L0 ∩K0)

πB
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D = G0/L0

vv

πD
mmmmmmmmmmmm

G0/K0

The open orbitD ⊂ Z is said to be ofholomorphic type if there areG0–
invariant complex structures onG0/(L0 ∩K0) andG0/K0 such thatπD andπB
are simultaneously holomorphic, ofnonholomorphic type if there is no such
choice.

Now we can state our main result. It is an immediate consequence of Propo-
sition 3.9 and Theorems 3.8 and 5.1 below. ForG0 of hermitian type we write
B andB for G0/K0 with the twoG0–invariant complex structures.

1.3. Theorem. LetG0 be a classical simple Lie group of hermitian type. Let
D = G0(z) ⊂ Z = G/Q be an openG0–orbit. IfD is of holomorphic type then
the linear cycle spaceMD is biholomorphic either toB or to B. If D is not of
holomorphic type thenMD is biholomorphic toB × B.

Theorem 1.3 extends a number of earlier results. In his work on periods of
integrals on algebraic manifolds ([3], [4]), Griffiths set up moduli spacesMD for
certain classes of compact Kaehler manifolds. Wells [9] worked out an explicit
parameterization of theMD whenD ∼= SO(2r, s)/U(r)× SO(s). He used that
parameterization to verify that the correspondingMD are Stein, but he drew no
connections between the structure ofG0 and the structure ofMD . Then Wells
and Wolf [10] proved thatMD is a Stein manifold whenever the open orbit
D = G0(z) ⊂ Z is of the formG0/L0 with L0 compact. This was done in
order to prove Fr´echet convergence of certain Poincar´e series for construction
of automorphic cohomology related to Griffiths’ period domains, and here some
tentative connections were drawn between the structure ofG0 andMD . Patton
and Rossi [7] looked at the caseG0 = SU(p, q) whereZ is the Grassmannian
of (r + s)–planes inCp+q andD is the open orbit consisting of the(r + s)–
planes of a fixed indefinite signature(r, s). ThusG0 is of hermitian type andD
is not of holomorphic type. This is the first instance in which close connections
are indicated between the structure ofG0 and the structure ofMD . Recently

2 In earlier work on this topic ([13], [14]) we usedL to denote theG–stabilizer ofY . Here we
useJ for that stabilizer, reservingL for the reductive part ofQ.
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Wolf proved thatMD is Stein wheneverD is an openG0–orbit onZ; see [13]
for the measurable case and [14] for the general case. Also recently, Dunne and
Zierau [2] worked out the casesG0 = SO(2n,1) with D indefinite hermitian
symmetric, and also the casesG0 = SU(p, q)withD arbitrary. In theSU(p, q)
case they found thatMD

∼= B × B. And very recently Novak ([5], [6]) studied
the cases whereG0 = Sp(n; R) andD ∼= Sp(n; R)/U(r, s) with n = r + s and
rs 6= 0. (Herers 6= 0 is the condition thatD is not of holomorphic type.) She
provedMD

∼= B × B in those cases. In the case whereG0 is classical and of
hermitian type, Theorem 1.3 confirms a conjecture of Akhieser and Gindikin [1]
that a certain extension ofG0/K0 is a Stein manifold. See [16] for a discussion
of applications of Theorem 1.3 to representation theory.

The remainder of the introduction is devoted to some preliminary notation and
facts. The Lie algebra ofG is denoted byg and we letg0 ⊂ g be the real form of
g corresponding toG0. We consider the Cartan involutionθ ofG0 corresponding
toK0. We extendθ to a holomorphic automorphism ofG and a complex linear
automorphism ofg, thus decomposing

(1.4) g = k + s andg0 = k0 + s0 , decomposition into± 1 eigenspaces ofθ.

The Lie algebra ofK0 is k0 , andK = Gθ is the complexification ofK0 . K0

is connected and is theG0–normalizer ofk0 , andK is connected becauseG is
connected and simply connected.

From this point on we assume thatG0 is of hermitian symmetric type, that
is,

(1.5) s = s+ ⊕ s− whereK0 acts irreducibly on each ofs± ands− = s+

whereξ 7→ ξ denotes complex conjugation ofg overg0. SetS± = exp(s±) . So
S− = S+ whereg 7→ g also denotes complex conjugation ofG overG0 . Then

(1.6)

thep± = k + s± are parabolic subalgebras ofg with p− = p+ ,

theP± = KS± are parabolic subgroups ofG with P− = P+ , and

theX± = G/P± are hermitian symmetric flag manifolds.

Note thatX− = X+ in the sense of conjugate complex structure, fors+ represents
the holomorphic tangent space ofX− ands− = s+ represents the holomorphic
tangent space ofX+ . Let x± = 1 · P± ∈ X± , soG0/K0

∼= G0(x±) ⊂ X± . We
denote

(1.7)

B = G0/K0 : symmetric spaceG0/K0

with the complex structure ofG0(x−),

B = G0/K0 : spaceG0/K0

with the (conjugate) complex structure ofG0(x+).
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The distinction betweens− ands+ in (1.5) is made by a choice of positive root
system∆+ = ∆+(g, h) for g relative to a Cartan subalgebrah = h ⊂ k of g. The
choice is made so thats+ is spanned by positive root spaces and consequently
s− is spanned by negative root spaces.

We can view the complex flag manifoldZ = G/Q as the set ofG–conjugates
of q. ThengQ = z ∈ Z = G/Q corresponds toQz = Ad(g)Q = {g ∈ G |
g(z) = z} as well as its Lie algebraqz = Ad(g)q. Sinceh0 = h ∩ g0 ⊂ k0

is a Cartan subalgebra ofg0 , complex conjugation acts on the root spaces by
gα = g−α. Thus aG0–orbit inZ = G/Q is open if and only if it is of the form
G0(z) in such a way thath ⊂ qz . This choice ofz in the open orbit amounts
to a choice ofG0–conjugate ofqz , and some such conjugate must containh0

because all compact Cartan subalgebras ofg0 areG0–conjugate. In other words,
our standing assumption (1.5) thatG0 be of hermitian type, implies that all open
G0–orbits onZ are measurable. It also follows that we may choose a base point
z ∈ D so thatK0(z) = K(z), a maximal compact complex submanifold ofD.
We fix such a base point and setY = K(z). See [11].

Fix an open orbitD = G0(z) ⊂ Z as above. We may supposeh ⊂ q = qz
andQ = Qz . SinceD is measurable we decomposeq = l + r− whereh ⊂ l ,
wherer− is the nilradical ofq , and wherel = q ∩ q is a reductive complement
(Levi component). HereL0 = G0 ∩ Q is connected and is a real form of the
analytic subgroupL ⊂ G with Lie algebral . Its Lie algebra is the real form
l0 = g0 ∩ l of l.

The orbits of holomorphic type are further characterized by [15, Prop. 1.11],
which is an extension of [13, Prop. 1.3]. It says

1.8. Proposition. The following conditions are equivalent:(a) the open orbitD
is of holomorphic type,(b) either s ∩ r+ = s+ ∩ r+ or s ∩ r+ = s− ∩ r+ , (c)
eithers− ∩ r+ = 0 or s− ∩ r− = 0, (d) one ofq ∩ p andq ∩ p is a parabolic
subalgebra ofg , (e) there is a positive root system∆+(g, h) such that bothr+
ands+, or bothr+ ands−, are sums of positive root spaces,(f) there is a positive
root system∆+(g, h) such thatq is defined by a subset of the corresponding
simple root systemΨ , andΨ contains just oneg0–noncompact root.

2. An embedding for the linear cycle space

The linear cycle spaceMD is the component ofY = K0(z) = K(z) in {gY |
g ∈ G andgY ⊂ D} as in (1.1). HereY is a maximal compact subvariety of
the open orbitD = G0(z). As before,J = {gY | g ∈ G} soMD is an open
submanifold of the complex homogeneous spaceMZ

∼= G/J . By [13], Prop. 1.3
we know that ifD is of holomorphic type thenJ is one ofKP± and ifD is of
nonholomorphic type thenJ is a finite extension ofK.



Linear cycle spaces in flag domains 533

Recall the notation (1.6);X−×X+ is a complex flag manifold(G×G)/(P−×
P+). Both the diagonal subgroupδG ⊂ G×G and the productG0 ×G0 are real
forms ofG ×G, so each of them acts on the complex flag manifoldX− × X+
with only finitely many orbits [11]. Let(x−, x+) ∈ X− × X+ denote the base
point (1P−,1P+). ThusB × B = (G0 × G0)(x−, x+). Our goal is to identify
this withMD in the nonholomorphic case. We start with

2.1. Lemma. (G0 ×G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X− ×X+ , and both of these
orbits are open inX− ×X+ .

Remark.Novak [6] was the first to see the key role of this sort of embedding.

Proof. Let g1 , g2 ∈ G0 . UseG0 ⊂ S+KS− to writeg−1
2 g1 = exp(ξ+)k exp(ξ−)

with k ∈ K andξ± ∈ s± . Then

(g1x−, g2x+) = δg2(g
−1
2 g1x−, x+) = δg2(exp(ξ+)x−, x+)

= δg2(exp(ξ+)x−,exp(ξ+)x+)
= δg2 δ exp(ξ+)(x−, x+) ∈ δG(x−, x+)

shows that(G0 × G0)(x−, x+) ⊂ δG(x−, x+) ⊂ X− × X+ . They are open
becauseG0(x−) = B is open inX− andG0(x+) = B is open inX− , so they all
have full dimension. ut

The isotropy subgroup ofδG at (x−, x+) is {(g, g) ∈ G × G | gx− =
x− andgx+ = x+}, in other words{(g, g) ∈ G×G | g ∈ P− ∩P+ = K}. Thus

(2.2) δG has isotropy subgroupδK at (x−, x+), i.e.δG(x−, x+) ∼= G/K.

We combine (2.2) with Lemma 2.1. That gives us the first part of

2.3. Proposition.There is a natural holomorphic embedding ofB×B intoG/K.
Let π : G/K → G/J = MZ be the natural projection. If the openG0–orbit
D ⊂ Z is not of holomorphic type, thenπ is injective onB × B.

Proof. Suppose thatD is not of holomorphic type. Letg1, g
′
1, g2, g

′
2 ∈ G0 and

supposeπ(g1x−, g2x+) = π(g′
1x−, g′

2x+). As in the argument of Lemma 2.1,
write

g−1
2 g1 = exp(ξ+)k exp(ξ−) so(g1x−, g2x+) = δg2 δ exp(ξ+)(x−, x+).

Similarly, this time reversing roles of the two factors,

g′
1
−1
g′

2 = exp(ξ ′
−)k

′ exp(ξ ′
+) so(g′

1x−, g′
2x+) = δg′

1 δ exp(ξ ′
−)(x−, x+).

The hypothesisπ(g1x−, g2x+) = π(g′
1x−, g′

2x+) now providesj ∈ J such that
g2 exp(ξ+) = g′

1 exp(ξ−)j . In other words,(g′
1)

−1g2 ∈ S−jS+ .
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Let {wi} be a set of representatives of the double coset spaceWK\WG/WK

for the Weyl groups ofG andK. The Bruhat decomposition ofG for X+ is
G = ⋃

i P−wiP+ , the real groupG0 is contained in the cellP−P+ for wi = 1,
andG0 does not meet any other cellP−wiP+ .

SinceD is of nonholomorphic typeJ ⊂ NGu(K0)K, so we may write
j = nk with n ∈ NGu(K0) and k ∈ K. Expressn = wk0 with w ∈ {wi}
andk0 ∈ K0 . Thenj = k′′wk′′′ ∈ KwK with k′′, k′′′ ∈ K, so (g′

1)
−1g2 =

exp(ξ ′−)k′′wk′′′ exp(−ξ+) ∈ P−wP+. In particularG0 meetsP−wP+ , sow =
1 ∈ WK andj ∈ K. This showsg2 exp(ξ+)K = g′

1 exp(ξ ′−)K. Now

(g1x−, g2x+) = δg2 δ exp(ξ+)(x−, x+)
= δg′

1 δ exp(ξ ′
−)(x−, x+) = (g′

1x−, g′
2x+)

as asserted. That completes the proof. ut

3. B × B ⊃ MD

In this Section we prove: (a)MD ⊂ B×B when the open orbitD = G0(z) ⊂ Z

is not of holomorphic type and (b)MD = B or B whenD is of holomorphic
type. HereG0 is of hermitian symmetric type. That is the standing hypothesis in
this paper.

3.1. Lemma. One or both of∆(r+ ∩ s± , h) contains a long root ofg.

Proof. If all the roots ofg are of the same length there is nothing to prove. Now
assume that there are two root lengths. The only cases are (i)G0 = Sp(n; R) up
to a covering and (ii)G0 = SO(2,2k + 1) up to a covering.

Consider case (i).D = G0(z) ⊂ Z is open andq = qz . The positive root
system is adapted toq = l + r− , sor− is spanned by negative root spaces. Letγ

be the maximal root. Thenγ ∈ ∆(r+, h) andγ is long. Every compact root of
g0 = sp(n; R) is short. Soγ is noncompact, hence contained in one ofs± . Now
Lemma 3.1 is proved in case (i).

Consider case (ii). Theng has a simple root system of the form{α1, . . . , αk+1}
with α1 noncompact and the otherαi compact. Hereαi = εi−εi+1 for 1 5 i 5 k

andαk+1 = εk+1 with the εi mutually orthogonal and of the same length. The
noncompact positive roots are theα1 + · · · + αm with 1 5 m 5 k + 1 and the
(α1+· · ·+αm)+2(αm+1+· · ·+αk+1).All are long except forα1+· · ·+αk+1 = ε1 ,
which is short. Now at least one of∆(r+∩s± , h) contains a long root unless both
r+ ∩ s+ = gε1 andr+ ∩ s− = g−ε1 . That is impossible becauser+ is nilpotent.
Now Lemma 3.1 is proved in case (ii), and that completes the proof. ut

Interchanges+ ands− if necessary so that∆(r+ ∩ s+ , h) contains at least
one long root. TheG0–orbit structure ofX± is given in [12]. This is summarized



Linear cycle spaces in flag domains 535

as follows. Construct

(3.2)
Ψ g = {γ1, . . . , γt} :

maximal set of strongly orthogonal noncompact positive roots ofg

as in [15, (3.2)]:γ1 is the maximal root and, at each stage, the nextγi+1 a maximal
root in∆+(s+ , h) that is orthogonal to{γ1, . . . , γi}. ThenΨ g consists of long
roots, and any maximal set of strongly orthogonal long roots in∆+(s+ , h)
is W(K0, H0)–conjugate toΨ g. In fact, any two subsets ofΨ g with the same
cardinality areW(K0, H0)–conjugate. In particular, by modifying the choice of
z within K(z) we may assume that

(3.3) Ψ g meets∆(r+ , h).

Using the notation and normalizations of [15], Sect. 3 we have

e−γ : root vector forγ ∈ ∆(h)
xγ , yγ , hγ : spanningg[γ ] ' sl2

cγ , cΓ =
∏
γ∈Γ

cγ : Cayley transforms

G[Γ ] =
∏
γ∈Γ

G[γ ],

G[γ ] = three dimensional subgroup corresponding tog[γ ].
TheG0 orbits onX− are all of the form

(3.4) G0cΓ c
2
Σ(x−), Γ,Σ disjoint subsets ofΨ g.

The boundary ofB = G0(x−) ⊂ X− consists of the orbits in (3.4) withΣ = ∅.
The boundary orbits are described further by

(3.5) G0(cΓ x−) = K0G0[Ψ g \ Γ ](cΓ x−).

One may use the Cayley transforms to gain some information about the the
G0–orbit structure ofZ = G/Q. In particular we use the following fact.

3.6. Lemma. SupposeΓ ⊂ Ψ g∩∆(r+ , h). If Γ ∩∆(r+ , h) is non–empty, then
cΓ (z) is not contained in any openG0–orbit onZ.

Proof. The isotropy subgroup ofG0 at cΓ (z) has Lie algebrag0 ∩ q′ where
q′ = Ad (cΓ )q. If γ ∈ Γ ∩ ∆(r+ , h) then, by [15, (3.5)], Ad(cΓ )(e−γ ) =
Ad (cΓ )(1

2(xγ + √−1yγ )) = 1
2(xγ − √−1hγ ). But xγ ,

√−1hγ ∈ g0 , so now
Ad (cΓ )(e−γ ) ∈ g0 ∩ q′. Evidently Ad(cΓ )(eγ ) /∈ g0 ∩ q′. Conclusion:g0 ∩ q′ is
not reductive. As theG0–orbits onZ are measurable, nowG0(cΓ (z)) cannot be
open inZ ([11], Theorem 6.3). ut
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We’ll also need a topological lemma:

3.7. Lemma. LetX1 andX2 be topological spaces, letBi ⊂ Xi be open subsets,
and letM ⊂ (X1×X2) be a connected open subset such that(i)M meetsB1×B2

and(ii) M ∩ (bd(B1)×B2) = ∅ = M ∩ (B1 × bd(B2)). ThenM ⊂ (B1 ×B2).

Proof. (X1 × X2) \ M is closed in(X1 × X2) becauseM is open, contains
(bd(B1)×B2)∪(B1×bd(B2)) by (ii), and thus contains the closure of(bd(B1)×
B2)∪(B1×bd(B2)). That closure contains the boundary of the open setB1×B2 .
Thus

M =
(
M ∩ (B1 × B2)

)
∪

(
M ∩ (

(X1 ×X2) \ closure(B1 × B2)
))
.

AsM is connected and meetsB1 × B2 , nowM ⊂ (B1 × B2). ut
Now we come to the main result of this Section:

3.8. Theorem. LetG0 be of hermitian type, letZ = G/Q be a complex flag
manifold, and letD = G0(z) ⊂ Z = G/Q be an openG0–orbit that is not of
holomorphic type. ViewB × B ⊂ MZ as inProposition 2.3andMD ⊂ MZ as
usual. ThenMD ⊂ B × B.

Proof. Retain the notation of Sect. 2. Suppose that(g1x−, g2x+) belongs to the
boundary ofB × B in X− × X+ . The closure ofG0KS− in G is contained in
S+KS− , and similarly the closure ofG0KS+ in G is contained inS−KS+ . So
the boundary ofB×B inX− ×X+ is contained inG/K. That allows us to write
g−1

2 g1 = exp(ξ+)k exp(ξ−) with ξ± ∈ s± andk ∈ K, as before. We will prove
thatg2 exp(ξ+)Y 6⊂ D, that is,g2 exp(ξ+)Y /∈ MD . The Theorem will follow.
The proof breaks into three cases, according to the way(g1x−, g2x+) sits in the
boundary ofB × B.
Case 1. Hereg1x− ∈ bd(B) andg2x+ ∈ B with g1, g2 ∈ G. We may sup-
poseg2 ∈ G0 . Theng−1

2 g1x− also belongs to the boundary ofB in X−, so
g−1

2 g1x− ∈ k0G0[Ψ g \ Γ ](cΓ (x−)) for somek0 ∈ K0 andΓ ⊂ Ψ g by (3.5).
Thusg−1

2 g1(x+) = k0g0cΓ (x−), g0 ∈ G0[Ψ g \Γ ]. Using [15, (3.4)], [15, (3.5)],
and strong orthogonality ofΨ g, decompose

g0 =
∏
Ψg\Γ

(
exp(ξ+,ψ)kψ exp(ξ−,ψ)

)
and

cΓ =
∏
Γ

(
exp(

√−1eγ )exp(
√

2hγ )exp(
√−1e−γ )

)

with ξ±,ψ ∈ g±ψ . Setξ±,γ = √−1e±γ for γ ∈ Γ . Now

(g1x−, g2x+) = δg2 δ exp(Ad (k0)ξ
′
+)(x−, x+) whereξ ′

+ =
∑

ψ∈Ψg
ξ+,ψ .
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At the cost of changingk0 within K0 , and in view of (3.3), we may assume
Γ ∩ ∆(r+, h) 6= ∅. ThencΓ (z) = cΓ∩∆(r+,h)(z) is not contained in any open
G0–orbit onZ, by Lemma 3.6. In particularcΓ (z) /∈ D. Now exp(ξ+)(k0z) =
exp(Ad(k0)(ξ

′+))(k0z) = k0 exp(ξ ′+)(z) = k0g0cΓ (z) /∈ D, thusg2 exp(ξ+)Y 6⊂
D.
Case 2. Hereg1x− ∈ B andg2x+ ∈ bd(B). The argument is exactly as in Case
1, but with the rôles ofB andB reversed. Here note that this reversal of rˆoles
replacesΨ g by −Ψ g andcΓ by c−Γ .
Case 3. Hereg1x− ∈ bd(B) andg2x+ ∈ bd(B). ThenMD is connected,MD

meetsB × B becauseY ∈ MD ∩ (B × B), andMD ∩ (
bd(B) × B

)
= ∅ =

MD ∩ (
B × bd(B)

)
by Cases 1 and 2. Case 3 now follows from Lemma 3.7.ut

The same type of argument applies to prove the following.

Proposition 3.9. SupposeD is of holomorphic type. ThenMD is biholomorphic
to eitherB or B

Proof. We may assume thatMZ = X− = G/KS− by switchings± if necessary.
It is clear thatgY ⊂ D for g ∈ G0, soB ⊂ MD. Now suppose thatgx−
(for someg ∈ G) is in the boundary ofB ⊂ X−. Thengx− = g0cΓ (x−)
for someg0 ∈ G0 and someΓ 6= ∅. Conjugating by an element ofK0 we
may assumeΓ ∩ ∆(r+, h) 6= ∅. Now, for Γ ′ = Γ ∩ ∆(r+, h), gY contains
g0cΓ (z) = g0cΓ ′(z). By Lemma 3.6 that is not in an open orbit. ut

4. A reduction for the inclusion B × B ⊂ MD

We reduce to the case whereQ is a Borel subgroup ofG:

4.1. Proposition.Suppose that, ifQ is a Borel subgroup ofG, thenB×B ⊂ MD

wheneverD is an openG0–orbit onG/Q that is not of holomorphic type. Then
the same is true whenQ is any parabolic subgroup ofG.

Proof. The maximal compact subvariety in the open orbitD = G(z) ⊂ Z is
Y = K(z) = K0(z). We may, and do, takeQ to be theG–stabilizer ofz; in
other words we assume thatq = qz . LetQ′ ⊂ Q be any parabolic subgroup
of G contained inQ such thatG0 ∩ Q′ contains a compact Cartan subgroup
H0 ⊂ K0 of G0, let Z′ = G/Q′ be the corresponding flag manifold, and let
π : Z′ → Z denote the associatedG–equivariant projectiongQ′ 7→ gQ.
Write z′ ∈ Z′ for the base point 1Q′. ThenD′ = G0(z

′) is open inZ′ because
g0 ∩ q′ contains a compact Cartan subalgebra ofg0 . We have set things up so
thatY ′ = K(z′) = K0(z

′) is a maximal compact subvariety ofD′.
SinceD is not of holomorphic type, both intersectionsr− ∩ s± are nonzero.

But r− is contained in the nilradicalr′− of q′. Now both intersectionsr′− ∩ s± are
nonzero, soD′ is not of holomorphic type.
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If g ∈ G with gY ′ ⊂ D′ thengK0 ⊂ G0Q
′, so gK0 ⊂ G0Q and thus

gY ⊂ D. In other words,π mapsMD′ toMD . This map is an injection equivariant
for the correspondence of Proposition 2.3. If the inclusion holds forZ′ then
B × B ⊂ MD′ ⊂ MD , so it holds forZ. The assertion of the Proposition is the
case whereQ′ is a Borel subgroup. ut

5. B × B ⊂ MD whenG is classical

In this section we prove a partial counterpart of Theorem 3.8:

5.1. Theorem. Suppose thatG is a classical group and that its real formG0

is of hermitian type. LetZ = G/Q be a complex flag manifold, and letD =
G0(z) ⊂ Z = G/Q be an openG0–orbit that is not of holomorphic type. View
B×B ⊂ MZ as inProposition 2.3andMD ⊂ MZ as usual. ThenB×B ⊂ MD .

We run through the classical cases. By Proposition 4.1 we may assume that
Q is a Borel subgroup so thatZ is the full flag. In each case, the standard
basis ofCm will be denoted{e1, . . . , em}. Without further comment we will
decompose vectors asv = ∑

vjej . We will have symmetric bilinear forms(·, ·)
or antisymmetric bilinear formsω(·, ·) on C

m and the termisotropicwill refer
only to those bilinear forms. We will also have hermitian forms〈·, ·〉 onC

m, and
the termsignaturewill refer only to those hermitian forms. In each case the flag
manifoldZ is described as a flag of subspacesz = (z1 ⊂ · · · ⊂ zm) in some
C
m with dim zj = j , usually withm = 2n or m = n. As we run through the

cases,B andB are described in terms of such flags, as in [12]. Then we give
explicit descriptions of (i) the embeddings of Sect. 2, (ii) the full flag and its
openG0–orbits, and (iii) we describe theG-action onMZ , in such a way that
the result of Theorem 5.1 is easily visible.

If {f1, . . . , f`} is a linearly independent subset in a vector spaceV then
[f1 ∧ · · · ∧ f`] denotes its span.

Type I: B = {Z ∈ C
p×q | I − Z∗Z >> 0}. HereG = SL(n; C) and

G0 = SU(p, q), indefinite unitary group defined by the hermitian form〈u, v〉 =∑p

j=1 vjwj − ∑q

j=1 vp+jwp+j with p + q = n.
The hermitian symmetric flagX− = G/KS− is identified with the Grassman-

nian ofq–planes inCn, the base pointx− = [ep+1∧· · ·∧ep+q], andB = G0(x−)
consists of the negative definiteq–planes. Similarly,X+ = G/KS+ is identified
with the Grassmannian ofp–planes inCn, x+ = [e1∧· · ·∧ep], andB = G0(x+)
consists of the positive definitep–planes. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+
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of Sect. 2 is given by

(5.2)

B × B = {(V ,W) ⊂ (X− ×X+) | V negative definite and

W positive definite}
and

G/K = G(x−, x+)
= {(V ,W) ∈ (X− ×X+) | V andW transverse inCn}.

The full flag manifold isZ = {z = (z1 ⊂ · · · ⊂ zn−1) | dim zj = j}.
By Witt’s Theorem, if two subspacesU,U ′ ⊂ C

n have the same signature and
nullity (relative to the hermitian form〈·, ·〉) then there existsg ∈ U(p, q) with
gU = U ′, and of course we can scale and chooseg ∈ G0 = SU(p, q). It
follows that theG0–orbits on the full flagZ = G/Q are determined by the rank
and signature sequences of the subspaces in the flag. Letr = (r1, . . . , rn−1) and
s = (s1, . . . , sn−1) consist of integers such that 05 r1 5 · · · 5 rn−1 5 p,
0 5 s1 5 · · · 5 sn−1 5 q, andrj + sj = j for all j . Thenr ands define a point
zr,s ∈ Z and an openG0–orbitDr,s ⊂ Z by

(5.3)

zr,s = (zr,s,1, . . . , zr,s,n−1) where

zr,s,j = [e1 ∧ · · · ∧ erj ∧ ep+1 ∧ · · · ∧ esj ] and

Dr,s = G0(zr,s) = {z = (z1, . . . , zn−1) | zj
has signature(rj , sj ) for all j}.

Each pairr, s is obtained by choosingp of the numbers from 1 top + q, the
indices at whichrj > rj−1, so the number of pairsr, s is

(
n
p

) = n!
p!q! , which is the

quotient|WG|/|WK | of the orders of the Weyl groups. As theseDr,s are distinct
open orbits, it follows from [11, Corollary 4.7] that they are exactly the open
G0–orbits onZ.

Fix r ands. Let (V ,W) ∈ G/K ⊂ (X− ×X+). Define

(5.4) YV,W = {z ∈ Z | dim zj ∩ V = sj and dimzj ∩W = rj for all j}.

We setD = Dr,s soY = K(zr,s) = Yx−,x+ . If g ∈ G thengY = Ygx−,gx+ . If
(V ,W) ∈ B × B thenYV,W ⊂ Dr,s , soYV,W ∈ MDr,s . Thus(V ,W) 7→ YV,W

defines a mapη : B × B → MDr,s . If r1 = · · · = rq = 0 thenrq+j = j for
1 5 j 5 p andη(V,W) depends only onV ; if s1 = · · · = sp = 0 thensp+j = j

for 1 5 j 5 q andη(V,W) depends only onW ; those are the cases whereDr,s

is of holomorphic type. In the nonholomorphic cases,η injectsB×B intoMDr,s

and we haveB × B ⊂ MDr,s . Theorem 5.1 is verified whenB is of type I.
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Type II: B = {Z ∈ C
n×n | Z = tZ andI −Z ·Z∗ >> 0}. HereG = Sp(n; C)

andG0 = Sp(n; R). These are the complex and real symplectic groups, defined
by the antisymmetric bilinear formω(v,w) = ∑n

j=1(vjwn+j − vn+jwj ) onC
2n

andR
2n, respectively. Here it is more convenient to realizeG0 asG ∩ U(n, n)

whereU(n, n) is the unitary group of the hermitian form〈v,w〉 = ∑n
j=1 vjwj −∑n

j=1 vn+jwn+j , and we do that.
The hermitian symmetric flagX− = G/KS− is identified with the Grassman-

nian ofω–isotropicn–planes inC2n, the base pointx− = [en+1 ∧ · · · ∧ e2n], and
B = G0(x−) consists of the negative definiteω–isotropicn–planes. Similarly,
X+ = G/KS+ is identified with the Grassmannian ofω–isotropicn–planes in
C

2n, x+ = [e1 ∧ · · · ∧ en], andB = G0(x+) consists of the positive definite
ω–isotropicn–planes. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Sect. 2 is given by

(5.5)

B × B = {(V ,W) ⊂ (X− ×X+) | V negative definite and

W positive definite}
and

G/K = G(x−, x+)
= {(V ,W) ∈ (X− ×X+) | V andW transverse inC2n}.

The full flag isZ = {z = (z1 ⊂ · · · ⊂ zn−1) | eachzj is isotropic with dimzj
= j}. One extends Witt’s Theorem from(C2n, 〈·, ·〉) to prove

5.6. Lemma. LetU1, U2 ⊂ C
2n beω–isotropic subspaces of the same nonde-

generate signature for〈·, ·〉. Then there existsg ∈ G0 with gU1 = U2 .

Somewhat as in the Type I case it will follow that theopenG0–orbits on the
full flag Z = G/Q are determined by the signature sequences of the subspaces
in the flag. Letr = (r1, . . . , rn) ands = (s1, . . . , sn) consist of integers such
that 05 r1 5 · · · 5 rn 5 n, 0 5 s1 5 · · · 5 sn 5 n, andrj + sj = j for all j .
Thenr ands define a pointzr,s ∈ Z and aG0–orbitDr,s ⊂ Z by

(5.7)

zr,s = (zr,s,1 ⊂ · · · ⊂ zr,s,n) where

zr,s,j = [e1 ∧ · · · ∧ erj ∧ e2n−sj+1 ∧ · · · ∧ e2n] and

Dr,s = G0(zr,s)

= {z = (z1 ⊂ · · · ⊂ zn) | zj has signature(rj , sj ) for all j}.
The last equality uses Lemma 5.6.

5.8. Proposition. TheDr,s are exactly the openG0–orbits onZ, and they are
distinct.
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Proof. TheG0–stabilizer ofzr,s is the maximal torus consisting of diagonal
unitary matrices, soDr,s is open inZ by dimension. IfDr,s = Dr ′,s′ then (5.7)
forcesr = r ′ ands = s ′. Now the open orbitsDr,s are distinct. Each pairr, s is
obtained by choosing a set of numbers from 1 ton, the indices at whichrj > rj−1,
so the number of pairsr, s is 2n, which is the quotient|WG|/|WK | of the orders
of the Weyl groups. As theseDr,s are distinct open orbits, it follows from [11,
Corollary 4.7] that they are exactly the openG0–orbits onZ. ut

Fix r ands. Let (V ,W) ∈ G/K ⊂ (X− ×X+). Define

(5.9) YV,W = {z ∈ Z | dim zj ∩ V = sj and dimzj ∩W = rj for all j}.
We setD = Dr,s soY = K(zr,s) = Yx−,x+ . If g ∈ G thengY = Ygx−,gx+ . If
(V ,W) ∈ B × B thenYV,W ⊂ Dr,s , soYV,W ∈ MDr,s . Thus(V ,W) 7→ YV,W

defines a mapη : B × B → MDr,s . If r1 = · · · = rn = 0 thenη(V,W) depends
only onV ; if s1 = · · · = sn = 0 thenη(V,W) depends only onW ; those are the
cases whereDr,s is of holomorphic type. In the nonholomorphic cases,η injects
B ×B intoMDr,s and we haveB ×B ⊂ MDr,s . Theorem 5.1 is verified whenB
is of type II.

Type III: B = {Z ∈ C
n×n | Z = −tZ andI − Z · Z∗ >> 0}. HereG =

SO(2n; C), special orthogonal group defined by the symmetric bilinear form
(v,w) = ∑n

j=1(vjwn+j+vn+jwj )onC
2n, andG0 = SO∗(2n), the real form with

maximal compact subgroupU(n).We realizeG0 asG∩U(n, n)whereU(n, n) is
the unitary group of the hermitian form〈v,w〉 = ∑n

j=1 vjwj −∑n
j=1 vn+jwn+j .

The hermitian symmetric flagsX± = G/KS± are identified with the two
choices of connected component in the Grassmannian of isotropic (relative to
(·, ·)) n–planes inC2n. The components in question are specified by orientation.
X− has base pointx− = [en+1 ∧ · · · ∧ e2n], X− = G(x−), andB = G0(x−)
consists of the negative definite isotropicn–planes inX− . Similarly,X+ has base
point x+ = [e1 ∧ · · · ∧ en], andX+ = G(x+), andB = G0(x+) consists of the
positive definite isotropicn–planes inX+ . The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Sect. 2 is given by

(5.10)

B × B = {(V ,W) ⊂ (X− ×X+) | V negative definite and

W positive definite}
and

G/K = G(x−, x+)
= {(V ,W) ∈ (X− ×X+) | V andW transverse inC2n}.

Z = {z = (z1 ⊂ · · · ⊂ zn) | eachzj is isotropic withzn ∈ X− and dimzj =
j} is the full flag. Here of course thezj are linear subspaces ofC

2n. One could
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requirezn ∈ X+ instead, with the same results, but it is necessary to make a
choice. Witt’s Theorem extends from(C2n, 〈·, ·〉) as follows.

5.11. Lemma. Let U1, U2 ⊂ C
2n be (·, ·)–isotropic subspaces of the same

nondegenerate signature for〈·, ·〉. If dimUi = n then assume also that theUi
are contained in the sameX± . Then there existsg ∈ G0 with gU1 = U2 .

As in the Type II case it will follow that theopenG0–orbits on the full flag
Z = G/Q are determined by the signature sequences of the subspaces in the
flag. Letr = (r1, . . . , rn−1) ands = (s1, . . . , sn−1) consist of integers such that
0 5 r1 5 · · · 5 rn−1 5 n− 1, 0 5 s1 5 · · · 5 sn−1 5 n− 1, andrj + sj = j

for all j . Thenr ands specify integersrn andsn such that (i)rn−1 5 rn 5 n, (ii)
sn−1 5 sn 5 n, (iii) rn+sn = n, and (iv)[e1∧· · ·∧ern∧e2n−sn+1∧· · ·∧e2n] ∈ X− .
In effect, (iv) is a parity condition onrn . Now r ands define a pointzr,s ∈ Z and
aG0–orbitDr,s ⊂ Z by

(5.12)

zr,s = (zr,s,1 ⊂ · · · ⊂ zr,s,n) where

zr,s,j = [e1 ∧ · · · ∧ erj ∧ e2n−sj+1 ∧ · · · ∧ e2n](j < n),

zr,s,n ∈ X−,and

Dr,s = G0(zr,s)

= {z = (z1 ⊂ · · · ⊂ zn) | zj has signature(rj , sj ) for all j}.
The last equality uses Lemma 5.11.

5.13. Proposition. TheDr,s are exactly the openG0–orbits onZ, and they are
distinct.

Proof. TheG0–stabilizer ofzr,s is the maximal torus consisting of diagonal
unitary matrices, soDr,s is open inZ by dimension. IfDr,s = Dr ′,s′ then (5.12)
forcesr = r ′ ands = s ′. Now the open orbitsDr,s are distinct. Each pairr, s
is obtained by choosing a set of numbers from 1 ton − 1, the indices at which
rj > rj−1, so the number of pairsr, s is 2n−1, which is the quotient|WG|/|WK |
of the orders of the Weyl groups. As theseDr,s are distinct open orbits, it follows
from [11, Corollary 4.7] that they are exactly the openG0–orbits onZ. ut

Fix r ands. Let (V ,W) ∈ G/K ⊂ (X− ×X+). Define

(5.14) YV,W = {z ∈ Z | dim zj ∩ V = sj and dimzj ∩W = rj for all j}.
We setD = Dr,s soY = K(zr,s) = Yx−,x+ . If g ∈ G thengY = Ygx−,gx+ . If
(V ,W) ∈ B × B thenYV,W ⊂ Dr,s , soYV,W ∈ MDr,s . Thus(V ,W) 7→ YV,W

defines a mapη : B × B → MDr,s . If r1 = · · · = rn = 0 thenη(V,W) depends
only onV ; if s1 = · · · = sn = 0 thenη(V,W) depends only onW ; those are the
cases whereDr,s is of holomorphic type. In the nonholomorphic cases,η injects
B ×B intoMDr,s and we haveB ×B ⊂ MDr,s . Theorem 5.1 is verified whenB
is of type III.
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Type IV: B = {Z ∈ C
n | 1 + |tZ · Z|2 − 2Z∗ · Z > 0 andI − Z∗ · Z > 0}.

HereG = SO(2 + n; C), special orthogonal group defined by the symmetric
bilinear form(v,w) = ∑2

j=1 vjwj − ∑2+n
j=3 vjwj onC

2+n, andG0 is the identity
component ofSO(2, n). We viewG0 as the identity component ofG ∩U(2, n)
whereU(2, n) is defined by the hermitian form〈v,w〉 = (v,w).

The hermitian symmetric flagsX± = G/KS± are each identified with the
space of(·, ·) isotropic lines inC

2+n. X± has base pointx± = [e1 ± ie2].
B = G0(x−) andB = G0(x+), and each consists of the〈·, ·〉 positive definite
(·, ·) isotropic lines. The embedding

B × B ⊂ G/K = G(x−, x+) ⊂ X− ×X+

of Sect. 2 is given by

(5.15)
B × B = {(V ,W) ∈ (X− ×X+) | V andW positive definite}
andG/K = G(x−, x+) = {(V ,W) ∈ (X− ×X+) | V 6⊥ W }.

Here “positive definite” refers to the hermitian form〈·, ·〉 and “⊥” refers to the
symmetric bilinear form(·, ·).

The full flag manifoldZ is a connected component of̃Z = {z = (z1 ⊂ · · · ⊂
zm) | zj isotropic subspace ofC2+n and dimzj = j}. Herem = [n2] + 1. If n
is odd thenZ = Z̃, in other words̃Z is connected. Ifn is even theñZ has two
topological components. In any case

Z+ = G([(e1 + ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2m−1 + ie2m)])

is a connected component in the variety of all maximal isotropic subspaces of
C

2+n, and

Z = {z = (z1 ⊂ · · · ⊂ zm) | zj isotropic inC
2+n,dim zj = j,

andzm ∈ Z+}.(5.16)

Witt’s Theorem extends from(C2+n, 〈·, ·〉) as follows.

5.17. Lemma. Let U1, U2 ⊂ C
2+n be (·, ·)–isotropic subspaces of the same

nondegenerate signature for〈·, ·〉. Then there existsg ∈ O(2+ n; C)∩U(2, n)
with gU1 = U2 .

As in the earlier cases it will follow that theopenG0–orbits on the full flag
Z = G/Q are determined by the signature sequences of the subspaces in the
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flag. Let 15 k 5 m, and define pointsz±k ∈ Z andG0–orbitsD±
k ⊂ Z, by

(5.18)

z±k = (z±k,1 ⊂ · · · ⊂ z±k,m) where

z±k,j = [(e3 + ie4) ∧ · · · ∧ (e2j+1 + ie2j+2]
for j < k,

z±k,j = [(e1 ± ie2) ∧ (e3 + ie4) ∧ · · · ∧ (e2j−1 + ie2j ]
for j = k

andD±
k = G0(z

±
k )

= {z ∈ Z | zj has signature(0, j)

for j < k, (1, j − 1) for j = k,

andzj meetsG0(x±) for j = k}.
The last equality uses Lemma 5.17.

5.19. Proposition. TheD±
k are exactly the openG0–orbits onZ, and they are

distinct. TheD+
k ∪D−

k are the open(O(2 + n; C) ∩ U(2, n))–orbits onZ.

Proof. TheG0–stabilizer ofz±k is the maximal torus consisting of indepen-
dent rotations of the planes[e1 ∧ e2] through[e2m−1 ∧ e2m], soDk is open in
Z by dimension. IfDε

k = Dε′
k′ (ε, ε′ = ±) then (5.18) shows that(k, ε) =

(k′, ε′). Now the openG0–orbitsD±
k are distinct, and theD+

k ∪ D−
k are open

(O(2 + n; C) ∩ U(2, n))–orbits onZ.
There are 2m pairsk, ε. Whethern is even or odd, the quotient|WG|/|WK | of

the orders of the Weyl groups is 2m.As theD±
k are distinct open orbits, it follows

from [11, Corollary 4.7] that they are exactly the openG0–orbits onZ. ut
Fix k andε. Let (V ,W) ∈ G/K = (X− × X+). SoV = [v] andW = [w]

wherev,w ∈ C
2+n are isotropic vectors with(v,w) 6= 0. Define

(5.20)

YV,W ={z ∈ Z | dim zj ∩ [v ∧ w] = 0 and dimzj ∩ [v ∧ w]⊥ = j

for j < k,

dim zj ∩ [v ∧ w] = 1 and dimzj ∩ [v ∧ w]⊥ = j − 1

for j = k,

v ∈ zj if ε = + andj = k; w ∈ zj if ε = − andj = k}.
Here⊥ refers to the symmetric bilinear form. Also, note that the only isotropic
vectors in[v ∧ w] are the multiples ofv and the multiples ofw.

We setD = D±
k soY = K(z±k ) = Yx−,x+ . If g ∈ G thengY = Ygx−,gx+ .

5.21. Lemma. If (V ,W) ∈ B × B thenYV,W ⊂ D±
k , soYV,W ∈ MD±

k
.

Proof. First considerD+
k . Letz′ ∈ YV,W . Forj = k we havev ∈ z′j . AsV ∈ B it

is positive definite for〈·, ·〉, so we need only check thatz′j ∩ [v∧w]⊥ is negative
definite for〈·, ·〉.
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Let u ∈ z′j ∩ [v ∧w]⊥. Here⊥ refers to the symmetric bilinear form(·, ·). If

〈u, u〉 = 0 thenU = [u] is in the closure ofB or in the closure ofB. In the first
case the pair(U,W) sits inG/K by the remarks at the beginning of the proof
of Theorem 3.8. Then(u,w) 6= 0, contradictingu ∈ [v,w]⊥. Similarly, in the
second case the pair(V ,U) ∈ G/K, so(v, u) 6= 0, contradictingu ∈ [v ∧w]⊥.
We have verified thatz′j ∩ [v ∧ w]⊥ is negative definite for〈·, ·〉. ut

Now (V ,W) 7→ YV,W defines a mapη : B × B → MD±
k

. If k = 1 and
ε = + thenη(V,W) depends only onV ; if k = 1 andε = − thenη(V,W)
depends only onW ; those are the cases whereD±

k is of holomorphic type. In the
nonholomorphic cases,η injectsB × B intoMD±

k
and we haveB × B ⊂ MD±

k
.

Theorem 5.1 is verified whenB is of type IV, and that completes its proof.ut
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