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Abstract .  Let Z = G/Q be a complex flag manifold and Go a real form of G. 
Suppose that Go is the analytic automorphism group of an irreducible bounded 
symmetric domain and that some open G0-orbit on Z is a semisimple symmetric 
space. Then the G0-orbit structure of Z is described explicitly by the partial 
Cayley transforms of a certain hermitian symmetric sub-flag F C Z. This extends 
the results and simplifies the proof for the classical orbit structure description of 
[10] and [11], which applies when F = Z. 

I n t r o d u c t i o n  

Let Z = G/Q be a complex flag manifold where G is a complex simple 
Lie group and Q is a parabolic subgroup. Let Go C G be a real form of 
hermitian type. In other words Go corresponds to a bounded symmetric 
domain B = Go/Ko. Suppose that  at least one open G0-orbit on Z is a 
semisimple symmetric space. 

The main result, Theorem 3.8, gives a detailed description of the G0- 
orbits in Z in terms of partial Cayley transforms. The orbits are given by 
DF,~ = Go(crc~z) where F and E are disjoint subsets of a certain set of 
strongly orthogonal roots, cr and c~ are the corresponding Cayley trans- 
forms, and z is a certain base point in Z. We give precise conditions for two 
orbits Dr,~, to be equal, for one to be contained in the closure of another, 
for one to be open, etc.. 

The case where Z is the compact hermitian symmetric space dual to 
Go/Ko was worked out directly by Wolf in [10] and [11], worked out from 
earlier results of Kors and Wolf [13] by Takeuchi [9] and again, later, by 
Lassalle [3]. The proof in our more general setting is independent of [10], 
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[11] and [13]. It is self contained except for a few general results from [10] 
on open orbits in a flag manifold and a decomposition in [14]. Some points 
of the proof simplify the corresponding considerations in [10] and [11], as 
noted in Remarks 3.10 and 3.11. 

See Wolf [10] for the more general setting of G0-orbits on general complex 
flag manifolds G/Q with no symmetry requirements. See Matsuki [5] for the 
more general setting of H-orbits  on G/Q where H is any subgroup that is, up 
to finite index, the fixed point set of an involutive automorphism of G. See 
Makarevi~ [4] for analogous considerations on symmetric R-spaces from the 
Jordan algebra viewpoint, where (although not formulated this way in [4]) 
primitive idempotents replace strongly orthogonal positive complementary 
roots as in Kor~nyi-Wolf [2] and Drucker [1]. And see Richardson and 
Springer [7], [8] for the the dual setting of K-orbits on G/B where B is a 
Borel subgroup of G. The results are much more complicated in these more 
general settings. The virtue of the present paper is that  it picks out a few 
somewhat more general settings in which the results are extremely simple. 

Notation and some basic definitions are established in Section 1. Then 
in Section 2 we work out the geometric basis for the G0-orbit structure of 
Z. We first prove every open G0-orbit on Z is symmetric, and at least 
one such orbit D = Go/Lo takes part in a holomorphic double fibration 
D +- Go/(LonKo) ~ B. Fix that open orbit D C Z. We may assume 
that the base point z C Z is chosen so that the isotropy subgroup L0 C 
Go is the identity component of the fixed point set G~ of an involutive 
automorphism a that  commutes with the Cartan involution 0. Then 0or is 
an involutive automorphism. Let M and M0 denote the identity components 
of its respective fixed point sets on G and Go. We then prove that Mo(z) is 
an irreducible bounded symmetric domain, that F = M(z) is an hermitian 
symmetric space and a complex sub-flag of Z, and that Mo(z) C F is the 
Borel embedding. 

In Section 3 we recall the partial Cayley transform theory [2], [13] for 
Mo(z) C F, and use it to specify the orbits Dr,~ = Go(crc~z) C Z. Then 
we state the main result as Theorem 3.8. The proof is carried out in Section 
4 for open orbits and in Section 5 for orbits in general. It follows that the 
G0-orbit structure of Z is exactly the same as the M0-orbit structure of F .  

The appendix contains a distance formula that  simplifies our arguments 
under certain circumstances and gives an interpretation of the results in 
Section 4 in terms of Riemannian distance in Z. 

1. T h e  d o u b l e  f i b ra t ion  

Fix a connected simply connected complex simple Lie group G and a 
parabolic subgroup Q. This defines a connected irreducible complex flag 
manifold Z = G/Q. Let Go C G be a r e a l f o r m ,  let go C g be the cor- 
responding real form of the Lie algebra of G, and fix a Cartan involution 
0 of Go and go. We extend 0 to a holomorphic automorphism of G and a 
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complex linear automorphism of 9, thus decomposing 

(1.1) 9 = ~ + s  and 90 = [o + So, decomposition into • 1 eigenspaces of 0. 

Then the fixed point set Ko = Go ~ is a maximal compact subgroup of Go, 
Ko has Lie algebra e0, and K = G e is the complexification of Ko. Ko is 
connected and is the Go-normalizer of ~0, and K is connected because G is 
connected and simply connected. 

The subspace 9u = eo + ~ So C 9 is a compact real form of 9. The 
corresponding real analytic subgroup G~ C G is a compact real form of G. 

We can view Z as the space of G-conjugates of q. Then gQ = z E Z = 
G / Q  corresponds to Qz = Ad(g)Q = {g C G I g(z) = z} as well as its Lie 
algebra q~ = Ad(g)q. 

From this point on we assume that  Go is of hermitian symmetric type, 
that  is, 

(1.2) s = ~+ | ~_ where K0 acts irreducibly on each of s+ and s_ = ~++ 

where { ~ ~ denotes complex conjugation of 9 over 90. Set S+ = exp(~+). 
So S_ = S+ where g ~ ~ also denotes complex conjugation of G over Go. 
Then 

p = ~ + ~_ is a parabolic subalgebra of 9 , 

(1.3) P = K S _  is a parabolic subgroup of G and 

X = G / P  is an hermitian symmetric flag manifold. 

Note that  ~+ represents the holomorphic tangent space of X and s_ = ~++ 
represents the antiholomorphic tangent space. As above we can view X as 
the space of G-conjugates of p. Then Go/(Go N P)  = Go /Ko  = Ad(Go)p 
is an open subset of X and thus inherits an invariant complex structure. 
Define 

B = Go/Ko  : 

(1.4) symmetric space Go/Ko  with 

the complex structure from X. 

The distinction between s_ and s+ in (1.2) is made by a choice of positive 
root system A + -- A+(9, ~) for 9 relative to a Cartan subalgebra I] -= ~ C 
of 9- The choice is made so that  ~+ is spanned by positive root spaces and 
consequently s_ is spanned by negative root spaces. 

Under our standing assumption (1.2), Theorems 2.12 and 4.5 of [10] say 
that  Go(z) is an open Go-orbit if and only if q~ contains a compact Caftan 
subalgebra. Since all compact Caftan subalgebras are Go-conjugate we have 

(1.5) a G0-orbit in Z is open iff it contains some z such that  ~ C qz. 



394 J. A. WOLF AND R. ZIERAU 

Now fix an open orbi t  D = Go(Z) with z chosen as in (1.5). Wri te  q for 
qz and decompose q in its Levi decomposit ion;  q = [ + r_ wi th  O C [ and r_ 
the nilradical  of q. Since [J0 C t~0, complex conjugat ion acts on root  spaces 
by ~ = g_~. Decomposing q into D-root spaces we see tha t  q N~ = [. Thus  
Go(z) = Go/Lo with L0 = Go n Q and L0 is a connected real reduct ive  
group having Lie algebra [0 = [ n fl0- In the terminology of [10] we have 
shown tha t  all open orbits for Go (satisfying (1.2)) are measurable.  Similarly 
Lu = G~ n Q is connected  and is the compact  real form of L, and it has Lie 
a lgebra [u = IJu N [. 

1.6. D e f i n i t i o n .  The  open orbi t  D = Go(z) C Z is symmetric if  it has the 
s t ruc tu re  of a pseudor iemannian  symmetr ic  space for Go,  t ha t  is, if  L0 is 
open in the fixed point  set G~ of an involutive au tomorph i sm 1 cr of Go. 

1.7. Remark. Suppose D is a symmetr ic  orbit  in Z. As ment ioned above, 
one may choose the base point  z, and the Levi factor  [ ofqz ,  so tha t  [1 C [. I t  
follows tha t  the involutive au tomorphism ~ is conjugat ion by some element  
of H .  Since the Car t an  involution is also conjugat ion by an element  of H ,  
cr and 0 commute .  

In a roo t  order  for which r_ is a sum of negative root  spaces, its complex 
conjugate  r+ = ~ is a sum of positive root  spaces, and g = [ + r_ + r+. We 
will wri te  v for ~_ + c+ and to for its real form 1~0 n ~, and ru for its "compact  
real  form" flu N ~. Now Theorems  2.7 and 4.3 in [14] specialize to 

1.8. P r o p  o s i t i o n .  Go = K0. expao(s0 N r0)-L0 and Gu = Ko. exPG.(Su N ~u)'Lu. 
If  D is symmetric, ao is a maximal abelian subspace of~oNso,  au = Vr2-1 ao , 
A0 = eXPao(a0), and Au = expa~(au) ,  then Go = KoAoLo and Gu = 
KoA~Lu. 

1.9. D e f i n i t i o n .  Consider the C ~ double f ibrat ion 

(1.1o) D = G o / L o  ~v Go/ (LonKo)  ~r% Go /Ko= B. 

The  open orbi t  D C Z is said to be of holomorphie type if  there  is a G o -  
invariant  complex s t ruc ture  on Go/(Lo N K0) and a choice of s+ such tha t  

7rD : Go/(Lo n Ko) --+ D and 7rB : Go/(Lo N Ko) ~ B 

are s imultaneously holomorphic,  of nonholomorphic type if there  is no such 
choice. 

The  orbits  of holomorphic  type  are character ized by this extension of [12, 
Prop .  1.3]: 

i In this case a must commute with the Cartan involution 0 such that K0 --- Go 0 , 
for 0(0) = b and that forces 0([) = [. Also, in this case, L0 is the identity 
component of G~. 
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1.11. P r o p o s i t i o n .  For the proper choice of s+ in (1.2), the following con- 
ditions are equivalent: 

(a) the open orbit D is of holomorphic type, 
(b) e i ther sN:+ = s + n : +  o r ~ n r +  = s _ n ~ + ,  
(c) either ~_ N ~+ = 0 or ~_ n ~_ = O, 
(d) one of q N p and q N ~ is a parabolic subalgebra of ~, 
(e) there is a positive root system A+(9, b) such that both ~+ and s+ are 

sums of positive root spaces, 
(f) there is a positive root system A+(9, b) such that q is defined by a 

subset of the corresponding simple root system q~, and �9 contains 
just one 9o-noncompact root. 

Proof. Fix a G0-invariant complex structure on Go/(Lo N K0). Then 9 = 
([ n ~) + v+ + ~_, vector space direct sum, where b~+ = ~_,  where ~+ 
represents the holomorphic tangent space, and where v_ represents the anti- 
holomorphic tangent space. This defines a G0-invariant almost-complex 
structure, and the integrability condition is that one (thus both) of ([N~)+v• 
be subalgebras of 9- 

Note that  dTr D is surjective. Thus the condition that ~D be holomorphic 
in (1.10) is that  it maps the holomorphic tangent space of Go/(LonKo) onto 
the holomorphic tangent space of D, in other words that r+ C t~+ C [ + ~+ 
where :+ represents the holomorphic tangent space of D. Similarly the 
condition that  ~B be holomorphic is that, for the correct choice of s• say 
s+, we have ~+ C v+ C ~ +s+ .  These two hold simultaneously if and only if 

~+ + ~ +  C tJ+ C ( [+  ~+) N (t~ +~+)  C ([N~) + r +  +~ +  , i.e., r+ + s +  = tJ+ . 

We have shown that D is of holomorphic type, which is condition (a), if and 
only if (~+ + s+) n (r+ + s+) = 0, which is equivalent to condition (e). Now 
it is straightforward to verify equivalence of conditions (a) through (f). [] 

2. S o m e  p r e l i m i n a r y  r e su l t s  

In this section we obtain some preliminary results for the open G0-orbits 
on Z and construct the hermitian symmetric sub-flag whose Cayley trans- 
forms will give the G0-orbit structure of Z. 

2.1. L e m m a .  If one open Go-orbit on Z is symmetric, then every open 
Go-orbit on Z is symmetric. 

Proof. Let D = Go(z) C Z be a symmetric open orbit. We may assume 
Q -= Qz and L0 = Go n Q open in G~ where (r is an involutive automorphism 
of Go. Thus the reductive part [ = q N ~ of q is of the form g~ where cr is 
an involutive automorphism of G that preserves 90. Now let D' ---- Go(z') C 
Z be another open orbit, Q' = Qz,, L' = Q' n Q', and L~ ---- Go n L'. 
Write z' -- g(z) where g E Gu. Now or' = Ad(g)aAd(g -1) is an involutive 
automorphism of G such that [' -- 9 ~'. 
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Complex conjugation ~ ~ ~ of g over g0 preserves [' = qz' N Tqz,. It thus 
commutes with a'.  Now a'  preserves go, so the real form [~ = g0 N [' of [' 

i f '  D' satisfies [~ = go �9 Thus is symmetric. [] 

Remark. Lemma 2.1 also follows from Remark 1.7. 

In order to describe the G0-orbit structure of Z it is best to start from 
the viewpoint of an open orbit of holomorphic type. For that  we need 

2.2. L e m m a .  There is an open Go-orbit on Z that is of holomorphic type. 
(The argument will exhibit two open Go-orbits of holomorphic type, but 
they can coincide.) 

Proof. Let D = Go(z) be an open orbit in Z. Choose any positive root 
systems A+([, 0) and A + (2, 0). Then we have positive subsystems 

~ +  = Z~o+(g, ~) = A+(fl  ~) u z~(t+, O) and 

A'+I = ~+1(~ ,  ~) = ~+(2 ,  0 ) u  A(s •  ~) 

for A(g, O). Let w+ 6 W(g, ~) be the Weyl group element that  sends A + to 
A+I and let g• e G represent w• Then by (1.5) Go(g• is open in Z 
because Ad(g+)0 -- 0. Further, s+ C Ad(g• so Ad(g• = 
0, and thus Go(g• is of holomorphic type by equivalence of (a) and (c) 
in Proposition 1.11. [] 

Now we need one more piece of background: the structure of the hermi- 
t• symmetric submanifold of Z that  later will pick out the G0-orbits on 
Z. Let D = Go(z) ~- Go/Lo as before, and suppose that  D is symmetric. 
Then we have commuting involutive automorphisms ~ and (r of Go, g0 and 
their complexifications such that  [o = g~ and 20 = g0 e. The corresponding 
(• decompositions are 

(2.3) g0 = 20 + So under 0 and g0 = [o + to under a. 

Now define 

(2.4) m = ~0~ = ([ n 2) + (t n ~) and m0 : go ee : ([o n 2o) + (to n So). 

Let M and Mo denote the corresponding analytic subgroups of G and Go. 
Any parabolic subalgebra containing a Cartan subalgebra 0 is specified 

by choosing a positive system of X-roots and specifying a subset of the simple 
roots (which will be in the nilradical). Therefore one can find some ~ E 0* so 
that  q : 0 + y:~aeA(g,O),a(O> 0 ga. In our situation ~0 C 2o so we may choose 

6 v/-L-T0~. It follows that  m n q ---- ([ n 2) + (r_ As) = }-~-~e/x(ra,~),~(~)>o g~, 

so m N q is a parabolic subalgebra of m. Now M(z) is a flag manifold and 
Mo(z) is an open Mo-orbit. The isotropy subgroup of M0 at z is Mo N Q 
= Mo n Lo = M o n  Ko,  which is the maximal compact subgroup Mo o of 
Mo. Now Mo(z) is a riemannian symmetric space of noncompact type with 
invariant complex structure. We have proved Part (i) of 
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2.5. P r o p o s i t i o n .  Let D = Go(z) C Z be a symmetric open orbit. 

(i) F = M(z) is a complex fla9 manifold of M, the open orbit Mo(z) is 
an hermitian symmetric space of noneompaet type, and Mo(z) C F 
is the Borel embedding. 

(ii) If D is of holomorphie type, then the bounded symmetric domain 
Mo(z) is irreducible. 

Remark. Part  (i) of Proposi t ion 2.5 requires neither tha t  Go be simple nor 
t ha t  it be of hermit ian  type. Par t  2 requires bo th  hermit ian type and simp- 
licity. 

Proof. Part  (i) is proved. To prove Par t  (ii) it suffices to show tha t  there is a 
positive root system for g such tha t  (a) there is just  one noncompact  simple 
root (as in Proposi t ion 1.11 (f)) and (b) the Dynkin diagram of m is obtained 
from the Dynkin  diagram of g by deleting a set of simple roots. Then either 
M0 is compact  or (which we now assume) it has jus t  one noncompact  local 
factor M~ ~, corresponding to the component  of the Dynkin  diagram of ra tha t  
contains the noncompact  simple root of g. Then Mo(z) = M~'(z), which is 
irreducible because M~' is simple. 

We may, and do, assume u Nb+ = 0 = r + N b _ .  By Lemma 1.11(c) 
and (f), we need only show tha t  m is the Levi component  of a parabolic 
subalgebra ro = m + u_ of g such tha t  u_ N 5+ = 0. Then G0(e) is an open 
orbit  of holomorphic type in E = G / W  where the base point e = 1W E E,  
and Proposi t ion 1.11 completes the argument.  

First ,  u_ = ([ n 5_) + (~ N r+) is a commutat ive  subalgebra of g because 

[ [ n s _ , [ N b _ ]  C [~_,5_] = 0, 

[t~ r3 ~+, t~ N r+] C [c+, r+] = 0, and 

[ [ n s_ , t ~  n 1:+] C [1:,1:+] n [E,e,_] C 1:+ me,_ = O. 

Second, m = (~ N [) § (r n s) is the fixed point set of an involution of t~, in 
par t icular  is a subalgebra of g. Third, m normalizes u_ because 

[~n ~,~ n,:+] c ~n F,~+] c ~ mr+ , 

[~n~,~ns_] c ~n[~,5_] c i n ~ _ ,  

[~ ns,~ n~+] = [L ns_,~ n ~+] c [L n~:+] n [s_,~] c '~n~, and 
[~:n~,~ ns_]  = [~+ n~+,~ns_]  c [~+ n I:] n [5+,~_] c ~n~+ .  

Now g is simple, m + u_ is a subalgebra with commutat ive  nilradical u _ ,  
and m is the fixed point set of an involution of ~. If  u_ = 0 then  ~ = [ and 
assertion (ii) is obvious. If  u_ r 0 then  m + u_ is a parabolic subalgebra of 
g, and (ii) follows. [] 

Remark. For open symmetr ic  orbits of holomorphic type the subgroups L 
and M may be described in terms of the Dynkin  diagram as follows. Fix a 
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positive system A+ as in Proposition 1.11(f). Then the set of simple roots 
H has exactly one noncompact root a and there is a root /3 E H, having 
coefficient one in the highest root, so that H \ {/3} is a set of simple roots 
for [. Conversely, if t3 E II is any simple root with coefficient one in the 
highest root then H \ {/3} defines a subalgebra [ and there is a corresponding 
open symmetric orbit of holomorphic type. Given L, A + and/3 as above, 
the Lie algebra m has a root system spanned by roots in A + for which the 
coefficients of a and 13 are equal. (This coefficient is 0 for roots in [ A ~ and 
is 4-1 for roots in ~ M ~.) The minimal root in r+ M s+ along with H \ {a,/3} 
forms a system of simple roots for m. Thus m M q is a maximal parabolic. 
This gives and alternative proof of the irreducibility of M0 (z). 

3. C a y l e y  t r a n s f o r m s  a n d  s t a t e m e n t  o f  t h e o r e m  

Following Lemma 2.2 we fix an open G0-orbit D = Go(z) C Z of holo- 
morphic type. We may, and do, assume r_ M s+ = 0 = r+ V/z_. 

As D is of holomorphic type, we can fix a positive root system 

(3.1) A+ = A+(9, 0) such that A(r+, t~) C A + and A(s+, I)) C A + . 

Then the maximal root 71 of A+($, b) belongs to A(r+ N z+, b) because 
it has positive coefficient along every simple root. Cascade down from 71 
within the subset A+(m, D) of A+(g, [)): at each stage, the next root 7i+1 is 
a maximal noncompact positive root orthogonal to {71, . . . ,  7i}, terminating 
the construction when no such root 7i+1 is available. This defines 

(3.2) 

= { 7 1 , . . . , 7 r } :  

maximal set of strongly orthogonal 

noncompact positive roots of m. 

Here recall that  roots a, fl E A(g, 0) are called strongly orthogonal if a + f l  
0 and neither of a • fl is a root, so that [g+~,~+~] = 0. 

Whenever a E A(g, [~) we denote the corresponding 3-dimensional simple 
subalgebra 9~ + 9 - -  + [ga, 9-~] by l~[a]. If a, fl E A(9, b) are strongly 
orthogonal then [9[a], 9[/3]] = 0. If E C A (9, 0) is a set of strongly orthogonal 
roots then 9[E] denotes the Lie algebra direct sum Y~aEE ~[a]. We write 
G[a] and G[E] for the corresponding analytic subgroups of G. When the 
roots are noncolnpact we denote real forms of the Lie algebras by 90[a] = 
flo M 9[a] and 90[E] = 90 M 9[E]; then G0[a] and Go [E] are the corresponding 
analytic subgroups of Go. Finally, if 7 E Cm then G[7](z ) is a Riemann 
sphere, and if E C ~m, then G[E](z) is the polysphere 1-I-~EE G[7](z). 

We make this a bit more explicit. For each a E A(z, I)) ere choose ea E Sa 
in such a way that (i) if a E A(~+, 0) then the almost complex structure of 
B = Go /K o  sends xa = ea + e - a  to Ya = v/-ZT (ea - e -a )  and sends Ya to 
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- x a  and (ii) [ea, e-a] = ha E ~. Thus, ea, e_~ and ha correspond to the 
standard basis of s[(2; C): 

[o;] 
e a  ( ) 0 0 ' e - a  ( ) 1 ' 0 -  " 

Then 

= x / ~ ( e ~  - e_~) for " / e  ~m (3.3) a0 = ao : real span of the y.~ 

is a maximal abelian subspace of to N ~0, and we define Cayley transforms 
as in [13]: 

so that  

(3.5) Ad(c~) maps x~ ~ x~, y~ ~ -h~,  h~ ~ y~; so ad(c2)t~0 = 0o �9 

An easy SL(2, C)-calculation shows the Go[7]-orbits on G[7](z) are the 
lower hemisphere Go [7] (z), the equator Go [7] (c~ z) and the upper hemisphere 
Go[7](c2 z). Thus 

(3.6) 
the Go[qYm]-orbits on G[kOm](z) are 

the Go[q~m](ccc~z) (C, E C ~m, disjoint). 

Here ~ \ (F U E) indexes the lower hemisphere factors, F indexes the equa- 
torial factors, and E indexes the upper hemisphere factors. With this in 
mind we denote some G0-orbits on Z by 

(3.7) Dr,~ -- Go(crc~z) whenever F and E are disjoint subsets of Om. 

Whenever we write Dr,~ it will be implicit that the subsets F, E COm are 
disjoint. The main result of this paper is 

3.8. T h e o r e m .  Suppose that the open Go-orbits on Z are symmetric. Let 
D = Go(z) be an open Go-orbit ofholomorphic type. In the notation above, 

(i) Z is the union of the sets Dr,~, 
(ii) Dr,~ = KoGo[~m](crc2z), 

(iii) Dr,~ is open in Z if and only if P = Z,  
(iv) the closure of Dr,~, is the union of the Dr,,~, with E' C E and 

F U E  C F l U E  I, 
(v) Dr,~ --- Dr,,~, if and only if the cardinalities IFI = IF' I and ]E I = 
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In particular, the map Mo(crc~z) ~ Dr,~ is a one to one map from the set 
of all Mo-orbits on F onto the set of all Go-orbits on Z. 

3.9. Remark. Define Da,b = Dr,~ with a = ]El, b = ]~m I - IF U El, and 
F N E empty. This is well defined by Theorem 3.8(v). Now Theorem 3.8(iv) 
becomes: the closure of D~,b is the union of D~,,b, with 0 ~ a I __< a and 
O<_bl <_b. 

3.10. Remark. Theorem 3.8 gives a generalization of the orbit structure 
([13], [10], [11]) for a noncompact real Lie group of hermitian symmetric 
type acting on the dual hermitian symmetric flag manifold. The proof here 
is independent of [11]. The orbit structure results of [13], [10] and [11] are 
recovered as the case cr -- 0. In particular Theorem 3.8(i) through Theorem 
3.8(v) hold with Z replaced by F = M(z)  and Dr,~. = Go(crc2z) replaced 
by Mo(crc~z). The one to one correspondence between M0-orbits on F and 
G0-orbits on Z follows immediately. 

3.11. Remark. The most delicate part of the proof of Theorem 3.8 is the 
proof that  open orbits Do,~. and D~,~., are distinct when [E[ ~ [E' I. In the 
case F = Z of [10] and [11], this follows immediately from a simple distance 
argument using geometric ideas from [14]. Those considerations prove that  
inf~,cD~,~ distz(z' ,  K0(z)) 2 = [E I where distz is the distance for a properly 
normalized Gu-invariant riemannian metric on Z. (This simplifies the rather 
elaborate argument in [10] and [1110 The same distance formula, properly 
interpreted for the pseudoriemannian context, holds in general as a corollary 
to Theorem 3.8. The proof of Theorem 3.8 would be simplified if one could 
prove the distance formula first, but we have not been able to do that. See 
the appendix for details. 

4. T h e  o p e n  o rb i t s  

We first check that Z is the union of the sets Dr,~. Note that  Z = 
Gu(z) = KoAu(z)  by Proposition 1.8, that Au(z) C G[~m](z), and that 
G[~m](z) is the union of the Go[~m](crc~z) by (3.6). Thus Z is contained 
in the union of the Go(crc~z) = Dr,~. Assertion (i) of Theorem 3.8 is 
proved. 

The remainder of this section contains the proof of the following lemma. 

4.1. L e m m a .  (a) The Go-orbits D~,~ are open and (b) D~,~ = Do,E, just 
when IEI = ]E' I. 

(We will see in Section 5 that  every open orbit is of the form D~,r . )  

Proof. Fix a subset E C ~9 m and set z I = c~(z). Then the G0-stabilizer of 
z I contains the compact Cartan subgroup H0 of Go, by (3.5) and (1.5) so 

(4.2) Do,~ = Go(z ~) is open in Z. 

This proves (a). 
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Now the Go-stabilizer of z' is a real form of the reductive part of Q~, = 
Ad(c~)Q. It has Lie algebra [~ = 9o n [' where [' = Ad(c~)q M Ad(c2)q. If 
7 E t9 m t h e n ~ =  O(c,r) = cr(e,r) = c~ 1. Again from (3.5), c~ E Ko. If 

E go then 

( A d ( c 2 ) a A d ( c ~ 2 ) ) ( ~ )  = ( A d ( c ~ 2 ) a A d ( c ~ ) ) ( ~ )  = (aAd(c~))(~)E 90. 

Thus 90 is stable under (r' = Ad(c~)(TAd(c~2). This shows [~ = 9o �9 Now 
the Go-stabilizer of z' is 

(4.3) 
L~ : identity component in the fixed point set 

of a '  = Ad(e~)aAd(e~:2). 

In (4.3) notice that a'O : Ad(c~)a A d ( c ~ ) 0  = Ad(c~)a0 Ad(c~) = 
A d ( 4 ) o .  A d ( 4 )  = 0 Ad(4 )  = In particular 0(r' is another 

involutive automorphism of G that stabilizes Go. 
As in (2.3) and (2.4) we have the (+l)-eigenspace decomposition 9o = 

[~ + r~ for ~', and we use the involutive automorphism Oh' to define 

= ' 9o e~'' = (l~ n ~o) + (r~ n so) .  (4.4) m ' = 9  e~' ( [ ' n t ) + ( r ' O s ) a n d m  0 =  

M'  and M~ denote the corresponding analytic subgroups of G and Go. 
As m' is 0-stable, it decomposes as a direct sum m' = m'no~c | rrffcomp of 

! 
ideals, where m~on~' is generated by r' N s and where mcomp C {L Note that  
[(r'_ N s+) + (r~_ M s_), (c~_ M s+) + (r" M ~_)] = 0. Thus m' decomposes 
further, as follows, into a finer direct sum of ideals: 

(4.6) 

m ! / / e/  = m 1 G rn 2 G w h e r e  

rn~ is generated by (r'_ A s+) + (r~_ M ~_), 

m~ is generated by (r~_ M s+) + (r ~_ M z_), 

and d = m/cornp C ~.  

But (3.5) gives us Ad(cp,)2e~ = e_.~ and Ad(c~)2e_.r = e~ for -y E E, 
Ad(cp,)2e~ = e~ and Ad(c~)Ze_~ = e_~ for 7 E ~m \ E. It follows that 
Ad(cp,)2(e+~) E r~ for 7 E E and Ad(cp.)2(eq-.r) E r'~ for 7 E ~m \ E. Thus, 
Ad(cp.)2(% - e_y) is in m] for 7 E E and is in m~ for 7 E ~m \ E. It follows 
from (3.3) that  m~ has real rank I E] and rn~ has real rank 10 m \ El. 

Suppose De,p/ = Do p.,,. Let q' = Ad(c~,)q as for E and set q" = 
Ad(c~,,)q. Let z" = c~,,z  and let L~ denote the isotropy subgroup of Go at 
z". Express [" = 9 ~'', m" = 9 ~ etc. As De,p., = De,p.,, we can choose 
go E Go with Ad(go)q" = q'. Then Ad(go)L~ = L~, so Ad(go)Ho is just 
another compact Caftan subgroup of L~. Choose an element g E L~ that  
conjugates Ad(go)Ho back to Ho. Now Ad(ggo) preserves H0 and sends q" to 



402 J. A. WOLF AND R. ZIERAU 

q~. It represents a Weyl group element w E W(G0, H0) = W(Ko,  Ho). Here 
w sends the nilradical d ~ of q" to the nilradical r ~_ of q~. Taking complex 
conjugates, w sends ~ to r~_. Evidently w preserves the Ad(K0)-invariant 

" t o  ' f o r i = l , 2 ,  s o l E ' l = l E " l b y  subspaces s+ and s_.  Now w sends m/ m~ 
the real rank remark just after (4.6). 

Conversely, let E p, E" C qm. In view of Proposition 2.5, the subgroup 
of the Weyl group W(M0, H0) that stabilizes ~m acts as the group of all 
permutations of ~ .  See [6]. If 1 '1 = I "1 we choose an element w E 
W(M0, Ho) that sends E ~ to E" and preserves ~ .  Let k E/Co represent w. 
Then D~,~,, = Go(c~,,z) = Go(kc~,z) = Go(c~,z) = D~,~,,. 

This completes the proof of the lemma. [] 

5. P r o o f  for  gene ra l  o rb i t s  

We now consider orbits in general. In the notation of (4.5) the closure 
cl(D~,~) contains the closures cl(k G0[@~](z')) -- k cl(G0[~m](z')) for 
all k E K0. On the other hand, cl (G0[~m](z')) is closed in the polysphere 
G[~m](z'), hence compact. Now Ko-cl (Go[~m](z')) is compact, hence closed 
in Z. It follows from (4.5) that cl (Do,~) = K0.cl (G0[~m](z')). The G0[~m]- 
orbit structure of the polysphere G[~ m] (z') is given by (3.6). It follows that 
cl ( G 0 [ ~ ] ( z ' ) )  is the union of the el (Go[~](cr ,  c~,z)), where F' and E' are 
disjoint subsets of ~m and E ~ C E C E' U F ~. As cl (Do,~) is G0-invariant, 
this proves the closure of Do,~ in Z is 

(5.1) 
cl(Do,~,) = Ur , c~c~ ,u r , ,~ ,n r ,=o  K~176 

UE'cECE'UP',E'nF'=~ DF,,E, �9 

If P', E ~ C ~m are disjoint and if D is an open G0-orbit on Z then 

(5.2) Dr,,~., C cl (D) iff D is of the form Do,~ with E' C E C E' U F'. 

In particular the Dg,E are the only open orbits, and 

(5.3) Dr,,~, is in the closure of exactly IF'I + 1 open orbits. 

Now fix pairs F p, Z t C ~m and F", Z ~ C ~m of disjoint subsets of q~m. 
If IF'[ -- IF"[ and [E'I -- IE" I then, as in the argument that [Z' I -- Iz"l 
implies Dg,~., -- Do,•,,, [6] provides w E W(M0, H0) that sends F ~ to F", 
sends E ~ to E", and preserves ~ .  It follows that KoGo[q2m](cr,,c~,,z) -- 
KoGo[~m](cr, c~,z), in particular that Dr,,,~,, -- Dr,,~,. 

Conversely suppose Dr,,v., = Dr,,,~.,,. By (5.3) we may assume [F'[ = 
IF"[. Applying [6] as in the argument that [Z'l = [E"[ implies D~,~, = 
Dz,~, , ,  we may further assume that F' -- F". Call it F and enumerate 
F = { a l , . . . , a t } .  Following (5.2), the only open orbits whose closures 
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contain Dr,r`, are the D~,r` with E = E'  U { a l , . . . ,  a i} where 0 _<_ i =< t. 
Similarly, the only open orbits  whose closures contain Do,r,,, are the Do,r` 
with  E = E ' U { a l , . . . ,  a i}  where 0 <_ i _< t. These collections of open orbits  
are the same, so now I E'l = I Z"l. We have proved 

(5.4) Do,,r`, = Do,,,r`,, if and 0nly if Ir ' l  = I r" l  and IE'I = I "1. 

Sta tements  (i), (iii), (iv) and (v) of Theorem 3.8 are proved; (ii) remains. 
In the  course of the proof  of (5.4) we proved tha t  

(5.5) 
Ko Go [~ m] (co, c 2, z) = Ko Go [~ m] (co,, c21, z) 

if and only if Ir'l = Ir"l and [E' I = I~"1. 

Fix a collection C of disjoint pairs (P, E) of subsets  of q2 m such tha t  Z -- 
U(o,r`)cc Do,~,, disjoint union. Express 

z = K0a[ m](z)= [_J K0a0[ m]( o,c ,z) 
F I , E  ~ 

where the union runs over all disjoint pairs (F/, E I) of subsets  of ~m. Each 
KoGo[q2m](cr,c2,z) is contained in some Dr,r` ,  (F, E) E C. Compare  (5.4) 
and (5.5) to see tha t  each KoGo[~m](cr, c~,z) is equal to its ambient  Dr,r,.  
Now Dr,r,  = KoGo[q~m](crcezz) whenever F and E are disjoint subsets  of 
~rn. Tha t  is s ta tement  (ii) of Theorem 3.8. It completes  the proof. [] 

A p p e n d i x .  The  d i s tance  formula  

We expand on Remark  3.11 and give some details. Recall from the dis- 
cussion after  (3.2) tha t  G0[tgm](z0) is a polysphere (product  of Riemann 
spheres) holomorphical ly embedded  in Z. We endow Z with a G,- invar iant  
metric,  as follows. The  factors of the polysphere are pe rmuted  transi t ively 
by certain elements of K0. This allows us to scale a G~-invariant metric  so 
tha t  the  distance from pole to equator  in each of the factors is 1. Using this 
metric  to calculate distance we set 

(A.1) distz(Y,D) = inf d i s t z (y , z )  
yCY, zED 

where Y = Ko(zo) and D is an open orbit. The following corollary is a 
consequence of Theorem 3.8. 

A.2. C o r o l l a r y .  distz(Y, Do,r ,)  2 = IE]. 

Proof. Let z E D~,E. There is a minimizing geodesic from Y to z which 
is necessarily orthogonal  to Y. Translat ing by some k0 C K0 we obta in  a 
minimizing geodesic 3'(t) from z0 to k o i of the same length and or thogonal  to 
Y. Thus  "~(t) = exp(t~) for some ~ C i(s0 N t0). But  ~ is (K0 M L0)-conjugate  
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to an element of a~ C 9~[~m]. We translate by an element of K0 n Lo 
and obtain a minimizing geodesic from z0 to a point of G~[~ m] (z0) n Dz,~.. 
Theorem 3.8 says, among other things, that 

Gu[~ ] ( z0 )  n D z , z  -- Ul~,l:r2lGO[~](c2,zo). 

Thus distz(Y, Do,~.) 2 >-_ I~1. But distz(z0, Go[~m](c~zo)) = IZI, so we have 
equality. [] 

As mentioned in Remark 3.11, this distance formula may be proved di- 
rectly in case Z -- G/KP•  In that case it provides a simple proof that 
Do,2 = D~,~, implies I~t = I~'[. This is done as follows, and it simplifies 
the argument of [10] and [11]. 

A.3. T h e o r e m .  Let Z = G / K S •  and Z C q  ~g. Then distz(zo,Dz,2)2=]ZI. 

Proof. By Lemma 2.1 and []4, Theorem 4.3], Dz,~ = KoGo[~m](c~zo). Let 
7(t) be a minimizing geodesic from z0 to koz for some z E Go[~m](C2Zo). 
Translating by ko 1 we get a minimizing geodesic from z0 to z of the form 
exp(t~) with ~ E i(z0 N 90[~]) .  The polysphere is totally geodesic in Z, 
so the length of the minimizing geodesic is the distance from z0 to z in the 
polysphere. Thus the minimum distance from Do,z to z0 is the minimum 
distance in the polysphere, which is IEI. [] 
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