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PART 1. COMPLEX FLAG MANIFOLDS.

In this part we indicate the basic facts for real group orbits on complex
flag manifolds.

§1. PARABOLIC SUBALGEBRAS AND COMPLEX FLAGS.

Fix a complex semisimple Lie algebra g and a Cartan subalgebra h C g.
Let ¥ = X(g,h) denote the corresponding root system, and fix a positive
subsystem ¥+ = X% (g, h). The corresponding Borel subalgebra

(1.1) b=h+ > goCog

aeXt

has its nilradical! b=" = 5" g_,, and a Levi complement §.

In general a subalgebra s C g is called a Borel subalgebra if it is Int (g)—
conjugate to a subalgebra of the form (1.1), in other words if there exist choices
of h and X% (g, h) such that s is given by (1.1).

Let G denote the (unique) connected simply connected Lie group with Lie
algebra g. The Cartan subgroup of G corresponding to h is H = Zg(h). It
has Lie algebra h, and it is connected because G is connected, complex and
semisimple. The Borel subgroup B C G corresponding to a Borel subalgebra
b C g is defined to be the G—normalizer of b, that is,

(1.2) B={geG|Ad(g)b =b}.

Here are the basic facts on these Borel subgroups.

1.3. Lemma. B has Lie algebra b, B is a closed connected subgroup of G,
and B is its own normalizer in G.

Proof. B is closed in G by definition (1.2). It follows that the normalizer
E = Ng(B) is closed in G, so E is a Lie subgroup. Let ¢ denote the Lie
algebra of E. Then b C ¢ and [¢,b] C b. Any subalgebra of g that properly
contains b must be of the form b+3_ s go with S C ¥+, because h C b. Thus
it would contain a 3-dimensional simple subalgebra and could not normalize
b. Now ¢ = b, in particular E normalizes b, so E = B. This shows both that
B is its own normalizer and that B has Lie algebra b. Finally, B is connected
because the Weyl group W (g, h) is simply transitive on the set of all positive
subsystems of X(g, b). O

The other basic facts are not quite as obvious.

1Here we describe the nilradical as a sum of negative root spaces, rather than positive,
so that, in applications, positive functionals on § will correspond to positive bundles (instead
of negative bundles), and holomorphic discrete series representations will be highest weight
(instead of lowest weight) representations.
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1.4. Lemma. Let G, C G be a compact real form. Then G, is transitive on
X = G/B, and X has a Gy—-invariant Kaehler metric. In particular X has
the structure of compact Kaehler manifold.

Proof. 1t suffices to consider a G, constructed by means of a Weyl basis of g
using h and ©*. This yields a real form g, C g on which the Killing form is
negative definite. Then the G—normalizer of g, coincides with the real analytic
subgroup of G for g, , that is, G, . By construction h, = g, N b is the real
form of h on which the roots take pure imaginary values, and gNb = b,,. Now
a dimension count shows that the G,—orbit of the identity coset zo = 1B €
G/B = X is open in X. It is also closed in X because G, is compact. This
proves the transitivity, and thus proves that X is compact.

Let A € h* such that (\,a) > 0 for every @ € . Extend X to a linear
functional on g by A(gy) = 0 for every v € X, and view it as a 1-cochain for
Lie algebra cohomology of (g,h). Then dX is a 2—cocycle on G,/H, = X,
and as a 2-form it combines with the complex structure to define a Kaehler
metric. Thus, for every ) in the positive Weyl chamber of (g,h, %), we have
a G,—invariant Kaehler metric on X. O

1.5. Lemma. There is a finite dimensional irreducible representation ™ of
G with the following property: Let [v] be the image of a lowest weight vector
in the projective space P(V;) corresponding to the representation space of .
Then the action of G on V; induces a holomorphic action of G on P(V;), and
B is the G-stabilizer of [v]. In particular X = G/B is a complete projective
variety.

Proof. For example, let p = %—2 acx+ @ as usual and let 7 be the irreducible
representation of highest weight p. The lowest weight is —p and the assertions
are immediate. O

1.6. Lemma. B is a mazimal solvable subgroup of G.

Proof. The argument of Lemma 1.3 shows that b is a maximal solvable subal-
gebra of g. If E C G is a solvable subgroup, and B C E then the closure of E
in G has those same properties, so we may assume E closed in G. But then F
has a Lie algebra that is not solvable, so E is not solvable. We conclude that
B is maximal solvable. O

A theorem of Borel says that any solvable subgroup of G has a fixed point
on the complete projective variety X; this is conjugate to a subgroup of B. This
gives another proof of Lemma 1.6, in fact it shows that the Borel subgroups
are exactly the maximal solvable subgroups of G. That’s how Borel originally
defined them. The Borel subalgebras and subgroups given by (1.1) and (1.2)
are the standard Borels.

A subalgebra p C g is called parabolic if it contains a Borel subalgebra.
For example, let ¥ be the simple root system corresponding to £* and let ®
be an arbitrary subset of ¥. Every root a € ¥ has a unique expression

(1.7) a=)" ny(@)y

Yevr
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where the n,(a) are integers, all 2 0 if € St and all S0ifa € ¥~ = -X+.
Set

(1.8) ®" = {a € T | ny(a) = 0 whenever 3 ¢ @}

and

(1.9) o ={aceZt|a¢®}={a€X|ny(a)>0 for some 1) ¢ B}.
Now define

(1.10)  ps=ph+pz" withph=b+ ) geandpz"= > goa-
a€EPT aedn

Then ps is a subalgebra of g that contains the Borel subalgebra (1.1), so it is
a parabolic subalgebra of g.

1.11. Proposition. Let p C g be a subalgebra that contains the Borel subal-
gebrab =Y+ s+ 0-a of 9. Then there is a set D of simple roots such that
p=">rs.
Proof. Define ® = {1 € ¥ | gy C p}. Then ps C p, and we must prove
p C pp . Both contain b, so this comes down to showing that o € £+,g, Cp
implies ny(c) = 0 whenever 1 € ¥\ ®. We will prove this by induction on the
level £(a) = Y ny ().

If £(a) = 1 then « is simple, so g, C p implies @ € ®. Then 1) ¢ @ implies
¥ # a so ny(a) =0.

Now let £(a) = £y > 1 and suppose that ny (y) = 0 for all ¢’ € ¥\ @,
whenever v € ©* and g, C p with £(y) < £. Suppose first that we can (and
do) choose ¢ € ® such that v = oo — ¢ is a root. Then

9y = [a, -] C [p,67"] C [p,p] C p.

If ¢’ € U\ @, then ny (a) = ny(y), which is zero by the induction hypothesis.
Suppose second that we cannot (and do not) choose 9 from among the elements
of ®. Then

gy = [8a>8-+] C [p,67"] C [p,p] Cp,

so 1 € ®, a contradiction. We have proved ny/(y) = 0 for all ' € ¥\ &.
Proposition 1.11 is proved. O

The parabolic subgroup P C G corresponding to a parabolic subalgebra
p C g is defined to be the G—normalizer of p, that is,

(1.12) P={geG|Ad(g)p =p}.

The basic facts on parabolic subgroups are most easily derived from the corre-
sponding results for Borel subgroups. However, the two notions were developed
separately, and from different viewpoints, in the 1950s.
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1.13. Lemma. The parabolic subgroup P C G defined by (1.12) has Lie
algebra p. That group P is a closed connected subgroup of G, and P is its own
normalizer in G. In particular, a Lie subgroup of G is parabolic if and only if
it contains a Borel subgroup.

Proof. The argument of Lemma 1.3 shows that P has Lie algebra p, is closed
and connected, and is equal to its own G-normalizer. Let S C G be a Lie
subgroup that contains a Borel subgroup B. Then its Lie algebra s contains b,
hence is parabolic. Because S is pinched between the analytic subgroup of G
for s and the G—normalizer of s, which coincide because parabolic subgroups
are closed and connected, S is the parabolic subgroup of G for s. O

Let B C P C G consist of a Borel subgroup contained in a parabolic
subgroup. Then we have complex homogeneous quotient spaces X = G/B
and Z = G/P and a G—equivariant holomorphic projection X — Z given by
gB — gP. In particular, transitivity of G, on X gives transitivity of G, on Z
in

1.14. Lemma. Let G, C G be a compact real form. Then G, is transitive
on Z = G/P, and Z has a G,—invariant Kaehler metric. In particular Z has
the structure of compact Kaehler manifold.

The argument of Lemma 1.4 is easily modified to prove the Kaehler state-
ment in Lemma 1.14. Just take A in the dual space of the center of p” such
that (A, @) > 0 for all a € ™. :

1.15. Lemma. Fiz a standard parabolic subgroup P = Pg in G. Then there
is a finite dimensional irreducible representation w of G with the following
property: Let [v] be the image of a lowest weight vector in the projective space
P(V,) corresponding to the representation space of w. Then the action of G on
Vi induces a holomorphic action of G on P(Vy), and P is the G-stabilizer of
[v]. In particular Z = G/P is a complete projective variety.

Proof. We use the argument of Lemma 1.5, with a different choice of highest
weight. Recall p =13 o, o and set pg = 1> 4. c+ a. If 9 € ¥ now 2%%%1
islifyp € ®,is 0if ¢p ¢ ®. Now let m be the irreducible representation of G
with lowest weight —(p — ps), in other words highest weight w(p — ps) where
w is the element of the Weyl group that sends X% to its negative. Then the
assertions are immediate. O

At this point we summarize, as follows.

1.16. Proposition. Let P be a complex Lie subgroup of G. Then the following
conditions are equivalent. (1) G/P is a compact complez manifold. (2) G/P
is a complete projective variety. (3) If G, denotes a compact real form of
G then G/P is a G,-homogeneous compact Kaehler manifold. (4) G/P is
the projective space orbit of an extremal weight vector in an irreducible finite
dimensional representation of G. (5) G/P is a G-equivariant quotient manifold
of G/B, for some Borel subgroup B C G. (6) P is a parabolic subgroup of G.

We will simply refer to these spaces Z = G/P as complex flag manifolds.
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References for §1.

e A. Borel, “Groupes linéaires algébriques”, Ann. of Math 64 (1956),
20-82.

e A. Borel, “Linear algebraic groups”, Benjamin, 1961.

e A. Borel, “Linear algebraic groups”, Second Enlarged Edition, GTM
126, Springer—Verlag, 1991.

o A. Borel & J. Tits, “Groupes réductifs”, Publ. Math. LH.E.S. 27
(1965), 55-150.

e J. Tits, “Sur certains classes d’espaces homogénes de groupes de Lie”,
Memoir, Belgian Academy of Sciences, 1955.

e J. Tits, “Espaces homogeénes complexes compacts”, Comment. Math.
Helv. 37 (1962), 111-120.

§2. INTERSECTIONS OF PARABOLICS.

In order to examine the orbit structure of a complex flag manifold Z =
G/P under the action of a real form Gy of G, we need to know that the
intersection of any two parabolic subgroups of G contains a Cartan subgroup.

The Bruhat Lemma for the complex flag manifold X = G/B is as follows.
We may assume B given by (1.1) and (1.2). Consider the Weyl group W =
W(g,h) = Ng(H)/H. Given w € W choose a representative s,, € Ng(H).
Let o = 1B € G/B = X. The crudest form of the Bruhat decomposition is
sufficient for our needs. Here is the statement; I won’t give a proof.

2.1. Lemma. X is the disjoint union of the B-orbits B(syzo),w € W.

In fact this decomposes X as a union of cells. To see that, one first notes
that the isotropy subgroup of B at s,,z¢ is the analytic subgroup B,, of G with
Lie algebra b, = b+ > Bew(s+) 9-8- One then checks that this decomposes
B = N,(Bn B,,) where N, is the unipotent analytic subgroup of G with Lie

algebra
Ny = Z 9—a -
aeXtnw(Z-)

Thus the map £ — exp(&)sy,Zo gives a diffeomorphism of the real vector space
Ny onto the orbit B(sy,Zo)-

2.2. Lemma. If P, and P, are parabolic subgroups of G then Py NP, contains
a Cartan subgroup of G.

Proof. Let b and b’ be Borel subalgebras of g. We will show that bNb’ contains
a Cartan subalgebra of g. For this, we may assume that b is our standard Borel
b+ > aes+ —a- Let B and B’ be the corresponding Borel subgroups of G.
Then B’ is the G—stabilizer of a point ' € X = G/B. Following the Bruhat
Lemma 2.1 we may take =’ = bs,zq for some b € B and w € W. Without
loss of generality we conjugate by b~!. Now we may assume z’ = s,,7o. Then
B’ = Ad (sy)B so b’ = ad (s,,)b, which contains b.
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If h € H then h normalizes both b and b’, so h € BN B’. Thus the
intersection of two Borel subgroups contains a Cartan subgroup. The lemma
follows. a

2.3. Corollary. Let T denote complex conjugation of g over a real form go .
Let p be a parabolic subalgebra of g. Then p N Tp contains a T-stable Cartan
subalgebra of g.

Proof. Set q =pN7p. It is a 7—stable complex subalgebra of g, so qo = goNyq is
a real form of q and 7 induces the complex conjugation of q over qo. Choose a
Cartan subalgebra jo of qo. Its complexification j is a Cartan subalgebra of g.
Lemma 2.2 says that q contains Cartan subalgebras of g. Thus j is a 7—stable
Cartan subalgebra of g. a

References for §2.

e F. Bruhat, “Sur les représentations induites des groupes de Lie”, Bull.
Soc. Math. France 84 (1956), 97-205.

e Harish-Chandra, “On a lemma of F. Bruhat”, J. Maths. Pures Appl.
35 (1956), 203-210.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex flag
manifold, I: Orbit structure and holomorphic arc components”, Bull.
Amer. Math. Soc. 75 (1969), 1121-1237.

§3. REAL GROUP ACTIONS.

Let Gy be a real form of G. In other words, Gy is a Lie subgroup of G
whose Lie algebra go is a real form of g. Although G is connected, G, does
not have to be connected. We write 7 both for the complex conjugation of g
over go and for the corresponding conjugation of G over Gy .

Fix a parabolic subgroup P C G and let Z denote the corresponding
complex flag manifold. Since P is its own normalizer in G, we may view Z as
the space of all G-conjugates of p, by the correspondence gP > Ad(g)p. We
will write p, for the parabolic subalgebra of g corresponding to z € Z, and will
write P, for the corresponding parabolic subgroup of G.

Here is the principal trick for dealing with Go—orbits on Z. We will use
it constantly. Consider the orbit Go(z). The isotropy subgroup of Gy at z is
GoNP,. That isotropy subgroup has Lie algebra goNp,, which is a real form of
p,N7p,. Lemma 2.3 says that p, N7p, contains a 7-stable Cartan subalgebra
h of g. Now p, contains a Borel subalgebra of g that contains ). Express that
Borel as b=h+ ) cx+ 8a for an appropriate choice of positive root system
¥+ = X+(g,h). We have proved

3.1. Theorem. Let Gg be a real form of the complex semisimple Lie group
G, let T denote complex conjugation of g over go, and consider an orbit Go(z)
on a complex flag manifold Z = G/P. Then there exist a T-stable Cartan
subalgebra b C p, of g, a positive root system X+ = £t(g,h), and a set ® of
simple roots, such that p, = ps and P, = Py .
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3.2. Corollary. In the notation of Theorem 3.1, p, N 7P, is the semidirect
sum of its nilpotent radical

(p3™ N TPE™) + (p3 NTPE™) + (p3™ N 7P})

with the Levi complement
PeNTPR=b+ >  ga.
eTNTET
In particular, dimg go N p, = dimc p% + |2™ N 78"
Proof. The subspace (pz" N7p3z") + (p5 NTp3") + (p3" N 7P%) of ps N The
is the sum of all root spaces g, C ps N 7Pps such that g_o Z ps N 7pas. So
it is the nilradical of ps N 7ps . The subspace p3 N 7P5 = h + D grarer Ja
is a reductive subalgebra that is a vector space complement, so it is a Levi
complement. Now compute
dimg go NP,

= dimc pgs N TP = dimc h + |(2" U ™) N7(2" U @7)|

= (dimch + [®" N7O"| + |®" N 7@"| + |®" N T®"|) + |@" N TO"|

= dim¢ p3 + |2" N 7D"|
as asserted. a

3.3. Corollary. In the notation of Theorem 3.1, codimg(Go(2) C Z) =
|2 N7®"|. In particular, Go(z) is open in Z if and only if D" NTO™ is empty.

Proof. In view of Corollary 3.2, the codimension in question is given by
codimg(Go(z) C Z)
= dimg Z — dimg Go(z)
= 2|®"| — [dimg G — dimg(Go N P,)]
=2|®"| — [(dimg b + |®"| + 2|@") — (dimg h + |27| + |@" N 72"|)]
= |®" N 73"
as asserted. O

3.4. Corollary. The number of Go-orbits on Z is finite. The mazimal-
dimensional orbits are open and the minimal-dimensional orbits are closed.

Proof. The number of Gy—conjugacy classes of Cartan subalgebras by C go is
finite. So the number of Gy—conjugacy classes of T—stable Cartan subalgebras
h C g is finite. Given such an §, the number of positive root systems T+ is
finite. Given (h, ), the number of sets ® of simple roots is finite. Thus the
number of possibilities for Pg is finite up to Gy—conjugacy. This proves that
the number of Go—orbits on Z is finite. It also gives a (very) rough upper
bound on the number. The other statements follow because the closure of an
orbit is a union of orbits. a
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References for §3.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex flag
manifold, I: Orbit structure and holomorphic arc components”, Bull.
Amer. Math. Soc. 75 (1969), 1121-1237.

e J. A. Wolf, “Fine structure of hermitian symmetric spaces”, in “Sym-
metric Spaces”, ed. W. M. Boothby & G. L. Weiss, Marcel Dekker,
1972, pp. 271-357

§4. OPEN ORBITS.

Fix a Cartan involution € of gy and G¢. In other words 6 is an automor-
phism of square 1 and, using Gy C G so that g¢ is semisimple and G¢ has finite
center, the fixed point set Ko = G is a maximal compact subgroup of Gy .
Thus go = & + 50 where & is the Lie algebra of K and is the (+1)—eigenspace
of @ on go, and s¢ is the (—1)—eigenspace. The Killing form of g is negative
definite on £y and is positive definite on sy, and ¢, L sy under the Killing form.

Every Cartan subalgebra of go is Ad(Gp)—conjugate to a f—stable Cartan
subalgebra. A 6-stable Cartan subalgebra hy C go is called fundamental
if it maximizes dim (ho N &), compact if it is contained in &y, which is a
more stringent condition. More generally, a Cartan subalgebra of gq is called
fundamental if it is conjugate to a f—stable fundamental Cartan subalgebra.

4.1. Lemma. The following conditions are equivalent for a 0-stable Cartan
subalgebra ho C go .

(1) bo is a fundamental Cartan subalgebra of gy,
(ii) ho NEy contains a regular element of go, and
(iii) there is a positive root system Lt = L¥(g,h),bh = ho ® C, such that
Tt =%".
A O-stable Cartan subalgebra ho C go is compact if and only if TS+ = X~ for
every positive root system X (g, h).

4.2. Theorem. Let Z = G/P be a complez flag manifold, G semisimple and
simply connected, and let Gy be a real form of G. The orbit Gy(z) is open in
Z if and only if p, = ps where

(i) p2Ngo contains a fundamental Cartan subalgebra ho C go and
(ii) @ is a set of simple roots for a positive root system £ (g,h),h = ho®C,
such that TSt =X,

Fiz ho = Oho, T (g,h) and ® as above. Let W(g,h)"% and W (p%,h)"° de-

note the respective subgroups of Weyl groups that stabilize hy. Then the
open Go-orbits on Z are parameterized by the double coset space W (¢ h N

O\W (g, )% /W (p., b)%.

4.3. Corollary. Suppose that Go has a compact Cartan subgroup, i.e. that
€y contains a Cartan subalgebra of go. Then an orbit Go(z) is open in Z if
and only if go NP, contains a compact Cartan subalgebra by of g9, and then,
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in the notation of Theorem 4.2, the open Go—orbits on Z are parameterized by
W (&, 5)\W (g, b)/W (pZ, ).

A careful examination of the way & sits in both ¢ and go gives us

4.4. Theorem. Let Z = G/P be a complez flag manifold, G semisimple and
simply connected, and let Gy be a real form of G. Let z € Z such that Go(z)
is open in Z, and let hy C go NP, be a O-stable fundamental Cartan subalgebra
of go- Then Ky(z) is a compact complex submanifold of Go(z). Let K be the
complezification of Ko, analytic subgroup of G with Lie algebra & = ¢, ® C.
Then Ky(z) = K(z2) =2 K/(K N P,), complez flag manifold of K.

The compact subvariety Ky(z) controls the topology of an open orbit
Go(z) C Z, as follows. As we saw before, or by Corollary 4.3, the compact real
form G, C G is transitive on Z. This gives us a realization Z = G, /V,, where
V. C G is the centralizer of a torus subgroup. In particular, V,, is connected.
Since Gy C G, Z is compact and simply connected. In view of Theorem 4.4,
one can apply this argument to the compact subvariety Ko(z) C Go(2), so it
is simply connected. Now a deformation argument shows that the open orbit
Go(2z) C Z has Ky(z) as a deformation retract, so Go(2) is simply connected.
Thus one obtains

4.5. Proposition. Let Z = G/P be a complez flag manifold, G semisimple
and simply connected, and let Gy be a real form of G. Let z € Z such that
Go(z) is open in Z. Then Go(z) is simply connected and Gy has connected
isotropy subgroup (P, NTP,) at z.

The compact subvariety Y = K (2) also has a strong influence on the func-
tion theory for an open orbit D = G¢(z) C Z. The idea is that a holomorphic
function on D must be constant on gY whenever ¢ € G and ¢gY C D, so if
there are “too many” translates of Y inside D then that holomorphic function
must be constant on D. But this has to be formulated carefully.

Let Z = G/P be a complex flag manifold, G semisimple and simply con-
nected, and let G be a real form of G. Let z € Z such that Go(z) is open in Z.
Then there are decompositions G = Gy X--- X Gand P = P; X - - - X P, with
P, = PN G; and each G; simple. Consider the corresponding decompositions
Z =7y X XLy with Z; = Gi/lji and z = (Zl,. .. ,Zm), Go = Gl,()X' . 'XGm,O,
Go(z) = G1,0(21) XX Gm,o(zm) and Kg(z) = Kl,o(zl) XX Km’o(zm). If

(i) GioN(F)z = ((F)z NT(Pi)z)o is compact, thus contained in Kj o,

(ii) G;,0/Ki,o is an hermitian symmetric coset space, and
(iii) Gs,0(2zi) = Gi0/Kip is holomorphic for one of the two invariant com-
plex structures on G; o/ K; o,
then we set L; = K, so L;o = K. Otherwise we set L; = G; so L =
Gi,o. Note that each G;0/L; o is a bounded symmetric domain, irreducible or
reduced to a point. Set L = Lo X +++ X Ly, so Ly = L1 g X *++ X Ly 0. Then
we say that

(46) D(GO,Z) = Go/Lo = (GI,O/LI,O) X +eo X (Gm,O/Lm,O)
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is the bounded symmetric domain subordinate to Gy(z). Now we can
state a precise result for holomorphic functions on Gy(z).

4.7. Theorem. Let Z = G/P be a complex flag manifold, G semisimple and
simply connected, and let Gy be a real form of G. Let z € Z with Go(z) be open
in Z. Let D(Go,z) be the bounded symmetric domain subordinate to Go(z).
Then w : g(z) v gLg is a holomorphic map of Go(z) onto D(Gy,z), and the
holomorphic functions on Go(z) are just the f=f-m where f: D(Gy,z) - C
s holomorphic.

Thus, in most cases there are no nonconstant holomorphic functions on
Go(z), but in fact this depends on some delicate structure.

References for §4.

e A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous
spaces, I”, Amer. J. Math. 30 (1958), 458-538.

e A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous
spaces, II”, Amer. J. math. 31 (1959), 315-382.

e A. Frolicher, “Zur Differentialgeometrie der komplexen Strukturen”,
Math. Ann. 129 (1955) 50-95.

o J. Tits, “Espaces homogenes complexes compacts”, Comment. Math.
Helv. 37 (1962), 111-120.

e J. A. Wolf and A. Gray, “Homogeneous spaces defined by Lie group
automorphisms, I”, J. Diff. Geometry 2 (1968), 77-114.

o J. A. Wolf and A. Gray, “Homogeneous spaces defined by Lie group
automorphisms, IT”, J. Diff. Geometry 2 (1968), 115-159.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex flag
manifold, I: Orbit structure and holomorphic arc components”, Bull.
Amer. Math. Soc. 75 (1969), 1121-1237.

§5. EXAMPLE: HERMITIAN SYMMETRIC SPACES.

In this section, Z = G, /K is an irreducible hermitian symmetric space
of compact type. Thus Z = G/P where G is a connected simply connected
complex simple Lie group with a real form Gy C G of hermitian type, as
follows. Fix a Cartan involution 8 of Gy and the corresponding eigenspace
decomposition go = €y + so where ¥ is the Lie algebra of the fixed point set
Ko = G§. Then G, C G is the compact real form of G that is the analytic
subgroup for the compact real form g, = € + s, of g where 5, = v/—15¢ of g.

There is a compact Cartan subalgebra tg C & of go. If @ € X(g,t) then
either g, C € and we say that the root a is compact, or g, C s and we say
that o is noncompact. There is a simple root system ¥ = {1y, ..., %, } such
that 1y is noncompact and the other 1; are compact. Furthermore, 7, is a
long root, and every noncompact positive root is of the form 1o+, <;<,, ni%i

with each integer n; = 0. Thus g = ¢+ st + s~ where

(5.1) E=t+Zga,5+=Zga,ands"= Z Jo -

no=0 no=1 ’no=—1
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Here p = p(y,,....ym}» in other words
(5.2) pT=t,p"=s",andp " =5 ;s0op="F+s .

The Cartan subalgebras of go all are Ad(G)—conjugate to one of the hr o
given as follows. Let I' = {v1,...,7} be a set of noncompact positive roots
that is strongly orthogonal in the sense that

(5.3) if 1 £4 < j £ r then none of ++; ++; is a root.
Then each g[vi] = [gy;; 9—:] + 8y + -, = 51(2,C), say with

1 0 0 1 0 0
h%'“’(o —1)’ e’ﬁ”(o 0)’ f”ﬂ“’(l 0)’

where h,, € [8y,,9-v], €y, € 84, and f,, € g_,, as usual, and such that
go[7%i] = goNgy, = su(1,1) is spanned by v/=T k., ey, +fy, and v=1 (ey, — fy,)-
Thus /=1 h.,, spans the compact Cartan subalgebra t,, = go[vi] Nt of go[vi]
and e, + f,, spans the noncompact Cartan subalgebra a.,, = go[v:]Ns of go[7:].
Strong orthogonality (5.3) says [g,,,8,,] =0 for 1 £i < j £ r. Define

(5.4) tr = Z t,, and ar = Z Oy, -

1<igr 1<igr
Then g has Cartan subalgebras
(5.5) t=tr+(tNg) and bhr=ar+ (EtNE)
They are Int(g)-conjugate, for the partial Cayley transform
(5.5) cr = H exp (%\/—_l(e,,i - f7i)) satisfies Ad(cr)tr = ar.
1Si<r
However, their real forms
(5.6) to =goNtand hro=goNhr

are not Ad(Go)—conjugate except in the trivial case where I' is empty, for
the Killing form has rank m = dimt, and signature 2|I'| — m on hp . More
precisely,
5.7. Proposition. Every Cartan subalgebra of go is Ad(Go)—-conjugate to one
of the bro , and Cartan subalgebras hr o and hr o are Ad(Go)—-conjugate if and
only if the cardinalities |T'| = |IV|.

We recall Kostant’s “cascade construction” of a maximal set of strongly
orthogonal noncompact positive roots in ¥(g,t). This set has cardinality £ =
rankggo and is given by

E={&,...,&}, where
(5.8) &1 is the maximal (necessarily noncompact positive) root and

&m+1 is a maximal noncompact positive root L {£1,...,&n}-
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The roots &; are long, and any set of strongly orthogonal noncompact positive
long roots in X(g,t) is W(Go,To)-conjugate to a subset of Z. Further, the
Weyl group W(Gy,Tp) induces every permutation of E.

Let 29 = 1-P € G/P = Z, the base point of our flag manifold Z when
Z is viewed as a homogeneous space. The Cartan subalgebra hr o C go leads
to the orbits Go(crciz0) C Z where I' U A is a set of strongly orthogonal
noncompact positive roots in 3(g,t) with I' and A disjoint. In view of the
Weyl group equivalence just discussed, we may take I' = {&;,...,&.} and
A={&41,...,&+s}, both inside E. Using Gy = K exp(az,0)Ko one arrives
at

5.9. Theorem. The Go-orbits on Z are just the orbits Dr o = Go(crck o)
where I' and A are disjoint subsets of E. Two such orbits Dr o = Dr/ ar if
and only if cardinalities |I'| = || and |A| = |A'|. An orbit Dr a is open if
and only if T' is empty, closed if and only if (T',A) = (E,0). An orbit D/ s
is in the closure of Dr a if and only if |A’| £ |A| and TUA| S [TV UA/|.

References for §5.

e A. Borel and J. de Siebenthal, “Les sous—groupes fermés de rang max-
imum des groupes de Lie clos”, Comment. Math. Helv. 23 (1949),
200-221.

e A. Kordnyi and J. A. Wolf, “Realization of hermitian symmetric spaces
as generalized half-planes”, Annals of Math. 81 (1965), 265-288.

e C. C. Moore, “Compactifications of symmetric spaces II (The Cartan
domains)”, Amer. J. Math. 86 (1964), 358-378.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex flag
manifold, I: Orbit structure and holomorphic arc components”, Bull.
Amer. Math. Soc. 75 (1969), 1121-1237.

e J. A. Wolf, “Fine structure of hermitian symmetric spaces”, in “Sym-
metric Spaces”, ed. W. M. Boothby & G. L. Weiss, Marcel Dekker,
1972, pp. 271-357.

e J. A. Wolf and A. Kordnyi, “Generalized Cayley transformations of
bounded symmetric domains”, Amer. J. Math. 87 (1965), 899-939.

§6. THE CLOSED ORBIT.

There must be at least one closed Gy—orbit on Z, by Corollary 3.4. In the
examples of §5 it is unique. We will see that it is unique in general and that it
has some interesting structure.

First look at the case where G = SL(2;C),Go = SU(1,1), and X is the
Riemann sphere. G acts as usual by linear fractional transformations. Then

(6.1) Go={(‘g 2) l|a|2—|b|2=1}.
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and are three Gy—orbits, as follows.

The interior of the unit disk G(0) :

{2 L)) e {(5 2

0 real} .
The exterior of the unit disk Gy(00) :

i0
P°°={(g aél)} andH0={(eo ega) lGreal}.

(6.2) The unit circle Go(1) :

P1={<Z 3) ad—bc=1,a+b=c+d}

wri={(5 2} ={(2 1))

and Hy = {i (COSh(t) Sinh(t)) ¢ real}.

sinh(¢) cosh(t)
The first two give the open orbits, with Hy compact, and the third gives the
closed orbit, where Hy is the Ty Ao of an Iwasawa decomposition of Gy . This
mirrors the general case for closed orbits:

6.3. Theorem. Let X = G/P be a complex flag manifold and let Gy be a
real form of G. Then there is a unique closed orbit Go(z) C Z. Further, there
is an Iwasawa decomposition Gy = KgAgNy such that Gy N P, contains HyNy
whenever Hy is a Cartan subgroup of Go that contains Ag. (In other words,
whenever Hy = Ty Ao where Ty is a Cartan subgroup of the Ky—centralizer My

Of Ao)

Proof. We first consider the case where P = B, Borel subgroup of G. Fix a
closed orbit Go(z) C X. Then Gy(z) is compact. I claim that GoN B, contains
the AgNy of an Iwasawa decomposition Gy = KoAoNy. Let Hy C Go N B, be
a Cartan subgroup. Suppose that it is not conjugate to the Tp Ay of a fixed
minimal parabolic subalgebra qo = mg + ap + ng C go. Replacing qo by a
Go-conjugate we then have Hy = TgAp with To G Ty C Ko and A G Ao.
Then we have a root & € ¥ = X(g,h) that vanishes on t, and such that the
intersection of

(6'4) g[a] =gat+8-0a+ [gan g—a]

with b is contained in a while the intersection with b’ is contained in t'. This is
exactly the example of (6.1) and (6.2). Now Go[a](z) is an open hemisphere in
Glo)(z). But Gy[a] is closed in G and has compact isotropy at z, so Go[a](z)
is closed in Go(z). With Go(z) closed in X now Gy[a](z) is closed in X, thus
closed in G[a](z), where in fact it is an open hemisphere. That contradicts our
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hypothesis that Go(z) is closed in X. We have proved? that Go N B, contains
the Ty Ag of an Iwasawa decomposition of Gy .

Denote complexification by dropping the subscript 0. Since Tp Ay C B,
now B, = Bp;,; AN where B)y ; is a Borel subgroup of M = Zg(A). It follows
that Go N By = TpAoNy . Now let Go(z') be another closed orbit on X. Then
By = By o A'N' for another Iwasawa decomposition Gy = K{A{N§ and a
choice of Borel subgroup By, C M’'. But any two Iwasawa decompositions
of Gy are conjugate by an element of Gy, and using compactness of My we
have that any two Borel subalgebras of M are conjugate by an element of M, .
Thus z' € Go(z) and Go(z) = Go(z').

We have proved uniqueness of the closed orbit when P is a Borel subgroup
of G. For the general case, choose a Borel subgroup B C P and note that the
G-equivariant holomorphic fibration 7 : X = G/B — G/P = Z has compact
fibres. Now the closed G-orbits in Z are just the m(Go(z)) where Go(z) is a
closed G-orbit in X. The latter is unique. This completes the proof. O

Another interesting fact about the structure and geometry of closed orbits
is
6.5. Theorem. Let Z = G/P be a complezx flag manifold and let Gy be a real
form of G. Let Go(z) be the unique closed Go—orbit on Z. Then dimg Go(z) =
dim¢ Z, and the following conditions are equivalent.

1. dimR Go(z) = dlmc Z.

2. 7™ = o™,

3. View G as the group of complex points, and Gy as an open subgroup in
the group of real points, of a linear algebraic group defined over R. Then P, is
the group of complex points in an algebraic subgroup defined over R.

4. Z is the set of complezx points in a projective variety defined over R,
and Go(z) is the set of real points.

References for §6.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex flag
manifold, I: Orbit structure and holomorphic arc components”, Bull.
Amer. Math. Soc. 75 (1969), 1121-1237.

PART 2. THE BOTT-BOREL-WEIL THEOREM AND THE PRINCIPAL SERIES.

In this part we combine the Bott-Borel-Weil Theorem with unitary in-
duction, realizing the unitary principal series on the closed orbit, in order to
indicate the pattern used later for geometric realization of the standard tem-
pered representations.

§7. PRINCIPAL SERIES AND THE CLOSED ORBIT.
In order to introduce the connection between unitary representations of

2Here is a shorter, but less elementary, proof. AgNp is a solvable group acting bira-
tionally on the complete variety Go(z), so it has a fixed point by a theorem of Borel. If g(z)
is that fixed point then Ad(g—!)(AoNo) fixes z.
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Go and Go-orbits on the complex flag manifold Z = G/P, we look at the
principal series of Gy .

A subalgebra qo C go is a parabolic subalgebra of g if it is a real form of
a parabolic subalgebra q C g. A subgroup Q¢ C G is a parabolic subgroup
of Gy if it is a real form of a parabolic subalgebra Q C G, that is, if Qo = GoNQ
and its Lie algebra qo is a parabolic subalgebra of go. For example, fix an
Iwasawa decomposition Gy = KoAoNy, and let My = Zk,(Ao), as usual
Then Qo = MyAoNy is minimal among the parabolic subgroups of Gy and
is called a minimal parabolic subgroup. From the construction, any two
minimal parabolic subgroups of G are conjugate. Now fix a minimal parabolic
subgroup Q¢ = MyAoNp . R R

Whenever E is a topological group we write E for its unitary dual. Thus F
consists of the unitary equivalence classes of (strongly fi)ntinuous) topologically

irreducible unitary representations of E. Now [n] € My and o € af determine
[an,a'] € QO by

(7.1) o (man) = n(m)ei70€®),
The corresponding principal series representation of G is
(7.2) Tn,e = Ind gg (og,s) ,  unitarily induced representation.

The principal series of G consists of the unitary equivalence classes of these
representations. A famous result of Bruhat says that if o satisfies a certain
nonsingularity condition then m, , is irreducible.

In order to realize the principal series of Gy on closed orbits, we need the
Bott-Borel-Weil Theorem for My. We have to be careful here because the
compact group My need not be connected. We will first decompose M, as
the product Zpg, (MJ)M where M is its identity component, then indicate
the analog of the Cartan highest weight description for ]\//_f\o. That done, the
standard Bott-Borel-Weil Theorem for Mg will carry over to Mp.

Choose a Cartan subgroup Ty C M,. It specifies a Cartan subgroup
Hy = ToAo = Ty x Ap in Gg. Our choice of @y specifies a choice of pos-
itive restricted root system ¥*(gg,ap): The Lie algebra of Ny is given by
ng = Zaem(go,ao)(%)—a' Now any positive root system Xt (m,t) specifies a

positive system X+ (g, §) by

a € % (g, b) if and only if either oy, = 0 and of; € 7 (m, t)

7.3
(7.3) or alq, # 0 and alq, € T (go, ao).

7.4. Lemma. My = Zp,(MJ)MS. Given a unitary representation class

[7] € My, there ezist unique classes [x] € ng) and [n°] € JTJ? such
that [n] = [x ® n°), and [x] and [n°] restrict to multiples of the same unitary
character on the center of M{ .
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Remark. The argument will show that Ty meets every topological component of
M,.

Proof. The first assertion is equivalent to the statement that if m € My then
the coset mM{g meets Zy, (MQ). Replacing m by some mm' with m’ € M{ we
may assume that Ad(m) preserves both T and a positive root system £+ (m, t).
By the definition of My, Ad(m) acts trivially on Ag, so it preserves the positive
restricted root system X% (gg,a9). Now Ad(m) preserves the positive root
system X7 (g, b) defined in (7.3). Thus m centralizes b, that is, m € H. Now
m € MoN H = T,. In particular Ad(m) induces an inner automorphism on
MY . Thus mM] meets Zy, (M), as claimed.

The second assertion follows from the first. ]

Let ¥y, denote the set of simple roots in £ *(m,t). Every subset ® C ¥,
defines

36 = {€ € t] $(¢) = 0 for all ¢ € B}
and 3,0 = mo Nty, real form of 34 ,

Us = Zm(38),Us,0 = Mo N Us, and their Lie algebras us and ug ,

(7.5) tp = Ug + Z m_,, parabolic subalgebra of m ,
YET+(m,t)

Rs = Np(ts), corresponding parabolic subgroup of M , and

Ss = M/Rgs, associated complex flag manifold.
Lemma 7.4 holds for Us ¢y By Lemma 1.14, M, acts transitively on S, so
MyN Ry = Ug o implies

7.6. Lemma. S is a compact homogeneous Kaehler manifold under the
action of My, and S = My/Us, as coset space. Furthermore Ugo =
Znm, (M(()))Ug,o , s0 Ug o decomposes as does My in Lemma 7.4.

An irreducible unitary representation u of Ug o, say with representation
space V,,, gives us

V., — Sg : Us o—homogeneous, hermitian, holomorphic vector bundle,
(7.7) AP?(Ss;V,) : space of C*V,~valued (p,q)-forms on Ss ,
O(V,,) : sheaf of germs of holomorphic sections of V,, — S .

If T — Sg is the holomorphic tangent bundle then A?4(S3;V,,) is the space
of C'*° sections of

(7.8) V! =V, @ AP(T*) ® AY(T") — Sa .

As M, is compact, V£:? has an My-invariant hermitian metric, so we also
have the Hodge-Kodaira orthocomplementation operators

§: AP9(Sg;V,) — APPP(Sp; V)

7.9 _
(7.9) and  : A""P9(Sg; V) — AP(Sg; V)
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where n = dimc Sg. The global My—invariant hermitian inner product on
AP9(Sg;V),) is given by taking the inner product in each fibre of V¢ and
integrating over S . It can also be expressed in terms of the § operator,

(7.10) (F1, F2)s, = /

(F1, F2)mug od(mUs ) =/ FiAjF,
M,

Ss

where A means exterior product followed by contraction of V,, against V.
The last equality of (7.10) is essentially the definition of §. Now the Cauchy-
Riemann operator

5 : Ap’q(Sq,; Vﬂ) — AP,Q+1(S(I>; V[,I,)
has formal adjoint
(7.11) 3" 1 AP9TL(S5;V,) = AP9(Sy;V,) given by 8 = —fo .

That in turn defines an operator that is elliptic S, the Kodaira-Hodge—
Laplace operator

(7.12) O0=988 4+ 8: AP(Ss;V,) — AP(S5; V).
We have the space of square integrable V,—valued (p, ¢)—forms on Ss,
L5(Se;V,) :

7.13
(7.13) L, completion of AP?(Sg;V,) for the inner product (7.10) .

Weyl’s Lemma says that the closure of 0 of 0, as a densely defined operator
on L5?(Ss;V,) from the domain AP9(Ss;V,), is essentially self-adjoint. Its
kernel

(7.14) H2(S5;V,) = {w € Domain(0) | Ow = 0}

is the space of square integrable harmonic (p, ¢)-forms on S with values
in V,, . Harmonic forms are smooth by elliptic regularity, i.e., H5?(Ss;V,) C
AP9(S5;V,). Everything is invariant under the action of My, and the natural
action of the group My on H5"%(S3;V,,) is a unitary representation.

We write 74(Ss;V,,) for #9%(Ss;V,), because those are the only har-
monic spaces that we will use, and because #3(S;V,,) is naturally isomorphic
to the sheaf cohomology H?(Sg,O(V,)).

Just to avoid confusion, we state some conventions explicitly. We will
use (unless we state otherwise) x for representations of Zps, (Mg). We will
use p for representations of Us,o and u® for representations of its identity
component Ug,o, Pug for half the sum of the roots in £t (us, t), and u% for the
irreducible representation of Ug,o of highest weight 8 — p,, (corresponding to
infinitesimal character 3). Similarly, we will use 5 for representations of M
and 7° for representations of its identity component MY, pm for half the sum
of the roots in X (m,t), and n? for the irreducible representation of M of
highest weight v — p, (corresponding to infinitesimal character v). With these
conventions, the Bott—Borel-Weil Theorem for M is
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7.15. Theorem. Let [p] =[x ® u%] € [7::1)\,0 and fiz an integer q¢ 2 0.

1. If (B — pug + Pm, ) =0 for some o € L(m,t) then HI(Ss;V,) =0.

2. If (B — pug + Pm,) # 0 for all o € L(m,t), let w be the unique element
in W(m,t) such that v = w(B — pus + pm) is in the positive Weyl chamber,
i.e. satisfies (v,a) > 0 for all @ € Tt(m,t). So g0 = length(w) = |{a €
TH(m,t) | (B — pus + pm,@) < 0}|. Then HE(Ss;V,) =0 for ¢ # qo, and My
acts irreducibly on HL (Se;V,) by [x ® 7).

Fix [u] = [x ® pp] € (71;) as before. Given o € aj we will use the Bott—
Borel-Weil Theorem to find the principal series representation m,gno , on a
cohomology space related to the closed orbit in the complex flag manifold
Zg = G/Pg . Here the simple root system ¥,, C ¥ by the coherence in our
choice of £*(g,}), so ® C ¥ and ® defines a parabolic subgroup Ps C G.

Let zp = 1Pg € G/P@ =Zs. As AgNy C Gy N Py we have Gy N P =
Us,0AoNy. Thus Y = Go(23) is the closed Go—orbit on Zg , and Sp sits in Y3
as the orbit My(zs). Here note that Qo = MoAoNy = {g € Gy | S = Sa}.
7.16. Lemma. The map Y3 — Go/Qo, given by g(z8) — gQo, defines a
Go—equivariant fibre bundle with structure group My and whose fibres gSs are
the mazimal complex analytic submanifolds of Ys .

The data (u,0) defines a representation vy, , of Us ANy by

(7.17a) Yu,o (Uan) = elpatio)loga) () where pg = %Eaezﬁ da -
That defines a Gp—homogeneous complex vector bundle
(717b) Vu,a — Go/U§,0A0N0 = Yq;. such that VM,UISQ = VM .

Each V, ;|gs, is an Ad(g)Qo—homogeneous holomorphic vector bundle.
Since [u] is unitary and K, acts transitively on Go/Qo we have a Ko—
invariant hermitian metric on V, , . We will use it without explicit reference.
Consider the subbundle T — Y3 of the complexified tangent bundle of Y3 ,
defined by

(7.18a) T|gss —* 953 is the holomorphic tangent bundle of gSs .

It defines

Vil = Ve @ AP(T) @ AY(T) = Ya

AP1(Yy;V, ;) : C* sections of Ve —Ys , and

O(Vy,,s) : sheaf of germs of C* sections of V,, , — Y5
that are holomorphic over every gSs .

(7.18b)

AP9(Y;V, ;) is the space of V, ,—valued partially (p, g)—forms on Y3 .
The fibre V,, of V, — Sg has a positive definite Up g—invariant hermitian
inner product because y is unitary; we translate this around by Ky to obtain a
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Ko-invariant hermitian structure on the vector bundle Vi;¢ — Y . Similarly
T — Y3 carries a Kg—invariant hermitian metric. Using these hermitian met-
rics we have Ky—invariant Hodge-Kodaira orthocomplementation operators

f: AP (Ye; Vo) = AVTPmTY(Ye; V), )
E:An—p,n—q(y(p;v;’a) - Ap’q(YQ;VM’a-)
where n = dim¢ Sp. The global Gy—invariant hermitian inner product on

AP9(Yy;V, ;) is given by taking the My-invariant inner product along each
fibre of Y3 — Go/Qo and integrating over Go/Qo,

(7.20) (Fi, Fy)ys = /K " ( /k . F17\|jF2) d(kMs).

where A means exterior product followed by contraction of V,, against Vi
The 0 operator of Zg induces the d operators on each of the gSs, so they
fit together to give us an operator

(7.21a) 0: AP(Yg;V, ) = AT (Y V,, )
that has formal adjoint
(7.21b) 3 : APTHY(Yy;V, ) = AP9(Yg;V, ) given by & = —f5f .
This in turn defines an elliptic operator, the “partial Kodaira-Hodge-Laplace
operator”
(7.21¢) 0=08 +80: AP (Ya;V,, ) = APY(Ys; V).

AP4(Ys;V, ;) is a pre Hilbert space with the global inner product (7.20).
Denote
(7.22) L%%(Y;V, ) : Hilbert space completion of A74(Ys;V, ).

(7.19)

Apply Weyl’s Lemma along each ¢S to see that the closure of 0 of 0, as a
densely defined operator on L5Y(Y3;V, ;) from the domain A??(Ys;V, ), is
essentially self-adjoint. Its kernel

(7.23) HEY(Ye; V) = {w € Domain(0) | Ow = 0}

is the space of square integrable partially harmonic (p, ¢)-forms on Y3
with values in V,, ;.

The factor efs in the representation v, , that defines V, , insures that
the global inner product on A?4(Y3;V,, ;) is invariant under the action of Gy .
The other ingredients in the construction of #5'?(Ys;V, ) are invariant as
well, so Gy acts naturally on H5?(Ys;V, ,) by isometries. This action is a
unitary representation of Gy .

Essentially as before, we write #4(Ys;V, ) for #3%(Ys;V, ), because
those are the only harmonic spaces that we will use, and because H3(Ys;V, »)
is closely related to the sheaf cohomology H4(Ys, O(V,,+)). The relation, which
we will see later, is that they have the same underlying Harish-Chandra mod-
ule.

We can now combine the Bott-Borel-Weil Theorem 7.15 with the defini-
tion ((7.1) and (7.2)) of the principal series, obtaining
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7.24. Theorem. Let [u] = [x ® uJ] € Uso and o € o}, and fix an integer
q20.

1. If (B — pug + Pm, ) =0 for some o € E(m, t) then HI(Ys;V, ) =0.

2. If (B — pug + Pm, ) # 0 for all a € L(m, t), let w be the unique element in
W (m,t) such that v = w(B — pyg + pm) s in the positive Weyl chamber, i.e.
satisfies (v,a) > 0 for all @ € £(m,t). So go = length(w) = |[{a € ZT(m,t) |
(B — pug + Pm,) < 0}. Then Hi(Y3;V, ) =0 for ¢ # qo, and the natural
action of Go on H3® (Ys;V,,») is the principal series representation Tx@n®,o -
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PART 3. TEMPERED SERIES AND THE PLANCHEREL FORMULA.

In this part we indicate the basic facts on tempered representations and
see just how the tempered series suffice for harmonic analysis on the real group.

§8. THE DISCRETE SERIES.

We recall the definition and Harish—Chandra parametrization of the dis-
crete series for reductive Lie groups. This can be viewed as a noncompact
group version of Cartan’s theory of the highest weight for representations of
compact Lie groups.

The discrete series of a unimodular locally compact group Gy is the
subset Go 4 C Go consisting of all classes [x] for which 7 is equivalent to a
subrepresentation of the left regular representation of Go. The following are
equivalent: (i) = is a discrete series representation of Gy, (ii) every coefficient
fuu(z) = (u, m(z)v) belongs to L2(Gy), (iii) for some nonzero u, v in the repre-
sentation space Hy, the coefficient f,, € L%(Go). Then one has orthogonality
relations much as in the case of finite groups: There is a real number deg(7) > 0
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such that the L?(Go)-inner product of coefficients of 7 is given by

1 R

(8.1a) (fuvs fst) = W(u, s)(v,t) for s,t,u,v € Hy.

Furthermore, if 7’ is another discrete series representation of Gy, and is not
equivalent to 7, then

(8.1b) (fu,vs fur,or) =0 for u,v € Hy and v',v' € Hyr.

In fact these orthogonality relations come out of convolution formulae.
With the usual

f * h(z) = [L(f)h)(z) = / _)hy's) dy

we have

(8.2a) Juw* fot = a—(;gl@r_)m’t)fs’” for s,t,u,v € H,
and

(8.2b) fuw * furpr = 0for u,v € Hy and v/,v' € Hp

whenever 7 and 7’ are inequivalent discx;(ite series representations of Gg.

If Gy is compact, then every class in Gy belongs to the discrete series, and if
Haar measure is normalized as usual to total volume 1 then deg(7) has the usual
meaning, the dimension of H,;. The orthogonality relations for irreducible
unitary representations of compact groups are more or less equivalent to the
Peter—-Weyl Theorem.

More generally, if Gy is a unimodular locally compact group then L2(Gy) =
0L?(Go) ® 'L?(Gy), orthogonal direct sum, where °L2(Gy) = YineGo, He ®
H} , the “discrete” part, and 'L?(Go) = °L?(Go)*, the “continuous” part. If,
further, Gy is a group of type I then 'L?(Gy) is a continuous direct sum (direct
integral) over 6?0 \ CTO:J, of the Hilbert spaces H, ® H}.

We will need the discrete series, not only for Gy but for certain reduc-
tive subgroups as well. (A Lie group is called reductive if its Lie algebra is
the direct sum of a semisimple Lie algebra and a commutative Lie algebra.)
These reductive subgroups generally will not be semisimple, and even if G is
connected they will generally not be connected. So we want to work with a
class of groups that is hereditary in the sense that it includes all the connected
semisimple Lie groups of finite center, and also includes the above-mentioned
subgroups of groups in the class. This is the Harish—Chandra class, or class
H. ‘

While I’ll state results for Harish-Chandra class, I'll set things up so that
the statements remain valid without essential change for the larger hereditary
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class that contains all connected semisimple groups, whether of finite or of
infinite center.

Let Gy be a reductive Lie group, G its identity component, go its Lie
algebra, and g = go®gC. Suppose that [G), GJ] has finite center, that Go/G)
is finite, and that if z € Gy then Ad(z) is an inner automorphism of g. Then
we say that Gy belongs to class H. From now on we will assume that Gg
belongs to class H.

If 7 is a unitary representation of Go, and if f € L'(Gy), we have the
bounded operator 7(f) = [, f(z)n(z)dz on H,. Now suppose that 7 has
finite composition series, i.e., is a finite sum of irreducible representations. If
f € C°(Gy) then m(f) is of trace class. Furthermore, the map

(8.3) O, : C(Gy) — C defined by ©,(f) = trace m(f)

is a distribution on Gy. © is called the character, the distribution char-
acter or the global character of 7.

Let Z(g) denote the center of the universal enveloping algebra U(g). If we
interpret U(g) as the algebra of all left-invariant differential operators on Gy
then Z(g) is the subalgebra of those that are also invariant under right transla-
tions. If 7 is irreducible then dr|z(,) is an associative algebra homomorphism
Xr : Z(g) = C called the infinitesimal character of 7. We say that = is
quasi-simple if it has an infinitesimal character, i.e. if it is a direct sum of
irreducible representations that have the same infinitesimal character.

Let m be quasi-simple. Then the distribution character ©, satisfies a sys-
tem of differential equations

(8.4) z- O, = xx(2)O, for all z € Z(g).
The regular set
G) = {z € Gy : g"¥® is a Cartan subalgebra of g}

is a dense open subset whose complement has codimension 2 2. Every z € Gj,
has a neighborhood on which at least one of the operators z € Z(g) is elliptic.
It follows that @WIGG is integration against a real analytic function 7, on Gj.
A much deeper result of Harish—Chandra says that ©, has only finite jump
singularities across the singular set Go \ G, so T; is locally L' and O, is
integration -against it,

(8.5) 0. (f) = /G f(@) T (z)dz for all f € C(Gh).

So we may (and do) identify ©, with the function 7). This key element of
Harish—-Chandra’s theory allows the possibility of a prior: estimates on char-
acters and coeflicients as well as explicit character formulae.

Fix a Cartan involution 6 of Gg. In other words, 8 is an automorphism of
Go, 62 is the identity, and the fixed point set Ko = G§ is a maximal compact
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subgroup of Gy. The choice is essentially unique, because the Cartan involu-
tions of Gy are just the Ad(z) -0 - Ad(z)™!, z € GY. If Gy = U(p,q) then
O(z) =*z~! and Ko = U(p) x U(q).

Every Cartan subgroup of Gq is Ad(GY)-conjugate to a #-stable Cartan
subgroup. In particular, Gy has compact Cartan subgroups if and only if K,
contains a Cartan subgroup of Gy.

Harish—Chandra proved that G, has discrete series representations if and
only if it has a compact Cartan subgroup. Suppose that this is the case and
fix a compact Cartan subgroup Ty C Ky of Go. Let ¥ = ¥(g,t) be the root
system, 5 = 5+ (g, t) a choice of positive root system, and let p = 3 .54 @
If £ € t then p(¢) is half the trace of ad(§) on ) cv+ Ga-

If m is a discrete series representation of Gy and ©, is its distribution
character, then the equivalence class of 7 is determined by the restriction of
O, to To N Gi. Harish-Chandra parameterizes the discrete series of Gy by
parameterizing those restrictions.

Let G} denote the finite index subgroup ToGY = Zg, (G9)GY of Go. In fact
the argument of Lemma 7.4 is easily modified here to prove Tp = Zg, (GJ)TY,
so Ty = Tg . Lemma 7.4 says that the group M, of a minimal parabolic
subgroup of G satisfies My = Mg , and similarly, we have Ug o = U;,,o. In
general, where M, may be noncompact, this need not hold.

The Weyl group Wt = W (G}, To) coincides with W0 = W (GS, T?) and is
a normal subgroup of W = W (G, Tp).

Every irreducible unitary representation of Ty = Zg,(G3)TY is of the form
x ® e6A=P) where A € it} and )\ — p satisfies an integrality condition, where

X € Zg,(GY), and where x and e‘(*~) restrict to (multiples of) the same
unitary character on the center of GJ.

Let x®e'*—r) ¢ ﬁ as above. Suppose that A is regular, i.e., that (\,a) # 0
for all @ € X. Then there are unique discrete series representations ) of G§

and ﬂ;, 5 of G;’, whose distribution characters satisfy
Y wewo sign('w)e‘”(’\)
HaEE"‘ (ea/2 _ e—a/2)

and O+ A(z:r:) = trace x(2)©o (z)

@ﬂ'g (.’B) = (_l)q(/\)

(8.6a)

for z € Zg,(GY) and z € T§ N Gy, where

.60 g(\) = {a € ZH(&,9) | (@, A) < 0}
' +{BeZH(g,t) \TF (1) | (B,)) > 0}].

Here note that WL’A =x®mn).
The same datum (), A) specifies a discrete series representation m, 5 of Gg,
by the formula m, 5 = Ind gﬁ: (7rjc »)- This induced representation is irreducible
0 2
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because its conjugates by elements of G/ G}; are mutually inequivalent, conse-
quence of regularity of A. m, ) is characterized by the fact that its distribution

character is supported in G’}; and is given on G;’, by

_ -1
(87) @“x,)\ - Zl§i§’r @wlw\ Y
with v; = Ad(g;)| Gl where {g1,...,9-} is any system of coset representatives

of Gy modulo G’:‘,. To combine these into a single formula one chooses the g;
so that they normalize Ty, i.e. chooses the 7; to be a system of coset represen-
tatives of W modulo W.

Every discrete series representation of Gy is equivalent to a representa-
tion 7, 5 as just described. Discrete series representations m, ) and m,- y» are
equivalent if and only if ¥’ ® ¢ = (x ® e**) - w™! for some w € W. And A
is both the infinitesimal character and the Harish—-Chandra parameter for the
discrete series representation m, » .
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§9. THE TEMPERED SERIES.

The representations of Gy that enter into its Plancherel formula are the
tempered representations. They are constructed from a class of real para-
bolic subgroups of Gy called the cuspidal parabolic subgroups. One con-
structs a standard tempered representation by first constructing a relative
discrete series representation for the reductive part of cuspidal parabolic sub-
group, and then by unitary induction from the parabolic subgroup up to Gy.
We start by recalling the definitions.

Let Hy be a Cartan subgroup of Gy. Fix a Cartan involution 6 of Gy such
that 6(H,) = Ho. We write K for the fixed point set G§ , which is a maximal
compact subgroup of Gy. Decompose

ho =to ® ap and Hy = Ty X Ao
where Ty = Ho N Ko, 6(¢) = —£ on ap, and Ag = expg(ao)-

Then the centralizer Zg, (Ao) of Ao in Gy has form My x Ay where (M) = M, .
The group M, is a reductive Lie group of Harish—Chandra class. Tp is a
compact Cartan subgroup of My, so M, has discrete series representations.

Suppose that our positive root system X+ = X+ (g, h) is defined by positive
root systems X (m,t) and X+ (go, ag) as in (7.3).

A (real) parabolic subgroup Py C Gy is called cuspidal if the commuta-
tor subgroup of the Levy component (reductive part) has a compact Cartan
subgroup.

The Cartan subgroup Hy C G defines a cuspidal parabolic subgroup Py =
MyAgNy of Gy as follows. The Lie algebra of Ny is ng = Zaez+(go,ao)(90)—a ,
M, and A, are as above, and MyAyg = My x Ag is the Levi component of
P,. One extreme is the case where dim ag is maximal; then P, is a minimal
parabolic subgroup of Gy. The other extreme is where dimag is minimal; if
ao=0thenP0=G0.

Every cuspidal parabolic subgroup of Gy is produced by the construction
just described, as Hj varies. Two cuspidal parabolic subgroups of G are asso-
ciated if they are constructed as above from Gy—conjugate Cartan subgroups;
then we say that the Gy—conjugacy class of Cartan subgroups is associated
to the Gy—association class of cuspidal parabolic subgroups.

As in (7.1),

(9.1)

9.2) [n]e]\//.f\oandaea{;
| determine [a,o] € Py by ay,o(man) = n(m)e* (e ).
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Then we have
(9.3) Tno = Ind s (0ty,0) »  unitarily induced representation.

The Hj-series or principal Hy-series of G consists of the unitary equiva-
lence classes of the representations (9.3) for which 7 is a discrete series repre-
sentation of M. Harish-Chandra extended Bruhat’s irreducibility results to
all the Hy—series.

As the terminology indicates, m, , = Ind IG,;’ (op,s) is independent of the
choice of X% (go,ap). In fact this is the case even if 7 does not belong to the
discrete series of My, and is a consequence of the character formula, which we
now describe.

If Jp is a Cartan subgroup of Gy we write G’J0 for the set of Gy-regular
elements that are Gy—conjugate to an element of Jy . If further we fix a positive
root system ¥ (g,j) then we write Ag,, 7, = H,Y€2+(g,j)(e'y/2 —e~7/2), Passing
to a 2-sheeted cover if necessary (it is not necessary if Gy C G with G complex
and simply connected), e” and Ag,,j, are well defined functions on Jp .

When dealing with both Gy and My, we write M| for the My-regular
subset of My. If Ly is a Cartan subgroup of M, we write M Zo for the set of
elements of M| that are Mp—conjugate to an element of Ly .

9.4. Theorem. Fiz a cuspidal parabolic subgroup Py = MyAogNy of Gy, let
[7] € My, and let o € a}. Let X, , with v € t*, be the infinitesimal character
of n and let ¥, be the distribution character.

1. [mp,0] has infinitesimal character X, +is relative to b.

2. [my,s) is a finite sum of classes from é;. So it has well defined dis-
tribution character ©, , that is a locally summable function analytic on the
regular set Gy .

3. Onr, , has support in the closure of |JG';, where Jo runs over a system
of representatives of the Go—conjugacy classes of Cartan subgroups of MyAy .

4. Fiz a Cartan subgroup Jo = Jpr0 X Ag of MoAg . Let {J; 0 = 9:Jog; 1 |
1 <4 £ £(Jo)} be a system of representatives of the MyAg—conjugacy classes
of Cartan subgroups of MyAy that are Go—conjugate to Jy. For each index
i let Ngo(Ji0) and Npgya,(Ji0) denote normalizers in Gy and MyAg. Let
h € Joy N Gy and define h; = gz-hgz-'1 € Jio Then the sets Ng,(J;,0)(h;) and
Nty a0(Ji0)(hi) are finite, and O, ,(h) is given by

£(Jo)

z:I Go,Jto(h )

| Ao 40,70 (Whi)| i (log(wh;
X i, ' ((Whi)M )ew( og(whi)a,)
Nao(g)(hi) | Nato 40 (Ji,0) (why)| n 0

(9.5)

If h € J3, so each h; € JOO, then the second sum runs over the Weyl group
W(Go, J.,;’o) .



28 JOSEPH A. WOLF

5. If t € Ty and a € Ay with ta € G|y then (9.5) reduces to

lAMo To(t) 1 i (log(wa))
9.6) O, _(ta) = —eTo — @, (wi)eooswa)
( ) m” ( ) |AG0,H0 (ta)l Naoé;)(ta) INMO (TO)('LUt)I n( )

The formula (9.5) shows in particular that the distribution O, , is in-
dependent of the choice of cuspidal parabolic subgroup /Pi) associated to the
Go—conjugacy class of Hy. As [m, ;] is a finite sum from Gy, now [r, ;] also is
independent of choice of P, for the given Hy. So Theorem 9.4 implies

9.7. Corollary. The class [m, ] is independent of choice of cuspidal parabolic
subgroup Py = MyAgNy for the given Cartan subgroup Hy =Ty X Ap .

The proof of Theorem 9.4 is a bit technical. It is based on the Harish—
Chandra transform Fp, : C§°(Go) — C§°(MoyAy), given by

(9.8) Fp, (b)(ma) = e~Ploea) /

{ b(kmank'l)dn} dk .
Ko UJ/N

One first proves that 7, ,(b) is of trace class with

(9.9 trace m, »(b) = / Fp, (b)(ma)¥, (m)e** 18 ) dmda .
Mo Ao
Then one can calculate the infinitesimal character. From that, a look at Ky—
types proves finiteness of the composition series. Then one has to extend
the Weyl integration formula appropriately in order to compute the character
formulae.
Theorem 9.4 specializes to the Hy—series as follows. Express

(9.10) N =1y, =Ind 3t (x®m)

corresponding to x € Zu, (M¢) and e”~P~ € T that restrict to multiples of
the same unitary character on the center of MJ. Choose coset representatives
{z1,...,z¢} of My modulo Mg that normalize t; . They represent Weyl group
elements w; € W(My, Tp) that form a system of representatives of W (M, Tp)
modulo W (MY, T?). Now, following (8.6) and (8.7), the distribution character
of 7 is supported on Mg , and it satisfies

Ty (2t) =) (=1)% Widtrace x (zizz; 1) x

11 =1
(9.11) 1

x ——
AMo »To (t)

£
Z det(ww;)e“™ ¥ (t)

w(MQ,T¢)

for z € Zp,(MQ) and t € TQ N Gj. The formula (9.11) characterizes [n,,].
With Theorem 9.4 it gives
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9.12. Theorem. Let [n,,] € m as in (9.10) and let o € af. Then
[Txv,0] = [Ind IG,: (My,» ® €7)] is the unique Ho-series representation class on
Go whose distribution character satisfies

© (zta) =
(9.13) |A s, 1, (28)] Z

IAGO’HO (‘zta' ( ta )

"ﬂx,u s

w(zt))et (log(wa))
INMO(To)(w(zt))ﬁI’"xm( (2t))eioClos

where w(zta) runs over Ng,(Hy)(zta), the ¥,  (w(zt)) are given by (9.11),
2 € Zpy(MQ), te TN MY anda € Ay .

Two Hy-series representations [y, , o], [7r,,x,,u, '] of Go are equal if and
only if ([x'],v',0") is in the Weyl group orbit W (G, Ho)([x], v, 0).

The Ho-series representations [my, o] has dual [m; ] = [mp o]
and has infinitesimal character x,y;s relative to Yy, In particular it sends the

Casimir element of U(g) to ||v||? + ||o]|® — ||pl|?-

Two complements to Theorem 9.12. First, one can check that if Hy and
'Hj are non—conjugate Cartan subgroups of G then every Hy—series represen-
tation is disjoint (no composition factors in common) from every ' Hy—series
representation. This is seen by examining the real and imaginary parts of the
infinitesimal character. Second, the Harish—Chandra condition for irreducibil-
ity of [m,, ,,0] is that o be regular for (go, ao).

Mx,v
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§10. INDICATION OF THE PLANCHEREL FORMULA.

We start with Kostant’s “cascade construction” for the conjugacy classes
of Cartan subgroups of Gy. Suppose first that Gy has a compact Cartan
subgroup Ty . Fix a Cartan involution 6 of Gy such that 8(Ty) = Ty and the
corresponding +1 eigenspace decomposition go = €, + 5o where € is the Lie
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algebra of the maximal compact subgroup Ko = {g € Gy | 0(g) = g}. If
a € X(g,t) then either g, C ¢ and we say that a is compact, or g, C s and
we say that o is noncompact.

Let a € ¥(g,t) be noncompact. Let gla] = go + 9—a + [ga,J—a] as in
(6.4), let G[a] denote the corresponding analytic subgroup of G, and consider
the corresponding real forms go[a] = go N g[a] and Go[e] = Gy N G[a]. Then
Go[a] NTp is a compact Cartan subgroup, and we can simply replace it by the
noncompact Cartan subgroup of Go[a]. Let ag[e] denote the Lie algebra of
that noncompact Cartan subgroup. Then we have a new Cartan subgroup

(10.1a) hofa} = (to N (gola] Nto)*) + aola]
and the corresponding Cartan subgroup
(10.1b) Ho{a} ={g9 € Go| Ad(9)¢ =¢ for all £ € hp{a}.

The point is that Hy{a} has one compact dimension less than that of T and
one noncompact dimensions more.

Let a,8 € X(g,t) be noncompact. We can carry out the construction
(10.1) for @ and B independently, one after the other, in « and 3 are strongly
orthogonal in the sense that a and 3 are linearly independent and neither of
a £ 8 are roots. We write this relation as aL(. If L8 then we have the new
Cartan subgroup Ho{a, 8} given by

(10.2a) ho{e, B} = (to N ((golc] & go[B]) Nto) ™) + (ao[a] @ ao[B])
and
(10.2b) Ho{a, 8} ={g € Go | Ad(g9)¢ = ¢ for all £ € ho{e, B}

Here Hy{a, B} has two compact dimensions less than that of T and two non-
compact dimension more.

We say that a set S of noncompact roots is strongly orthogonal if it
is linearly independent and if any two of its elements are strongly orthogonal.
Then as above we have a Cartan subgroup Ho{S} given by

(10.32) bo{S} = (to N (Eaessola)) Nto)™) + (Eoesaola])
and
(10.3b) Ho{S} ={9€Gy| Ad(9)¢ = ¢ for all £ € ho{S}

Here Ho{S} has |S| compact dimensions fewer than T}, has, and Hy{S} has
|S| noncompact dimensions more than Tp has.

Cartan subgroups Ho{S1} and Ho{S>} are Go—conjugate if and only if
some w € W(Gy,Tp) sends S; to S2. Kostant proved that every Cartan
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subgroup of Gy is conjugate to ho{S} for some set S of strongly orthogonal
noncompact roots.

This sets up a hierarchy among the conjugacy classes of Cartan sub-
groups of Go : Ho{S1} £ Ho{S>2} if and only if some Weyl group element
w € W(Go,To) sends Sz to a subset of S;. That in turn sets up a hierarchy
among parts of the regular set Gy. If Hy is any Cartan subgroup of Gy we
denote G’y = G N Ad(G)Hy, the set of all regular elements G{ that are con-
jugate to an element of Hy. Now G’y (51} S Gy, (s, if and only if some Weyl
group element w € W(Gy, Tp) sends S to a subset of S; . Here GT, sits at the
top, the G {a} Sit just below, the G4, {a,p} 2re on the next level down, and
finally the part of Gy corresponding to the Cartan subgroup of the minimal
parabolic subgroups sit at the bottom.

If Gy does not have a compact Cartan subgroup, we reduce to that case
as follows. Let Hy = Ty x Ay be a Cartan subgroup that is as compact
as possible, i.e., Ty is a Cartan subgroup of a maximal compact subgroup
Ky C Go. Let Py = MyAgNy be an associated cuspidal parabolic subgroup.
Then just do the cascade construction for My, obtaining a family of Cartan
subgroups Hs,0{S} C My as S runs over the W (M, Tp)-conjugacy classes
of strongly orthogonal sets S C ¥(m,t) of noncompact roots of m. Then the
Ho{S} = Humo{S} x Ao give the conjugacy classes of Cartan subgroups of Gy .

A careful examination of the character formulae (8.6), (8.7), (9.11) and
(9.13) shows that the various tempered series exhaust enough of G, for a
decomposition of La(Gy) essentially as

(10.4) Z Z /* Hy, ,,®H;  m(Ho:x:v:o)do.

HoGCa'r(Go) x®e¥—pm Ty L)

Here Car(Gy) denotes the set of Gp—conjugacy classes of Cartan subgroups
and the Borel measure m(Hp : x : v : 0)do is the Plancherel measure on
Go. In general the Plancherel density m(Hy : x : v : o) has a formula that
varies with the component of the regular set. This was worked out by Harish—
Chandra for groups of Harish-Chandra class, and somewhat more generally
by Herb and myself. Harish-Chandra’s approach is based on an analysis of
the structure of the Schwartz space, while Herb and I use explicit character
formulae. These explicit formulae allow us to prove formula (10.4), as follows.

Start with G5, where Hy represents the conjugacy class of Cartan sub-
groups of G that are as compact as possible. A look at the character formulae
cited above, shows that the Hj—series representations suffice to expand func-
tions f € C§°(G%,)- That expansion formula gives us the map

(10.5a) C5°(Go) = C*(Go \ Gy,) by f = f1

where 7, denotes right translation by z € Gy and

105) fi@)=f@)- > / O (e fym(Ho v 2 0)do.

x®e¥~—Pm Ty
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Now let {Ho{a1},...,Ho{am,} be a set of representatives of the conjugacy
classes of Cartan subgroups just below Hy. A look at the character formulae
cited above, shows that the Hy{c;}-series representations suffice to expand
functions f € C§°(GY,(q4,})- Those expansions do not interact, nor do they

introduce nonzero values in G’ , so they give us a map

(1062)  C(Go\Gla,) = C (Go\ (Gt UUGltogay)) by o = o

where
(10.6Db)
f2(z) = fa(z) =

> D Ony o (raf)m(Ho{eu} : x : v 2 0)do.

. o a*{a;
1SiSmi y@ev—pm €To{as} dtadd

Now simply proceed down one level at a time. The tricky point here is to
know the character formulae completely, so that one knows f; well enough to
compute f;;1. Finally, one obtains the final form

(10.7) f(z) = Z Z N /* Oryo(raf)m(Ho : x : v : 0)do.

HoGCaT(Go) xQe¥—pPm €Ty
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PART 4. GEOMETRIC REALIZATION OF THE TEMPERED SERIES.

In this part we show how the standard tempered representations occur as
natural geometric objects over certain real group orbits.

§11. MEASURABLE OPEN ORBITS AND THE DISCRETE SERIES.

Fix a complex flag manifold Z = G/P. An open orbit Gy(z) C Z is called
measurable if it carries a Gy—invariant volume element. If that is the case,
then the invariant volume element is the volume element of a Gy—invariant,
possibly indefinite, Kaehler metric on the orbit, and the isotropy subgroup
Go N P, is the centralizer in Gy of a (compact) torus subgroup of Gy. In more
detail, measurable open orbits are characterized by

11.1. Proposition. Let D = Gy(z) be an open Go—-orbit on the complez flag
manifold Z = G/P. Then the following conditions are equivalent.

1. The orbit Go(z) is measurable.

2. Gy N P, is the Go—centralizer of a (compact) torus subgroup of Gy .

3. D has a Go—invariant possibly-indefinite Kaehler metric, thus a Go—in-
variant measure obtained from the volume form of that metric.

4. 79" = ®", and T®™ = —D™ where p, = ps .

5. p, N TP, is reductive, i.e. p, NTP, =p, N TP} .

6. p.NTP, =p7 .

7. 7p is Ad (G)-conjugate to the parabolic subalgebra p~ = p” +p™ opposite to
p.

In particular, if one open Go-orbit on Z is measurable, then they all are mea-
surable.

Note that Condition 4 of Proposition 11.1 is automatic if the Cartan sub-
algebra by, relative to which p, = ps, is the Lie algebra of a compact Cartan
subgroup of Gy, for in that case Ta = —a for every a € ¥(g, h). In particular,
if G has discrete series representations, so that by a result of Harish-Chandra
it has a compact Cartan subgroup, then every open Gg—orbit on Z is measur-
able.

Condition 4 is also automatic if P is a Borel subgroup of G, and more
generally Condition 7 provides a quick test for measurability.

Now suppose that Gy has a compact Cartan subgroup Ty C Ky. Let
Z = G/P be a complex flag manifold, let z € Z, set D = Gy(z), and suppose
that

(11.2) D is open in Z and Gy has compact isotropy subgroup Uy at z.

Passing to a conjugate, equivalently moving 2 within D, we may suppose Tp C
U .

Let u € Uy, let E, denote the representation space, and let E, — D =
Go /Uy denote the associated holomorphic homogeneous vector bundle. Then
p is finite dimensional and is constructed as follows. First, Uy N GY is the
identity component UJ, and Uy = Zg,(G)US . Second there are irreducible
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representations [x] € Zg,(GY) and [u°] € ﬁg’ that agree on Zg, such that

1] = [x ® u’].
Let B — py denote the highest weight of u°, corresponding to infinitesimal
character 8, and suppose that

(11.3) A = — pu + pg is regular.

Then Gy has a discrete series representation , ) , whose infinitesimal character
has Harish—Chandra parameter A.

Since p is unitary, the bundle E, — D has a Go-invariant hermitian
metric. Essentially as in the compact case, we have the spaces
(11.4)

A(()p ') (D;E,) : C*™ compactly supported E,—valued (p, g)—forms on D,
and the Kodaira—Hodge orthocomplementation operators

§: AP (D;E,) — AJ" ") (DSEy)

(115) . p(n—pmn—q) LT (»y2) .
and f : Ay (D;Ey) = A" (D5 Ey)

where n = dimg D. Thus we have a positive definite inner product on
A(()p ’q)(D;Eu) given by

(11.6) (F1, Fy)p = /G (Fy, Fo)quadg = /D FAiF
0

and thus
(11.7) Lgp’q) (D;E,) : Hilbert space completion of (Agp,q) (D;Ew), ()p)-

Let O denote the Kodaira-Hodge-Laplace operator 8 8 +8 0 of E,. Then
O is a hermitian—symmetric elliptic operator on LgO’Q) (D;E,) with domain
Agp ’q)(D; E.), and a result of Andreotti and Vesentini allows one to conclude
that its closure O is self-adjoint. Accordingly, we have the Hilbert spaces

(11.8) HPD(D;E,) = {w € Domain (0J) | O(w) = 0}

of square integrable harmonic E,-valued (0, g)—forms on D. The natural ac-
tions of Gy on those spaces are unitary representations.

We write H4(D;E,) for #(%9(D;E,) and we write nj, for the unitary
- representation of Gy on H4(D;E,,).

11.9. Theorem. Let [u] =[x ® u°] € Uy where u® has highest weight 3 — p,
and thus has infinitesimal character B. If A = B — py + pg (compare (11.3)) is
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Y(g, t)-singular then every HI(D;E,) = 0. Now suppose that A\ = B — py + pg
is (g, t)-regular and define

7)) ={a e ZT(,H\ZF (1,9 | (A, @) <0}

(11.10) FHBE S, O\ SH(E 0 | (\B) > 0}

Then HI(D;E,) = 0 for g # qu()\), and Gy acts irreducibly on H%*)(D;E,)
by the discrete series representation m, x of infinitesimal character M.

An interesting variation on this result realizes the discrete series on spaces
of Ly bundle-valued harmonic spinors.
Indication of Proof. The proof of Theorem 11.9 has three major components.
The first is the alternating sum formula

(11.11a) 3 (-1)900,g = (-1)F HuNg,
q20

where Oﬂ'Z is the discrete series component of the natural unitary representation
7l of Go on H¥(D; E, ), and Oo ¢ is its distribution character. It is implicit here
that ©o,g exists. The second major component of the proof is the consequence

(11.11b) w4 =Ord

of the Plancherel formula (10.7). The third major component of the proof is
the vanishing theorem

(11.11c) HI(D;E,) = 0 for g # gu(A).

To simplify the argument one should carry out three reductions. First, one
may assume that Gy = G};, for the discrete series representations of Gy are
induced from those of G;’, and one has the character relation (8.7). Second, one
may assume that Gy is connected, Gy = G{, for the discrete series characters of
G;’, are just products O, (2z) = trace x(2)©,0¢(z), as in the second equation
of (8.6a). Third, one may assume that P is a Borel subgroup of G, so Uy = Tp,
by using the Borel-Weil Theorem 7.15 on the fibres of Gy /Ty — Go/Up to make
the Leray spectral sequence explicit.

We will assume that Gy is connected and Uy = Ty for the discussion of
formulae (11.11).

We indicate the argument for the alternating sum formula (11.11a). Use
the Plancherel formula to express

(11.12) LY (D;E,) = /A H,8(H: ® A%n* ® E,) " dm/(r)
Go

where m is Plancherel measure on é\o. Here n = Ea62+ g—c is the nilradical
p~™ =b"" as in (1.1), so n represents the antiholomorphic tangent space and
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n* represents the fibre for the bundle of (0, 1)—forms. Also, ® denotes projective
tensor product and the integral is a direct integral of Hilbert spaces. One now
writes out the formulae for @ and & and pushes them inside the integral of
(11.12). They commute with the left action of Gy and so act on the second
projective tensor product factor (H;f- R NAI* ® E,,)Uo. There they ignore the
E, factor and act on H; ® AIn*. The action on H; ® AIn* produces a certain
finite dimensional Lie algebra cohomology HY(7) as follows.

Let HY denote the space of Ky—finite vectors in H, . Then 7 ® ad* gives a
representation of t = p™ on H? ® A®n*. If {y;} is a basis of n and {w'} is the
dual basis of n* then the coboundary, for Lie algebra cohomology of t relative
to its representation on HY, is
(11.13a)

§=> (dr(y;) ® e(w') + § ® e(w') ad*(3:)) : HY ® A%n* — HY @ ATH'n*

where e(-) denotes exterior product. Let i(-) denote the dual operation, interior
product. Then § has adjoint
(11.13b)

0 = Z(—dw(7(y,-))®i(wi)+%® ad*(y;)*i(w')) : HH®ATn* —» HO@AM* .

Then § + 6* is essentially self-adjoint on H? ® A*n* and has finite dimensional
kernel H9(m) on H2 ® A%n*. One now combines (11.12) and (11.13) to obtain

(11.14a) HI(D;E,) = /é\ HB(H(r*) ® E,) ®dm(r).

In particular, the discrete series part °7rl‘{ of m] is given by

(11.14b) 078 = " dim (H(*) ® E,)™ .
WGG’(')Td

If f € C*°(Ky) then 7|k, (f) = fKo f(k)m(k)dk is a trace class operator
on Hy, f = Tx(f) = tracen|x,(f) is a distribution on Ky, and Tx|k,nc;, =
O] KonGy - These are delicate results of Harish-Chandra. The connection with
(11.11a) and (11.14b) is that

(11.15a) fro= Z(-—l)q(cha,racter of To = Uy on HY(r))
q20

satisfies

(11.15b) Frlmonay = (1)1 Agy 3, €8 Trlryng, -
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Now let F) =3 >,(—1)?@o,s and compute

Fy=)Y (-1)7 Y dim(H(r*) ® E,)™) O,

q20 7r€G’on
(11.16a) = Z (Z(—l)q dim(H‘I(ﬁ*) ® EM)TO) O,
ﬂ'GG’(-),\d ng

= Z (coefﬁcient of e™*?s in fw*)@r .

WGG’O,\d

But
fry = (FD)FTHaC) ST )
weW (Go,To)

in which the coefficient of e~ is equal to 0 if A ¢ W (Go, Ty)(v), is equal to
(—1)I=F 1+ if X € W(Go, Yo)(v). Thus we have

(11.16b) Py = (-1)F e,

This proves the alternating sum formula (11.11a).
The Plancherel Formula (10.7) implies that

(11.17) {m € Go\ God | Tn+|koncy, = On+|Koncy # 0}

has Plancherel measure 0. It follows from (11.14) and (11.17) that 7 = 2,
and (11.11b) follows.

References for §11.

e W. Schmid, “On a conjecture of Langlands”, Annals of Math. 93
(1971), 1-42.

e W. Schmid, “L?-cohomology and the discrete series”, Annals of Math.
103 (1976), 375-394.

e W. Schmid and J. A. Wolf, “Geometric quantization and derived func-
tor modules for semisimple Lie groups”, J. Funct. Analysis 90 (1990),
48-112.

e J. A. Wolf, “The action of a real semisimple Lie group on a complex
flag manifold, II: Unitary representations on partially holomorphic co-
homology spaces”, Memoirs. Amer. Math. Soc., No. 138, 1974.

e J. A. Wolf, “Partially harmonic spinors and representations of reductive
Lie groups”, J. Funct. Analysis 15 (1974), 117-154.

o J. A. Wolf, “Geometric realizations of discrete series representations in
a nonconvex holomorphic setting”, Bull. Soc. Math. de Belgique 42
(1990), 797-812.



38 JOSEPH A. WOLF

§12. PARTIALLY MEASURABLE ORBITS AND TEMPERED SERIES.

Choose a Cartan subgroup Hy C Go. We are going to realize the Hy—series
representations of Gy in a way analogous to the way we realized the principle
series in §7, with Theorem 11.9 in place of the Bott—Borel-Weil Theorem 7.15.

Let 0 be the Cartan involution of G that stabilizes Hy , split Hy = T X Ag
and let Zg,(Ao) = Myx Ay as before. Fix a positive root system T+ = X+ (g, b)
defined by positive root systems X+ (m, t) and S (g, ag) as in (7.3). Let Py =
MyAgNy be the corresponding cuspidal parabolic subgroup of Gy associated
to H, 0-

Following the idea of the geometric realization of the principal series, we
fix a set ® C ¥,, where ¥, is the simple root system for X+ (m,t). Then as in
(7.5) we have

30 ={£ €t]| p(€) =0 Vg € D} and its real form 35,0 = Mo Nrsjs ,
Us = Zm(38), Us,0 = Mo NUs, and Lie algebras ug and ug o ,
(12.1) te = Uusp + Z m_,, parabolic subalgebra of m ,
. YETF(m,t)
Rs = Nj(ts), corresponding parabolic subgroup of M , and

Se = M/Rs, associated complex flag manifold.

Let r& denote the base point, 74 = 1Re € Rg . Since Ty is a compact Cartan
subgroup of M contained in Us o,

(12.2a) Dg = My(rs) C Sp is a measurable open My-orbit on Rg
We now assume that

(12.2b) Us,o is compact, so the considerations of §11 apply to Dg C Ss .

Fix [u] = [x®@uj] € Us,o as before. Given o € a} we will use the Theorem
11.9 to find the Ho—series representation m,gy0 , on a cohomology space related
to a particular orbit in the complex flag manifold Zs = G/Ps . Here as before,
the simple root system ¥, C ¥ by the coherence in our choice of (g, h), so
® C ¥ and & defines a parabolic subgroup Ps C G.

Let 24 = 1Ps € G/Pq, =Zg. As AgNy C Gy N P we have Go N Py =
Us,0A40No. Thus Ys = Go(z2s) is a Go—orbit on Zg , and Ds sits in Y as the
orbit My(2g). Here note that Py = MyAgNg = {g € Go | gDs = Ds}.

12.3. Lemma. The map Y3 — Go/Py, given by g(zs) — gFPy, defines a
Go-equivariant fibre bundle with structure group My and whose fibres gDs are
the maximal complezx analytic submanifolds of Y .

The data (u,0) defines a representation vy, , of Ug,0AoNy by

(1242)  Ypuoluan) = s+O0ED ()  where pg = 1Y ,epr fa -



FLAG MANIFOLDS AND REPRESENTATION THEORY 39

This defines a Gy—homogeneous vector bundle
(124b) Eﬂ’a - Go/U@,OAoNQ = Y3 such that ]E,u,a'qu, = IEM .

Each E, ;|4p, is an Ad(g)Po-homogeneous vector bundle.
Since [p] is unitary and K acts transitively on Go/Py we have a Ko—
invariant hermitian metric on E, , . We will use it without explicit reference.
Consider the subbundle of the complexified tangent bundle to Y3 ,

T — Ys defined by:

(12.52) T|gps — 9Ds is the holomorphic tangent bundle of gDg .
It defines

B¢ =E,, ® AP(T") ® AYT) = Ds ,
(12.5b) A§?(Ye; By s ) : C*° compactly supported sections of B — Ya

O(E,,s) : sheaf of germs of C* sections of E, , — Y3
holomorphic over every gDs .

AP9(Yy;E, ;) is the space of E, ,—valued partially (p,q)-forms on Ys, and
APY(Ys;E, ) is the subspace of compactly supported forms.

The fibre E, of E, — Dg has a positive definite Ug o—invariant hermitian
inner product because y is unitary; we translate this around by Kj to obtain a
Ko—invariant hermitian structure on the vector bundle Ef 2 — Ys . Similarly
T — Y3 carries a Kyp—invariant hermitian metric. Using these hermitian met-
rics we have Ky—invariant Hodge-Kodaira orthocomplementation operators

i AY (Yos Epyo) = Ao~ 7" 1(Ye: B} )

(12.6) © nepn—gq . o
f: A" (Yq;;IE”,a) = AP1(Ys;Eyu )

where n = dim¢ Dg. The global Gy—invariant hermitian inner product on
APY(Yy;E, ) is given by taking the Mp—invariant inner product along each
fibre of Y — Gy /P, and integrating over Go/ P,

(127)  (Fi, Fa)y, = / ( i Fl/_\ﬁFz) k(Ko N Mp)).

Ko /(KoNMoy)

where A means exterior product followed by contraction of E, against E;,.

The 8 operator of Zp induces the 9 operators on each of the gDg, so they
fit together to give us an operator

(12.8a) 0: AYY(Ys;E, ) — ADTT (Y E, )
that has formal adjoint

(12.8b) 3" : AP (Vg B, ,) — ADY(Yg;E, ) given by 9 = —foY .
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That in turn defines a sub-elliptic operator, the “partial Kodaira-Hodge-
Laplace operator”

(12.8¢) O0=90 +080: A2 (Ys;E, ) = A2 (Y E, ).

A3 (Ys;E, ») is a pre Hilbert space with the global inner product (12.7).
Denote

(12.9) LY%(Ys; E, ») : Hilbert space completion of AY'?(Ys;E, ).

Apply Andreotti-Vesentini along each gDg to see that the closure of Oof 0, as
a densely defined operator on LY (Y;E, ,) from the domain A% (Ys;E, ),
is essentially self-adjoint. Its kernel

(12.10) H2Y(Ya; E, ») = {w € Domain(d) | Ow = 0}

is the space of square integrable partially harmonic (p,q)—forms on Y3
with values in E, , .

The factor e”s in the representation v, ., that defines E,, insures that
the global inner product on A}'Y(Y3;E, ) is invariant under the action of Gy .
The other ingredients in the construction of #5'Y(Ys;E, ) are invariant as
well, so Gy acts naturally on H5?(Ys;E, ,) by isometries. This action is a
unitary representation of Gy .

Essentially as before, we write #4(Ys;E, ) for #y?(Ya;E, ), because
those are the only harmonic spaces that we will use, and because H3(Ys;E, »)
is closely related to the sheaf cohomology H?(Ys,O(E,,)). The relation,
which we will see later, is that they have the same underlying Harish-Chandra

module.
We can now combine Theorem 11.9 with the definition ((9.2) and (9.3)) of
the Hy—series, obtaining

12.11. Theorem. Let [p] = [x ® u%] € [j{:o where p® has highest weight
B — pu and thus has infinitesimal character 8. Let

(12.12) V=~ pug + Pm,

suppose o € aj, and fix an integer ¢ 2 0.
1. If (v,a) =0 for some a € L(m,t) then H3(Ys;E, ) =0.
2. If (v,@) #0 for all a € X(m,t), define
Qus (V) = [{@ € TF((ENm), 1) \ =¥ (us, 1) | (v, @) < 0}
+ {8 € ZF(m,t) \ Z¥((ENm), 1) | (v, 8) > 0}].
Then HI(Ye;E,,) = 0 for ¢ # qus(v), and the action of Go on

Hee (") (Yg; B, ;) is the Ho—series representation m,,, , of infinitesimal char-
acter v + 10.

(12.13)

A variation on this theorem realizes the tempered series on spaces of Lo
bundle-valued partially harmonic spinors.
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PARrT 5. THE LINEAR CYCLE SPACE.

In this part we indicate the geometric setting for double fibration trans-
forms, one of the current approaches to geometric construction of non—
tempered representations.

§13. EXHAUSTION FUNCTIONS ON MEASURABLE OPEN ORBITS.

Bounded symmetric domains D C C" are convex, and thus Stein, so co-
homologies H*(D;F) = 0 for k > 0 whenever F — D is a coherent analytic
sheaf. This is a key point in dealing with holomorphic discrete series repre-
sentations. More generally, for general discrete series representations and their
analytic continuations, one has

13.1. Theorem. Let Z = G/P be a complez flag manifold, G semisimple and
simply connected, and let Gy be a real form of G. Let D = Go(2) C Z = G/P
be a measurable open orbit. Let Y = Koy(z), mazimal compact subvariety of
D, and let s =dimc Y. Then D is (s+ 1)-complete in the sense of Andreotti-
Grauert. In particular, if F — D is a coherent analytic sheaf then H*(D; F) =
0 for k > s.

Indication of Proof. Let Kz — Z and Kp = Kz|p — D denote the canon-
ical line bundles. Their dual bundles

(13.2) Lz =K*Z —Z and]LD ’_"K*D - D

are the homogeneous holomorphic line bundles over Z associated to the char-
acter

(13.3) e : P, — C defined by e*(p) = trace Ad(p)|pn -

Write D = Go/Vp where V} is the real form Go N P, of P;. Write V for the
complexification P; of Vo, pg/v for half the sum of the roots that occur in
p%, and A = 2pgv. If o € X(g,h) then (i) (o,A) = 0 and a € @7, or (ii)
(a,A\) > 0 and a € ", or (iii) (o,\) < 0 and @ € ®™". Now 7A = —\.
Decompose go = ¥ + sp under the Cartan involution with fixed point set &,
thus decomposing the Cartan subalgebra hg C go Np, as hy = tg + ap with
fo = b() ﬂfo and Qg = bo Nsp. Then )\(ao) =0.

View D = Go/Vp and Z = G,,/Vp where G, is the analytic subgroup of G
for the compact real form g, = € + v/—15¢. Then e* is a unitary character
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on Vj so

Lz — Z = G,/Vp has a G,—invariant hermitian metric h,, ,

(13.4) Lp — D = Gy/V, has a Gp—invariant hermitian metric hg .

We now have enough information to carry out a computation that results
in
13.5. Lemma. The hermitian form \/—1 00h, on the holomorphic tangent

bundle of Z is negative definite. The hermitian form /—180hy on the holo-
morphic tangent bundle of D has signature n — 2s where n = dimg¢ D.

13.6. Corollary. Define ¢ : D — R by ¢ = log(ho/hy). Then the Levi form
L(¢) has at least n — s positive eigenvalues at every point of D.

The next point is to show that ¢ is an exhaustion function for D, in other
words that

{z € D | ¢(z) < ¢} is compact for every c € R

It suffices to show that e~% has a continuous extension from D to the compact
manifold Z that vanishes on the topological boundary bd(D) of D in Z. For
that, choose a G, —invariant metric A} on L} = Kz normalized by h,h} =1
on Z, and a Go-invariant metric hf on L}, = Kp normalized by hohj = 1 on
D. Then e~® = h}/h%. So it suffices to show that hj/h% has a continuous
extension from D to Z that vanishes on bd(D).

The holomorphic cotangent bundle T3 — Z has fibre Ad(g)(p?)* =
Ad(g)(p;™) at g(z). Thus its G,—invariant hermitian metric is given on the
fibre Ad(g)(p;™) at g(2) by F,(&,n) = — (&, 70n) where (,) is the Killing form.
Similarly the Go—invariant indefinite-hermitian metric on T}, — D is given on
the fibre Ad(g)(p;™) at g(z) by Fo(&,n) = —(§,7n). But Kz = det T} and
Kp = detTp, so

hg/h;, = ¢ - (determinant of Fy with respect to F,)

for some nonzero real constant ¢. This extends from D to a C* function on
Z given by

(13.7) f(g(2)) =c- (det F0|Ad(g)(p;") relative to det FuIAd(g)(p;")) .

It remains only to show that the function f of (13.7) vanishes on bd(D).
If g(2) € bd(D) then Gy(g(z)) is not open in Z, so Ad(g)(p.) + 7Ad(g)(p.) #
g. Thus go C Ad(g)(p;™) while there exists an a € X(g,Ad(g)h) such that
9-o ¢ Ad(g)(pz) + TAd(g)(b:). If B € X(g,Ad(g)h) with gg C Ad(g)(p;")
then Fy(ga,98) =0, so f(g(2)) = 0. Thus ¢ is an exhaustion function for D in
Z. In view of Corollary 13.6 now D is (s+ 1)-complete. Theorem 13.1 follows.
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§14. THE EXHAUSTION FUNCTION ON A GENERAL OPEN ORBIT.

We extend Theorem 13.1 to arbitrary open orbits. The result is

14.1. Theorem. Let Z = G/P be a complez flag manifold, G semisimple and
simply connected, and let Gy be a real form of G. Let D = Go(2) C Z = G/P
be an open orbit. Let Y = Ky(z), mazimal compact subvariety of D, and let
s =dimcY. Then D is (s + 1)-complete in the sense of Andreotti-Grauert.
In particular, if F — D is a coherent analytic sheaf then H*(D;F) = 0 for
k>s.

The idea of the proof is to show that the arbitrary open orbit D = Gy(z) C
Z is the base of a canonical holomorphic fibration 7p : D — D where D is a
measurable open Gy-orbit in a certain flag manifold W that lies over Z. We
then take a close look at that fibration and its relation to the maximal compact

linear subvarieties.

Fix the open orbit D = Gy(z) C Z = G/P and consider the parabolic
subalgebra p* = p” + p™ C g opposite to p, =p = p” + p~". Denote
(14.2) g=pn7p™.
As D is open, so p™" N7p~" = 0, q is the sum of a nilpotent ideal g~™ and a
reductive subalgebra q" given by
(14.3)
q" =p"N7p" and q7" = (p"N7P™)+(p™"N7TP")+(pT"NTP") = (p"NTP")+p ™"
Then q is a parabolic subalgebra of g, and qN7q = p"N7p", which is reductive.
Let @ denote the parabolic subgroup of G corresponding to q C g and let W
denote the corresponding flag manifold G/Q. Our choice of P was such that
p = p, where z € Z and D = Gy(z) is the open orbit under study. Note that
we have implicitly made the corresponding choice on W:

14.4. Lemma. Definew € W by q = gy, . Then D = Go(w) is a measurable
open Go-orbit on W, and gw — gz defines a surjective holomorphic projection
7p : D — D. Finally, the following are equivalent: (i) D is measurable, (ii)
D = D, (iii) mp is one-to-one, and (iv) @ = P.

The structure of the fibre of 7p : D — D is given by
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14.5. Lemma. Letu= (p"N7p~")+ (p~ " N7p"), nilradical of pN7p, and let
U be the corresponding complex analytic subgroup of G. Then U is unipotent,
up = goNu is a real form of u, Uy = GoNU 1is a real form of U, U(w) = Up(w),
and mp : D - D isa holomorphic fibre bundle with structure group U and
affine fibres 5t (g2) = gUo(w). If g € Gy then the holomorphic tangent space
to gUp(w) at g(w) is represented by Ad (g9)(p N7p~") and the antiholomorphic
tangent space is represented by Ad (g)(p N 7p™).

Proof. Here U is the nilradical of PN 7P so Uy = Gy NU is the nilradical of
the isotropy subgroup Gy N P and is a real form of U. Note u = v + 70 where
b=p"N7p~" =unNq”, and where 70 = uN q~". Both are subalgebras; v
represents the holomorphic tangent space of Up(w) at w and 7o represents the
antiholomorphic tangent space. Note [b, 70] = 0.

Now U(w) = V(w) = Up(w) is the fibre over z of mp : D — D, and GoN P
is the semidirect product of its unipotent radical Up and a Levy complement
GoN Q. Thus np : D — D satisfies 75 (g - (Go N P)) = gUp - (Go N Q); in
terms of the complex groups this is the same as gV - Q. Now we can express
mp as the quotient of Go/(Go N Q) by the action of Uy on the right. Then
the surjective holomorphic map 7p is the projection of a principle Uy—bundle.
The assertions follow. O

14.6. Corollary. Denote Y = Ko(w). Then Y = K(w), Y is a mazimal
compact complex subvariety of D, and wp|g is a biholomorphic diffeomorphism
of Y onto Y.

Now we push down the exhaustion function 5 of Corollary 13.6 from the
measurable open orbit D = Go(w) C W to our given open orbit D = Go(z) C
Z. We keep the notation hg and h,, of §13, but applied to D rather than to D.

14.7. Lemma. If g € Gy then /—180log holgug(w) = 0.

Proof. The holomorphic tangent space uNq® =" N7t~ to Up(w) at w has
basis given by elements £, € g, as o runs over I'* = &" N (—79"). Let o, B €
™. If 7€g € g—_o then o € 7®" N ®", so then ¢ € " N (—7P") N 7" N I™ C
I'"NI'™, which is empty. The Lie algebra cohomology computation that leads
to Lemma 13.5 shows /=190 1log ho(£4,&p) = 0. Take linear combinations to
conclude that +/=100log ho|y,(w) is identically zero at w. As /=180 log hy is
Go-invariant, v/—180 log ho|4u, (w) is identically zero at gw, for every g € Go.
O

14.8. Lemma. If g € Gq then E(a)lguo(w) is positive definite.

This shows in particular that the fibres gUp(w) of 7p : D — D are Stein
manifolds. We already knew that for another reason: U is unipotent, so those
fibres are affine varieties.

Proof. v/—1801og holgus(w) is identically zero, by Lemma 14.7. / —1801og h,,
is negative definite, so v/—100 log hulguo(w) is negative definite, and the dif-
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ference E(a) lgts (w) = V —1801log hy| aUo(w) — V —1801og h,, is positive definite.
0O

14.9. Proposition. If g € Gy then $|guo(w) has a unique minimum point
m(g), the function ¢ : D — R given by

(14.10) $(9(2)) = $(m(g)) = min{(w") | ' € 75" (g(2))}
is well defined. Furthermore, ¢ is a real analytic exhaustion function on D.

Indication of Proof. Let g € Go. If ¢ > 0 then D.={w e D | $( Y<c}is
compact because qS is an exhaustion function. Thus DN gUp(w) is compact. In
particular </>| gUo(w) has an absolute minimum. Let w; # w2 be relative minima
of $|9Uo(w). Choose a smooth curve s in gUp(w) from w; to wa, say s(0) = w;
and s(1) = wy, with §'(£) # 0 for 0 < t < 1. Set f(t) = dg(s'(t)) = L(s(t)).
Then f has a relative maximum at some ¢y between 0 and 1. Here we use
wy # wy. But Lemma 14.8 says f"/(t) > 0 for 0 <t < 1. Thus w; = wy. We
have proved that $9U0 (w) has a unique minimum point m(g) € gUp(w).

Now ¢ : D — R is well defined by (14.10). Each np(D,) = D, compact,
so ¢ : D — Ris an exhaustion function. ¢ is C* because M = {m(g) | g € Gy},
the minimum locus just described, is a C* subvariety of D. a

14.11. Remark. The first part of the argument of Proposition 14.9 shows
that m(g) is the unique critical point of @|yy,(w). The second part of the
argument shows that the minimum locus M = {m(g) | g € Go} is a C¥
subvariety of D. 5 5

Define ( = ¢ - mp, so ( : D —= R by ((g(w)) = ¢(m(g)) = ¢(mp(g(w)).
Then the holomorphic tangent spaces of the fibres of 7p are in the kernel of the
Levi form £(¢), and if g € G then £(()4(w) has the same number of positive
eigenvalues as L(¢)y(,) -

Denote complex dimensions of our spaces by

(1412) n=dimcD, A=dimcD, s=dimcY, §=dimcY

where Y = Ky(z) € D and Y = Ky(w) C D are the maximal compact
subvarieties. Lemma 14.6 implies s = 3.

14.13. Lemma. Recall the minimum locus M C D of Proposition 14.9 and
Remark 14.11. Let m € M and let T, (1,0) (M) denote the part of the holomor-

phic tangent space to D tangent to M at m. Then £(¢)|T(1,0) o) has at least
n — s eigenvalues > 0.

Proof. Proposition 13.6, applied to D, says that [,(qz) has at least 72 — § eigen-
values > 0 at m, and dim¢ 75 '7p(m) = # — n. So £(¢)|T,<,3v°)(M) has at least
n —§ =n — s eigenvalues > 0. a
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14.14. Corollary. L(¢) has at least n — s eigenvalues greater than zero at
every point of D.

Theorem 14.1 follows.
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§15. THE STEIN PROPERTY.
Theorem 4.4 says that
(15.1) Y = Ko(z) 2 Ko/(KoNP,) 2 K/(KNP,)

is a complex submanifold of D. Furthermore, Y is not contained in any com-
pact complex submanifold of D of greater dimension. So Y is a maximal
compact subvariety of D. We will refer to

(15.2) Mp ={gY | g € G and ¢gY C D}

as the linear cycle space or the space of maximal compact linear sub-
varieties of D. Since Y is compact and D is open in Z, Mp is open in

(15.3a) Mz ={gY |ge G} =G/L
where
(15.3b) L={geG|gY =Y}, closed complex subgroup of G.

Thus Mp has a natural structure of complex manifold. Its structure is given
by

15.4. Theorem. Let D be an open Gy-orbit on a complex flag manifold
Z = G/P. Then the linear cycle space Mp is a Stein manifold.

The first step is Proposition 15.5 below, which gives the structure of
L. Note that the kernel of the action of L on Y is E = ¢k, kP,k™1 =
Neex kP:k~' and that KE C L C KP,.

In general, G,P,Z,D, K and Y break up as direct products according to
any decomposition of go as a direct sum of ideals, equivalently any decom-
position of Gy as a direct product. Here we use our assumption that G is
connected and simply connected. So, for purposes of determining L we may,
and do, assume that G is noncompact and simple, in other words that Go/ K
is an irreducible riemannian symmetric space of noncompact type.
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As before, we say that Gy is of hermitian type if the irreducible riemann-
ian symmetric space Go/K) is an hermitian symmetric space.

Let 6 be the Cartan involution of Gy with fixed point set Ko and g =€+
under 6, as usual. By the irreducibility of Go/Kj, the adjoint action of Ky
on s9 = go N s is irreducible. Gy is of hermitian type if and only if this
action fails to be absolutely irreducible. Then there is a positive root system
'$+ =%+ (g, h) such that s = s, +s_ where 5, is a sum of 'S+ —positive root
spaces and represents the holomorphic tangent space of Go/Kj, and s_ = 5 is
a sum of 'Y+ -negative root spaces and represents the antiholomorphic tangent
space. Write S+ = exp(s+) C G. Then Go/Kj is an open Go-orbit on G/K S_.

Recall the compact real form g, = ¥ + v/—1 s¢ of g. The corresponding
real analytic subgroup G, of G is a compact real form, thus is a maximal
compact subgroup, and Ky = Gy NG, . Kj is its own normalizer in Gy, but
its normalizer Ng, (Kp) in G, can have several components.

15.5. Proposition. FEither Gg is of hermitian type and L = KE = KS4,
connected, or® L C KNg,(K) with identity component L® = K. In either
case Go N L = K.

The proof is a run through the structural possibilities for Gy and p,. The
group V = GNP, is compact in Cases 1 and 2 below, is noncompact in Cases
3 and 4, and can be either compact or noncompact in Cases 5 and 6. The cases
are

(1) Gy is of hermitian type with P, C KS_. In this case L = KE = KS_
and GoN L = K.

(2) Gy is of hermitian type with P, C KS,.AsinCasel,L=KE =KS,
and G() NL= Kg.

(3) Gy is of hermitian type with P, ¢ KS_, P, ¢ KSy and S- C P,. In
this case L = KE = KS_ and Gy N L = K.

(4) Gy is of hermitian type with P, ¢ KS_, P, ¢ KS; and Sy C P,.
Arguing as in Case 3, we conclude that L = KE = KS; and GoyNL =
K.

(5) Gy is of hermitian type with P, ¢ KS_, P, ¢ KS,, S_ ¢ P, and
Sy ¢ P,. In this case L° = K. and GoNL = Ky.

(6) Gy is not of hermitian type. In this case L = K and GoNL = Kj.

15.6. Corollary. FEither L is a parabolic subgroup KS1 of G and Mz = G/L
s a projective algebraic variety, or L is a reductive subgroup of G with identity
component K and Mz = G /L is an affine algebraic variety.

Consider the first of the two cases of Corollary 15.6. There the result is

15.7. Proposition. Suppose that Mz is a projective algebraic variety. Then
the open orbit D C Z is measurable and Mp is a bounded symmetric domain.
In particular Mp is a Stein manifold.

3This latter situation occurs both for Go of hermitian type and for Go not of hermitian
type.
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Indication of Proof. Gy is of hermitian type and we may assume L = KS_.
Also, Mz = G/L is the standard complex realization of the compact hermitian
symmetric space G, /K . Now

(15.8) G{D}={g€ G|gY C D}.

is open in G and Mp = {gY | g € G{D}}. Mp is stable under the action of
Gy so

(15.9) G{D} is a union of double cosets GogL with g € G.

The proof of Proposition 15.7 consists of showing that only the identity
double coset occurs in G{D}. The double cosets GogL of (15.9) are in one-to-
one correspondence with the Go—orbits on Mz . Those orbits are completely
understood, as described in §5. Following Theorem 5.9 there is a (necessarily
finite) set C of transforms crc% , where I' and A are disjoint subsets of = (see
(5.8), such that (i) if crck, errcd, € C with |T'| = [I’| and |A| = |A| then T =T"
and A = A’and (ii) Gc{D} = U,ee GeL. So if crcd € C then ¢y € C
for every subset A’ C A. In particular, if ¢ ¢ C whenever § # A C E then
C = {1} and Gc{D} = GL.

Now the proof of Proposition 15.7 is reduced to the proof that ¢4 & C for
all non-empty subsets A C E. That is seen by an analysis of the boundary of
Go(1- L) in terms of some natural norms on g and certain of its subspaces.

Next consider the second of the two cases of Corollary 15.6. There the
result is

15.10. Proposition. Suppose that Mz is an affine algebraic variety. Then
Mp is an open Stein subdomain of the Stein manifold Mz.

Indication of Proof. Recall the real analytic exhaustion function ¢ : D — R of
Proposition 14.9. We use it to define ¢ps : Mp — R* by

(15.11) ¢ (gY) = supyey ¢(9(y)) = suprex#(gk(2)) -
W =G{D} ={g € G|gY C D} is open in G, so
%: W x Ko = R" by 9(g,k) = $(gk(2))
is a C* function on the C* manifold W x K . Thus the set defined by vanishing
of the differential in the Ky—variable,
U ={(g,k) €W x Ko | dx,%(9,k) =0},
is a C¥ subvariety of W x K. U is a union of C* subvarieties, one of which is

U ={(9,k) € W x Ko | (g, k) = supck,$(9k(2))}-
The map f : U — Mp given by f(g,k) = gY is C¥. If (9,k) € U then
#(gk(2)) = ¥(g9,k) = ¢m(gY). Since f : U — Mp is C*¥ and surjective, and
since 9|y is C¥, now ¢y is C¥.

By construction, (g, k) is constant in the second variable k € K. The
Levi form L(¢) has its positive eigenvalues in directions transversal to the
gY = gKy(z), so the Levi form £(¢pr) on Mp is positive semidefinite and ¢xs
is plurisubharmonic. Now, using the fact that ¢ is an exhaustion function on
D,
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15.12. Lemma. ¢y is a real analytic plurisubharmonic function on Mp. If
Y. is a point on the boundary of Mp in Mz and {Y;} is a sequence in Mp
that tends to Yoo then limy, v, ¢dam(Y;) = oo.

The last step is to modify ¢, to obtain a strictly plurisubharmonic ex-
haustion function on Mp. Since Mz an affine algebraic variety, it is Stein.
Now My carries a strictly plurisubharmonic exhaustion function N, and
¢ = ¢m + N : Mp — R is a strictly plurisubharmonic exhaustion function
on Mp . It follows that Mp is Stein.

Proof of Theorem 15.4. Theorem 15.4 follows from Proposition 15.7 when Mz
is a projective algebraic variety, from Proposition 15.10 when Mz is an affine
algebraic variety. Proposition 15.5 says that these are the only cases.
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§16. CONNECTION WITH DOUBLE FIBRATION TRANSFORMS.

In general, let D = Gy(z) be an open orbit in the complex flag manifold
Z = G/P,let Y be the maximal compact linear subvariety Ky(z), and consider
the linear cycle space Mp = {gY | g € G and gY C D}. Then we have a
double fibration

Yp ¥ Mp
(16.1) ’”’1
D

where Yp = {(Y',4’) | ¥ € Y’ € Mp}, and the projections pp(Y’,y') =Y’
and pp(Y',y') = ¢'.

Let n = dime¢ D and s = dimcY as before. Consider a negative ho-
mogeneous holomorphic vector bundle E — D. Then we can expect nonzero
cohomology only in degree s. For many purposes, for example for making esti-

mates of one sort or another, it would be preferable to have representations of
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G occur on spaces of functions rather than on cohomology spaces, and here we
use a double fibration transform to carry H*(D; O(E)) to a space of functions
on Mp. For this, one first considers the pullback p,O(E) — Yp and then
the Go—homogeneous s** Leray direct image sheaf F = R*(p}, O(E)) — Mp.
Here F is locally free so it corresponds to a Gy—homogeneous holomorphic
vector bundle F —+ Mp, and F — Mp is holomorphically trivial because Mp
is Stein. In this way one carries the Go—module H*(D;O(E)) to a space of
sections of F and thus to a space of functions with values in the typical fibre
F = H*(Y;p5O(E)) of F. Of course, if Mz is a projective algebraic variety
then, by Proposition 15.7, Gg is of hermitian type and Mp is the bounded
symmetric domain Go/Kp.

Consider the special case where Gy = SU(2,2) and Z is the complex
projective space P3(C) and E — D is a negative line bundle. Here there are
two open orbits, the positive definite lines in C?2? and the negative definite
lines, and s = 1 for each of them. The maps of H*(D;O(E)) to a space of
F—valued functions of G/ Ky are the classical Penrose Transforms.

In the general case, in order to make the double fibration transform explicit
one needs to know the exact structure of Mp and the differential equations
that pick out the functions f, : Mp — F that correspond to cohomologies
o € H*(D; O(E)). The second item here is relatively straightforward. There
is some recent progress on the first item by Dunne, Novak, Zierau and myself.
In almost all cases Zierau and I have shown that if Gy is of hermitian type and
if Mz is not a projective algebraic variety then Mp = (Go/Kj) x (Go/Ko).
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